Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALİTİK HİYERARŞİ PROSESİ KULLANILARAK DÜŞÜK KARBON EMİSYONU İÇİN KRİTİK METAL SEÇİMİ

Yıl 2025, Cilt: 33 Sayı: 2, 1847 - 1853, 22.08.2025
https://doi.org/10.31796/ogummf.1637660

Öz

Düşük karbonlu ekonomilere geçiş, yenilenebilir enerji teknolojileri, elektrikli araçlar ve enerji depolama sistemlerinde hayati öneme sahip kritik metallere olan talebi artırmıştır. Bu metaller, küresel karbon nötrlüğü hedeflerine ulaşmak için gerekli yeşil teknolojilerin etkinleştirilmesinde temel bir rol oynamaktadır. Ancak, bu metallerin çıkarılması, işlenmesi ve tedarik zincirleri çevresel, ekonomik ve jeopolitik zorluklar ortaya çıkarmaktadır. Bu çalışma, çevresel etki, ekonomik uygulanabilirlik, kaynak mevcudiyeti ve teknik performans gibi birden fazla kriteri dikkate alarak kritik metalleri sistematik bir şekilde değerlendirmek ve önceliklendirmek için Analitik Hiyerarşi Süreci (AHP) yöntemini kullanmaktadır. Uzman görüşlerini ve güvenilir verileri içeren AHP çerçevesi, sürdürülebilir kaynak yönetimi bağlamında kapsamlı ve yapılandırılmış bir karar alma yaklaşımı sunmaktadır. Bulgular, lityumun hem çevresel hem de teknik açıdan avantajlı özellikleri nedeniyle en kritik metal olduğunu, etik kaygılara rağmen stratejik önemi dolayısıyla kobaltın ikinci sırada yer aldığını, ardından enerji yoğunluğu nedeniyle nikelin ve kalıcı mıknatıs uygulamaları açısından neodimyumun geldiğini ortaya koymaktadır. Bu analiz, politika yapıcılara, sanayiye ve paydaşlara sürdürülebilir kalkınma hedefleriyle uyumlu kararlar almalarında rehberlik etmeyi ve düşük karbonlu bir geleceğe geçişi desteklemeyi amaçlamaktadır.

Kaynakça

  • Akinyele, D., & Rayudu, R. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8, 74–91. https://doi.org/10.1016/j.seta.2014.07.004
  • Babbitt, C. W., Althaf, S., Rios, F. C., Bilec, M. M., & Graedel, T. (2021). The role of design in circular economy solutions for critical materials. One Earth, 4(3), 353–362. https://doi.org/10.1016/j.oneear.2021.02.014
  • Da Silva Lima, L., Quartier, M., Buchmayr, A., Sanjuan-Delmás, D., Laget, H., Corbisier, D., Mertens, J., & Dewulf, J. (2021). Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments, 46, 101286. https://doi.org/10.1016/j.seta.2021.101286
  • Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., & Reck, B. K. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112(14), 4257–4262. https://doi.org/10.1073/pnas.1500415112
  • He, F., Tang, W., Zhang, X., Deng, L., & Luo, J. (2021). High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes. Advanced Materials, 33(45). https://doi.org/10.1002/adma.202105329
  • Jia, H., Mu, Y., & Qi, Y. (2013). A statistical model to determine the capacity of battery–supercapacitor hybrid energy storage system in autonomous microgrid. International Journal of Electrical Power & Energy Systems, 54, 516–524. https://doi.org/10.1016/j.ijepes.2013.07.025
  • Koech, A. K., Mwandila, G., Mulolani, F., & Mwaanga, P. (2024). Lithium-ion Battery Fundamentals and Exploration of Cathode Materials: A review. South African Journal of Chemical Engineering, 50, 321–339. https://doi.org/10.1016/j.sajce.2024.09.008
  • Kursunoglu, N., & Onder, M. (2015). Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. Tunnelling and Underground Space Technology, 48, 101–109. https://doi.org/10.1016/j.tust.2015.02.005
  • Kursunoglu, S., Kursunoglu, N., Hussaini, S., & Kaya, M. (2020). Selection of an appropriate acid type for the recovery of zinc from a flotation tailing by the analytic hierarchy process. Journal of Cleaner Production, 283, 124659. https://doi.org/10.1016/j.jclepro.2020.124659
  • Majeau-Bettez, G., Hawkins, T. R., & Strømman, A. H. (2011). Life cycle environmental assessment of Lithium-Ion and nickel metal hydride batteries for Plug-In Hybrid and Battery Electric vehicles. Environmental Science & Technology, 45(10), 4548–4554. https://doi.org/10.1021/es103607c
  • Mancini, L., Eslava, N. A., Traverso, M., & Mathieux, F. (2021). Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resources Policy, 71, 102015. https://doi.org/10.1016/j.resourpol.2021.102015
  • Manthiram, A., Song, B., & Li, W. (2016). A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 6, 125–139. https://doi.org/10.1016/j.ensm.2016.10.007
  • Petrova, V. (2023). Exploring the Opportunities for Sustainable Management of Critical Raw Materials in the Circular Economy. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 664–671. https://doi.org/10.55549/epstem.1412475
  • Ponomareva, N., Sheen, J., & Wang, B. Z. (2024). Metal and energy price uncertainties and the global economy. Journal of International Money and Finance, 143, 103044. https://doi.org/10.1016/j.jimonfin.2024.103044
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/ijssci.2008.017590
  • Schäfer, B., Gasparon, M., & Storm, P. (2020). European Raw Materials Alliance—a new initiative to increase raw material resilience for a greener Europe. Mineral Economics, 33(3), 415–416. https://doi.org/10.1007/s13563-020-00241-4
  • Sovacool, B. K., Ali, S. H., Bazilian, M., Radley, B., Nemery, B., Okatz, J., & Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367(6473), 30–33. https://doi.org/10.1126/science.aaz6003
  • Sverdrup, H., & Ragnarsdóttir, K. V. (2014). Natural Resources in a Planetary Perspective. Geochemical Perspectives, 129–341. https://doi.org/10.7185/geochempersp.3.2
  • Yang, C., Zhang, J., Cao, Z., Jing, Q., Chen, Y., & Wang, C. (2020). Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate. ACS Sustainable Chemistry & Engineering, 8(41), 15732–15739. https://doi.org/10.1021/acssuschemeng.0c05676

CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS

Yıl 2025, Cilt: 33 Sayı: 2, 1847 - 1853, 22.08.2025
https://doi.org/10.31796/ogummf.1637660

Öz

The transition to low-carbon economies has heightened the demand for critical metals essential in renewable energy technologies, electric vehicles, and energy storage systems. These metals play a fundamental role in enabling the green technologies required to meet global carbon neutrality targets. However, their extraction, processing, and supply chains introduce environmental, economic, and geopolitical challenges. This study employs the Analytical Hierarchy Process (AHP) to systematically evaluate and prioritize critical metals by considering multiple criteria, including environmental impact, economic viability, resource availability, and technical performance. By integrating expert insights and robust data, the AHP framework provides a comprehensive and structured approach to decision-making in sustainable resource management. The results underscore lithium’s critical role, driven by its favourable environmental and technical properties, followed by cobalt for its strategic relevance despite ethical concerns, nickel for its high energy density, and neodymium for its role in permanent magnet applications. These findings aim to inform policymakers, industry leaders, and stakeholders in making well-grounded decisions that align with sustainable development objectives and facilitate the transition to a low-carbon future.

Etik Beyan

Yazarlar tarafından herhangi bir çıkar çatışması beyan edilmemiştir.

Kaynakça

  • Akinyele, D., & Rayudu, R. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8, 74–91. https://doi.org/10.1016/j.seta.2014.07.004
  • Babbitt, C. W., Althaf, S., Rios, F. C., Bilec, M. M., & Graedel, T. (2021). The role of design in circular economy solutions for critical materials. One Earth, 4(3), 353–362. https://doi.org/10.1016/j.oneear.2021.02.014
  • Da Silva Lima, L., Quartier, M., Buchmayr, A., Sanjuan-Delmás, D., Laget, H., Corbisier, D., Mertens, J., & Dewulf, J. (2021). Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments, 46, 101286. https://doi.org/10.1016/j.seta.2021.101286
  • Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., & Reck, B. K. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences, 112(14), 4257–4262. https://doi.org/10.1073/pnas.1500415112
  • He, F., Tang, W., Zhang, X., Deng, L., & Luo, J. (2021). High Energy Density Solid State Lithium Metal Batteries Enabled by Sub‐5 µm Solid Polymer Electrolytes. Advanced Materials, 33(45). https://doi.org/10.1002/adma.202105329
  • Jia, H., Mu, Y., & Qi, Y. (2013). A statistical model to determine the capacity of battery–supercapacitor hybrid energy storage system in autonomous microgrid. International Journal of Electrical Power & Energy Systems, 54, 516–524. https://doi.org/10.1016/j.ijepes.2013.07.025
  • Koech, A. K., Mwandila, G., Mulolani, F., & Mwaanga, P. (2024). Lithium-ion Battery Fundamentals and Exploration of Cathode Materials: A review. South African Journal of Chemical Engineering, 50, 321–339. https://doi.org/10.1016/j.sajce.2024.09.008
  • Kursunoglu, N., & Onder, M. (2015). Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. Tunnelling and Underground Space Technology, 48, 101–109. https://doi.org/10.1016/j.tust.2015.02.005
  • Kursunoglu, S., Kursunoglu, N., Hussaini, S., & Kaya, M. (2020). Selection of an appropriate acid type for the recovery of zinc from a flotation tailing by the analytic hierarchy process. Journal of Cleaner Production, 283, 124659. https://doi.org/10.1016/j.jclepro.2020.124659
