Araştırma Makalesi
BibTex RIS Kaynak Göster

ENTRAINMENT MODEL OF FINE GANGUE PARTICLES IN A FLOTATION COLUMN WITH NEGATIVE BIAS

Yıl 2025, Cilt: 33 Sayı: 2, 1865 - 1873, 22.08.2025
https://doi.org/10.31796/ogummf.1700919

Öz

This study investigated the entrainment of fine gangue particles in a modified (negative bias) flotation column. Entrainment is the unintentional transfer of fine gangue particles to the concentrate during flotation processes, and reduces the concentrate quality. The study aims to determine the operating variables affecting entrainment and develop an empirical model to predict the entrainment percentage. The effects of operating variables such as superficial water rise rate, particle size, airflow rate, and frother amount on entrainment were systematically investigated. The results showed that entrainment increased exponentially with increasing superficial water rise rate, entrainment decreased with increasing particle size, and entrainment increased linearly with increasing airflow rate and frother amount. Using the experimental data, an empirical equation was developed to model the relationship between operating variables and entrainment. A good agreement was observed between experimental and model-predicted entrainment values, confirming that the developed model is effective in predicting entrainment in negatively biased flotation columns. This study's findings contribute to a better understanding and control of the flotation process, thus providing important information for improving concentrate quality in industrial applications.