  • Majeau-Bettez, G., Hawkins, T. R., & Strømman, A. H. (2011). Life cycle environmental assessment of Lithium-Ion and nickel metal hydride batteries for Plug-In Hybrid and Battery Electric vehicles. Environmental Science & Technology, 45(10), 4548–4554. https://doi.org/10.1021/es103607c
  • Mancini, L., Eslava, N. A., Traverso, M., & Mathieux, F. (2021). Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resources Policy, 71, 102015. https://doi.org/10.1016/j.resourpol.2021.102015
  • Manthiram, A., Song, B., & Li, W. (2016). A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 6, 125–139. https://doi.org/10.1016/j.ensm.2016.10.007
  • Petrova, V. (2023). Exploring the Opportunities for Sustainable Management of Critical Raw Materials in the Circular Economy. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 664–671. https://doi.org/10.55549/epstem.1412475
  • Ponomareva, N., Sheen, J., & Wang, B. Z. (2024). Metal and energy price uncertainties and the global economy. Journal of International Money and Finance, 143, 103044. https://doi.org/10.1016/j.jimonfin.2024.103044
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/ijssci.2008.017590
  • Schäfer, B., Gasparon, M., & Storm, P. (2020). European Raw Materials Alliance—a new initiative to increase raw material resilience for a greener Europe. Mineral Economics, 33(3), 415–416. https://doi.org/10.1007/s13563-020-00241-4
  • Sovacool, B. K., Ali, S. H., Bazilian, M., Radley, B., Nemery, B., Okatz, J., & Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367(6473), 30–33. https://doi.org/10.1126/science.aaz6003
  • Sverdrup, H., & Ragnarsdóttir, K. V. (2014). Natural Resources in a Planetary Perspective. Geochemical Perspectives, 129–341. https://doi.org/10.7185/geochempersp.3.2
  • Yang, C., Zhang, J., Cao, Z., Jing, Q., Chen, Y., & Wang, C. (2020). Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate. ACS Sustainable Chemistry & Engineering, 8(41), 15732–15739. https://doi.org/10.1021/acssuschemeng.0c05676
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal-Biyolojik Kazanma Teknikleri ve Cevher Hazırlama
Bölüm Araştırma Makaleleri
Yazarlar

Sait Kurşunoğlu 0000-0002-1680-5482

Erken Görünüm Tarihi 15 Ağustos 2025
Yayımlanma Tarihi 22 Ağustos 2025
Gönderilme Tarihi 11 Şubat 2025
Kabul Tarihi 3 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 2

Kaynak Göster

APA Kurşunoğlu, S. (2025). CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(2), 1847-1853. https://doi.org/10.31796/ogummf.1637660
AMA Kurşunoğlu S. CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS. ESOGÜ Müh Mim Fak Derg. Ağustos 2025;33(2):1847-1853. doi:10.31796/ogummf.1637660
Chicago Kurşunoğlu, Sait. “CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 2 (Ağustos 2025): 1847-53. https://doi.org/10.31796/ogummf.1637660.
EndNote Kurşunoğlu S (01 Ağustos 2025) CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 2 1847–1853.
IEEE S. Kurşunoğlu, “CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 2, ss. 1847–1853, 2025, doi: 10.31796/ogummf.1637660.
ISNAD Kurşunoğlu, Sait. “CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/2 (Ağustos2025), 1847-1853. https://doi.org/10.31796/ogummf.1637660.
JAMA Kurşunoğlu S. CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS. ESOGÜ Müh Mim Fak Derg. 2025;33:1847–1853.
MLA Kurşunoğlu, Sait. “CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 2, 2025, ss. 1847-53, doi:10.31796/ogummf.1637660.
Vancouver Kurşunoğlu S. CRITICAL METAL SELECTION FOR LOW CARBON EMISSION USING THE ANALYTIC HIERARCHY PROCESS. ESOGÜ Müh Mim Fak Derg. 2025;33(2):1847-53.

20873      13565         15461