Kaynakça

  • Aliaga, W., & Soto, H. (1993). Application of column cells to potash flotation in brines. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 102, C70-C73.
  • Anzoom, S. J., Bournival, G., & Ata, S. (2024). Coarse particle flotation: A review. Minerals Engineering, 206, 108499.
  • Ata, S., & Jameson, G. J. (2005). The formation of bubble clusters in flotation cells. International Journal of Mineral Processing, 76(1-2), 123-139.
  • Barbery, G., A. Bouajila and H.Soto 1989. U.S. Patent No 4, 822, 493, April 18th.
  • Bilir, K. (1997). Modifiye flotasyon kolonunda ince tanelerin sürüklenmesi ve iri taneli cevherlerin zenginleştirilmesi (Doktora Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü.
  • Boutin, P., & Wheeler, D. A. (1967). Column flotation development using an 18-in. pilot unit. Canadian Mining J, 88(3).
  • Brown, A. (1981). Régression-Corrélation, Laval University, Libraide des P.U.L. Québec-Canada, p.150.
  • Dai, Z., Fornasiero, D., & Ralston, J. (2000). Particle–bubble collision models-a review. Advances in Colloid and Interface Science, 85(2-3), 231-256.
  • De F. Gontijo, C., Fornasiero, D., & Ralston, J. (2007). The limits of fine and coarse particle flotation. The Canadian Journal of Chemical Engineering, 85(5), 739-747.
  • Dobby, G. S., & Finch, J. A. (1986). Flotation column scale-up and modelling. Cim Bulletin, 79(889), 89-96.
  • Englebrecht, J.A. & E.T. Woodburn (1975). The effect of froth height, aeration rate and gas precipitation on flotation: J. S. Afr. Inst. Min. Metall. 76: 125-132.
  • Ersayın, S. & Apling, A. (1990). Non-sulphide gangue behavior in sulphide flotation, Proceedings of the III. International Mineral Processing Symposium, (Önal, ed.), Sep, 11-13, İstanbul, Turkey, 576-585.
  • Finch, J.A. & G.S. Dooby (1990). Column flotation. Pergamon press. Oxford USA.
  • Fuerstenau, M.C., Jameson, G.J., & Yoon, R.H. (2007). Froth flotation: a century of innovation, SME.
  • Hodouin, D. (1988). Analyse et Modélisation des Procédés, Université Laval, Québec-Canada, chapitre 1 et 6.
  • Jameson, G. J. (2010). Advances in fine and coarse particle flotation. Canadian Metallurgical Quarterly, 49(4), 325-330.
  • Kirjavainen, V. M. (1996). Review and analysis of factors controlling the mechanical flotation of gangue minerals. International journal of mineral processing, 46(1-2), 21-34.
  • Lynch, A. J., Johnson, N. W., Manlapig, E. V., & Thorne, C. G. (1981). Mineral and coal flotation circuits: Their simulation and control.
  • Maachar, A., Lin, D., & Dobby, G. S. (1990). Measurement of water recovery and entrainment in flotation columns. In CIM Conference of Metallurgists.
  • Majumder, A. K., Govindarajan, B., Sharma, T., Ray, H. S., & Rao, T. C. (1995). An empirical model for chloridising-roasting of potassium in glauconitic sandstone. International journal of mineral processing, 43(1-2), 81-89.
  • Mavros, P., Lazaridis, N.K. & Matıs, K.A. (1988). Fines processing in a flotation column, Proceedings of the II International Mineral Processing Symposium, Aytekin (ed), Oct.4-6, İzmir, Turkey, 165-173.
  • Öteyaka, B. (1993). Modélisation d’une colonne de flottation sans zone d’écume pour la séparation des particules grossières. Ph.D. Thesis, University Laval, Québec, Canada.
  • Öteyaka, B. & Soto, H. (1992). Modelling of negative bias column for coarse particle flotation, Proceedings of 4th International Mineral Processing Symposium, Özbayoğlu (ed), 20-22 October, Antalya, vol.1, 315-326.
  • Öteyaka, B. & Soto, H. (1994). Effet du taux de rétention du gaz sur la stabilité des agrégats bulle-particule(s) pendant la flottation: Mines&Carrières “les techniques”. 76: 245-248.
  • Öteyaka , B. & Soto, H. (1995). Flotasyon kolonlarında hava hold-up’ının ve hava kabarcıkları çapının değişiminin tahmini, Türkiye 14. Madencilik Kongresi, 6-9 Haziran, Ankara, 387-391.
  • Sam, A., Gomez, C. O., & Finch, J. A. (1996). Axial velocity profiles of single bubbles in water/frother solutions. International Journal of Mineral Processing, 47(3-4), 177-196.
  • Sastry, Kal V.S. (1990). Principles and methodology of mineral process modeling, Control 90, Mineral and Metallurgical Processing, R.K. Rajamani and J.A. Harbst (eds)
  • Schulze, H. J. (1977). New theoretical and experimental investigations on stability of bubble/particle aggregates in flotation: a theory on the upper particle size of floatability. International Journal of Mineral Processing, 4(3), 241-259.
  • Schulze, H. J. (1984). Physico-chemical elementary processes in flotation. Developments in mineral processing, 4.
  • Sivamohan, R. (1990). The problem of recovering very fine particles in mineral processing-a review. International journal of mineral processing, 28(3-4), 247-288.
  • Somasundaran, P. (1980). Fine Particle Processing Vol. 2. In Proceedings of an International Symposium, Las Vegas, Nevada.
  • Soto, H. (1992). Development of novel flotation-elutriation method for coarse phosphate beneficiation: FIPR Publication. Florida Institute Phosphate Research.
  • Soto, H. & G. Barbery (1991). Flotation of coarse particles in a counter-current column cell: Minerals and Metallurgical Processing. 16-21.
  • Tao, D. (2005). Role of bubble size in flotation of coarse and fine particles - A review. Separation Science and Technology, 39(4), 741-760.
  • Trahar, W. J. (1981). A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8(4), 289-327.
  • Uçbaş, Y., Öteyaka, B. & Hoşten, Ç. (1996). Zonguldak toz kömürlerinin yağ aglomerasyonuyla zenginleştirilmesi için bir ampirik model, Türkiye 10. Kömür Kongresi Bildiriler Kitabı, 20-24 Mayıs, Zonguldak, 133-140.
  • Warren, L. J. (1985). Determination of the contributions of true flotation and entrainment in batch flotation tests. International Journal of Mineral Processing, 14(1), 33-44.
  • Wheeler, D.A. (1985). Column Flotation-The Original Column, Proceedings of the 2nd Latin American Congress on Froth Flotation Conception, Chile, 19-23 August, (Castro and Alvarez, eds.), 17-39.
  • Wyslouzil, H. E., Kohmeunch, J., Christodoulou, L., & Fan, M. (2009). Coarse and fine particle flotation. In Proceedings of the 48th Conference of Metallurgists. Metallurgical Society of CIM Sudbury.
  • Xing, Y., Gui, X., & Cao, Y. (2017). Effect of bubble size on bubble-particle attachment and film drainage kinetics-A theoretical study. Powder technology, 322, 140-146.
  • Yianatos, J. B., Finch, J. A., & Laplante, A. R. (1987). Cleaning action in column flotation froths. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 96, C199-C205.
  • Yianatos, J. B., Finch, J. A., & Laplante, A. R. (1988). Selectivity in column flotation froths. International Journal of Mineral Processing, 23(3-4), 279-292.
  • Ynchausti, R. A., Herbst, J. A., & Hales, L. B. (1988). Unique problems and opportunities associated with automation of column flotation cells. Column Flotation, 88, 27-33.
  • Yoon, R. H. (2000). The role of hydrodynamic and surface forces in bubble–particle interaction. International Journal of Mineral Processing, 58(1-4), 129-143.

NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ

Yıl 2025, Cilt: 33 Sayı: 2, 1865 - 1873, 22.08.2025
https://doi.org/10.31796/ogummf.1700919

Öz

Bu çalışmada, modifiye (negatif biaslı) flotasyon kolonunda ince gang tanelerinin sürüklenmesi araştırılmıştır. Sürüklenme, flotasyon işlemleri sırasında ince gang tanelerinin istem dışı konsantreye taşınması olayıdır ve konsantre kalitesini düşürmektedir. Araştırmanın amacı, sürüklenmeyi etkileyen çalışma değişkenlerini belirlemek ve sürüklenme yüzdesini tahmin etmek için ampirik bir model geliştirmektir. Yüzeysel su yükselme hızı, tane boyutu, hava debisi ve köpürtücü miktarı gibi çalışma değişkenlerinin sürüklenme üzerindeki etkileri sistematik olarak araştırılmıştır. Sonuçlar, yüzeysel su yükselme hızının artmasıyla sürüklenmenin üssel olarak arttığını, tane boyutunun artmasıyla sürüklenmenin azaldığını, hava debisi ve köpürtücü miktarının artmasıyla sürüklenmenin doğrusal olarak arttığını göstermiştir. Deneysel veriler kullanılarak, çalışma değişkenleri ile sürüklenme arasındaki ilişkiyi modelleyen bir ampirik eşitlik geliştirilmiştir. Deneysel ve modelden tahmin edilen sürüklenme değerleri arasında iyi bir uyum gözlenmiştir, bu da geliştirilen modelin negatif biaslı flotasyon kolonlarında sürüklenmeyi tahmin etmede etkili olduğunu doğrulamaktadır. Bu çalışmanın bulguları, flotasyon sürecinin daha iyi anlaşılmasına ve kontrol edilmesine katkı sağlayarak, endüstriyel uygulamalarda konsantre kalitesinin iyileştirilmesine yönelik önemli bilgiler sunmaktadır.

Kaynakça

  • Aliaga, W., & Soto, H. (1993). Application of column cells to potash flotation in brines. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 102, C70-C73.
  • Anzoom, S. J., Bournival, G., & Ata, S. (2024). Coarse particle flotation: A review. Minerals Engineering, 206, 108499.
  • Ata, S., & Jameson, G. J. (2005). The formation of bubble clusters in flotation cells. International Journal of Mineral Processing, 76(1-2), 123-139.
  • Barbery, G., A. Bouajila and H.Soto 1989. U.S. Patent No 4, 822, 493, April 18th.
  • Bilir, K. (1997). Modifiye flotasyon kolonunda ince tanelerin sürüklenmesi ve iri taneli cevherlerin zenginleştirilmesi (Doktora Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü.
  • Boutin, P., & Wheeler, D. A. (1967). Column flotation development using an 18-in. pilot unit. Canadian Mining J, 88(3).
  • Brown, A. (1981). Régression-Corrélation, Laval University, Libraide des P.U.L. Québec-Canada, p.150.
  • Dai, Z., Fornasiero, D., & Ralston, J. (2000). Particle–bubble collision models-a review. Advances in Colloid and Interface Science, 85(2-3), 231-256.
  • De F. Gontijo, C., Fornasiero, D., & Ralston, J. (2007). The limits of fine and coarse particle flotation. The Canadian Journal of Chemical Engineering, 85(5), 739-747.
  • Dobby, G. S., & Finch, J. A. (1986). Flotation column scale-up and modelling. Cim Bulletin, 79(889), 89-96.
  • Englebrecht, J.A. & E.T. Woodburn (1975). The effect of froth height, aeration rate and gas precipitation on flotation: J. S. Afr. Inst. Min. Metall. 76: 125-132.
  • Ersayın, S. & Apling, A. (1990). Non-sulphide gangue behavior in sulphide flotation, Proceedings of the III. International Mineral Processing Symposium, (Önal, ed.), Sep, 11-13, İstanbul, Turkey, 576-585.
  • Finch, J.A. & G.S. Dooby (1990). Column flotation. Pergamon press. Oxford USA.
  • Fuerstenau, M.C., Jameson, G.J., & Yoon, R.H. (2007). Froth flotation: a century of innovation, SME.
  • Hodouin, D. (1988). Analyse et Modélisation des Procédés, Université Laval, Québec-Canada, chapitre 1 et 6.
  • Jameson, G. J. (2010). Advances in fine and coarse particle flotation. Canadian Metallurgical Quarterly, 49(4), 325-330.
  • Kirjavainen, V. M. (1996). Review and analysis of factors controlling the mechanical flotation of gangue minerals. International journal of mineral processing, 46(1-2), 21-34.
  • Lynch, A. J., Johnson, N. W., Manlapig, E. V., & Thorne, C. G. (1981). Mineral and coal flotation circuits: Their simulation and control.
  • Maachar, A., Lin, D., & Dobby, G. S. (1990). Measurement of water recovery and entrainment in flotation columns. In CIM Conference of Metallurgists.
  • Majumder, A. K., Govindarajan, B., Sharma, T., Ray, H. S., & Rao, T. C. (1995). An empirical model for chloridising-roasting of potassium in glauconitic sandstone. International journal of mineral processing, 43(1-2), 81-89.
  • Mavros, P., Lazaridis, N.K. & Matıs, K.A. (1988). Fines processing in a flotation column, Proceedings of the II International Mineral Processing Symposium, Aytekin (ed), Oct.4-6, İzmir, Turkey, 165-173.
  • Öteyaka, B. (1993). Modélisation d’une colonne de flottation sans zone d’écume pour la séparation des particules grossières. Ph.D. Thesis, University Laval, Québec, Canada.
  • Öteyaka, B. & Soto, H. (1992). Modelling of negative bias column for coarse particle flotation, Proceedings of 4th International Mineral Processing Symposium, Özbayoğlu (ed), 20-22 October, Antalya, vol.1, 315-326.
  • Öteyaka, B. & Soto, H. (1994). Effet du taux de rétention du gaz sur la stabilité des agrégats bulle-particule(s) pendant la flottation: Mines&Carrières “les techniques”. 76: 245-248.
  • Öteyaka , B. & Soto, H. (1995). Flotasyon kolonlarında hava hold-up’ının ve hava kabarcıkları çapının değişiminin tahmini, Türkiye 14. Madencilik Kongresi, 6-9 Haziran, Ankara, 387-391.
  • Sam, A., Gomez, C. O., & Finch, J. A. (1996). Axial velocity profiles of single bubbles in water/frother solutions. International Journal of Mineral Processing, 47(3-4), 177-196.
  • Sastry, Kal V.S. (1990). Principles and methodology of mineral process modeling, Control 90, Mineral and Metallurgical Processing, R.K. Rajamani and J.A. Harbst (eds)
  • Schulze, H. J. (1977). New theoretical and experimental investigations on stability of bubble/particle aggregates in flotation: a theory on the upper particle size of floatability. International Journal of Mineral Processing, 4(3), 241-259.
  • Schulze, H. J. (1984). Physico-chemical elementary processes in flotation. Developments in mineral processing, 4.
  • Sivamohan, R. (1990). The problem of recovering very fine particles in mineral processing-a review. International journal of mineral processing, 28(3-4), 247-288.
  • Somasundaran, P. (1980). Fine Particle Processing Vol. 2. In Proceedings of an International Symposium, Las Vegas, Nevada.
  • Soto, H. (1992). Development of novel flotation-elutriation method for coarse phosphate beneficiation: FIPR Publication. Florida Institute Phosphate Research.
  • Soto, H. & G. Barbery (1991). Flotation of coarse particles in a counter-current column cell: Minerals and Metallurgical Processing. 16-21.
  • Tao, D. (2005). Role of bubble size in flotation of coarse and fine particles - A review. Separation Science and Technology, 39(4), 741-760.
  • Trahar, W. J. (1981). A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8(4), 289-327.
  • Uçbaş, Y., Öteyaka, B. & Hoşten, Ç. (1996). Zonguldak toz kömürlerinin yağ aglomerasyonuyla zenginleştirilmesi için bir ampirik model, Türkiye 10. Kömür Kongresi Bildiriler Kitabı, 20-24 Mayıs, Zonguldak, 133-140.
  • Warren, L. J. (1985). Determination of the contributions of true flotation and entrainment in batch flotation tests. International Journal of Mineral Processing, 14(1), 33-44.
  • Wheeler, D.A. (1985). Column Flotation-The Original Column, Proceedings of the 2nd Latin American Congress on Froth Flotation Conception, Chile, 19-23 August, (Castro and Alvarez, eds.), 17-39.
  • Wyslouzil, H. E., Kohmeunch, J., Christodoulou, L., & Fan, M. (2009). Coarse and fine particle flotation. In Proceedings of the 48th Conference of Metallurgists. Metallurgical Society of CIM Sudbury.
  • Xing, Y., Gui, X., & Cao, Y. (2017). Effect of bubble size on bubble-particle attachment and film drainage kinetics-A theoretical study. Powder technology, 322, 140-146.
  • Yianatos, J. B., Finch, J. A., & Laplante, A. R. (1987). Cleaning action in column flotation froths. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 96, C199-C205.
  • Yianatos, J. B., Finch, J. A., & Laplante, A. R. (1988). Selectivity in column flotation froths. International Journal of Mineral Processing, 23(3-4), 279-292.
  • Ynchausti, R. A., Herbst, J. A., & Hales, L. B. (1988). Unique problems and opportunities associated with automation of column flotation cells. Column Flotation, 88, 27-33.
  • Yoon, R. H. (2000). The role of hydrodynamic and surface forces in bubble–particle interaction. International Journal of Mineral Processing, 58(1-4), 129-143.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimyasal-Biyolojik Kazanma Teknikleri ve Cevher Hazırlama
Bölüm Araştırma Makaleleri
Yazarlar

Kemal Bilir 0000-0002-6747-6666

Bahri Öteyaka 0000-0002-5221-2414

Erken Görünüm Tarihi 15 Ağustos 2025
Yayımlanma Tarihi 22 Ağustos 2025
Gönderilme Tarihi 17 Mayıs 2025
Kabul Tarihi 24 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 33 Sayı: 2

Kaynak Göster

APA Bilir, K., & Öteyaka, B. (2025). NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(2), 1865-1873. https://doi.org/10.31796/ogummf.1700919
AMA Bilir K, Öteyaka B. NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ. ESOGÜ Müh Mim Fak Derg. Ağustos 2025;33(2):1865-1873. doi:10.31796/ogummf.1700919
Chicago Bilir, Kemal, ve Bahri Öteyaka. “NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33, sy. 2 (Ağustos 2025): 1865-73. https://doi.org/10.31796/ogummf.1700919.
EndNote Bilir K, Öteyaka B (01 Ağustos 2025) NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 2 1865–1873.
IEEE K. Bilir ve B. Öteyaka, “NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ”, ESOGÜ Müh Mim Fak Derg, c. 33, sy. 2, ss. 1865–1873, 2025, doi: 10.31796/ogummf.1700919.
ISNAD Bilir, Kemal - Öteyaka, Bahri. “NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/2 (Ağustos2025), 1865-1873. https://doi.org/10.31796/ogummf.1700919.
JAMA Bilir K, Öteyaka B. NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ. ESOGÜ Müh Mim Fak Derg. 2025;33:1865–1873.
MLA Bilir, Kemal ve Bahri Öteyaka. “NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, c. 33, sy. 2, 2025, ss. 1865-73, doi:10.31796/ogummf.1700919.
Vancouver Bilir K, Öteyaka B. NEGATİF BİASLI FLOTASYON KOLONUNDA İNCE GANG TANELERİNİN SÜRÜKLENME MODELİ. ESOGÜ Müh Mim Fak Derg. 2025;33(2):1865-73.

20873      13565         15461