Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad

Yıl 2022, , 74 - 80, 31.12.2022
https://doi.org/10.56171/ojn.1053225

Öz

The treatment of boron(III) subphthalocyanine chloride (SubPcCl) with borondipyrromethene (BODIPY) derivative consisting one pyrene group in toluene gave the corresponding axially substituted boron(III) subphthalocyanine dyad (SubPcBodiPy). Novel compound has been fully characterized by FTIR, mass, NMR (1H and 13C) spectroscopy and elemental analysis. Photophysical properties of SubPcBodiPy was investigated and compared with its precursors by fluorescence and absorption spectroscopy in THF. Accordingly, fluorescence lifetimes were measured directly by single exponential calculation.

Kaynakça

  • Ward M. D., (1997) “Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies”, Chemical Society Reviews, vol.26, pp.365-375.
  • Balzani V., Bergamini G., Ceroni P., (2008) “From the photochemistry of coordination compounds to light-powered nanoscale devices and machines”, Coordination Chemistry Reviews, vol. 252, pp.2456-2469.
  • Holten D., Bocian D. F., Lindsey J. S., (2002) “Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices” Accounts of Chemical Research, vol.35, pp.57-69.
  • Loudet A., Burgess K., (2007) “BODIPY dyes and their derivatives: syntheses and spectroscopic properties” Chemical Reviews, vol.107, pp.4891-4932.
  • Claessens C. G., González-Rodríguez D., Torres T., (2002) “Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties” Chemical Reviews, vol.102, pp.835-854.
  • Mutolo K.L., Mayo E.I., Rand B.P., Forrest S.R., Thompson M.E., (2006) “Enhanced opencircuit voltage in subphthalocyanine/C60 organic photovoltaic cells” Journal of American Chemical Society, vol.128, pp.8108-8109.
  • Xu S., Chen K., Tian H., (2005) “A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine” Journal of Materials Chemistry A, vol.15, pp.2676-2680.
  • Morse G. E., Helander M. G., Maka J. F., Lu Z. H., Bender T. P., (2010) “Fluorinated phenoxy boron subphthalocyanines in organic light-emitting diodes” ACS Applied Materials & Interfaces, vol.2(7), pp.1934-1944.
  • Renshaw K. C., Xu X., Forrest S. R., (2010) “A monolithically integrated organic photodetector and thin film transistor” Organic Electronics, vol.11, pp.175-178.
  • Li J. Y., Yeung H. S., Xu W., Li X., Ng D. K. P. (2008) “Highly Efficient Energy Transfer in Subphthalocyanine−BODIPY Conjugates” Organic Letters, vol.10, 23, pp.5421–5424.

Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad

Yıl 2022, , 74 - 80, 31.12.2022
https://doi.org/10.56171/ojn.1053225

Öz

The treatment of boron(III) subphthalocyanine chloride (SubPcCl) with borondipyrromethene (BODIPY) derivative consisting one pyrene group in toluene gave the corresponding axially substituted boron(III) subphthalocyanine dyad (SubPcBodiPy). Novel compound has been fully characterized by FTIR, mass, NMR (1H and 13C) spectroscopy and elemental analysis. Photophysical properties of SubPcBodiPy was investigated and compared with its precursors by fluorescence and absorption spectroscopy in THF. Accordingly, fluorescence lifetimes were measured directly by single exponential calculation.

Kaynakça

  • Ward M. D., (1997) “Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies”, Chemical Society Reviews, vol.26, pp.365-375.
  • Balzani V., Bergamini G., Ceroni P., (2008) “From the photochemistry of coordination compounds to light-powered nanoscale devices and machines”, Coordination Chemistry Reviews, vol. 252, pp.2456-2469.
  • Holten D., Bocian D. F., Lindsey J. S., (2002) “Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices” Accounts of Chemical Research, vol.35, pp.57-69.
  • Loudet A., Burgess K., (2007) “BODIPY dyes and their derivatives: syntheses and spectroscopic properties” Chemical Reviews, vol.107, pp.4891-4932.
  • Claessens C. G., González-Rodríguez D., Torres T., (2002) “Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties” Chemical Reviews, vol.102, pp.835-854.
  • Mutolo K.L., Mayo E.I., Rand B.P., Forrest S.R., Thompson M.E., (2006) “Enhanced opencircuit voltage in subphthalocyanine/C60 organic photovoltaic cells” Journal of American Chemical Society, vol.128, pp.8108-8109.
  • Xu S., Chen K., Tian H., (2005) “A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine” Journal of Materials Chemistry A, vol.15, pp.2676-2680.
  • Morse G. E., Helander M. G., Maka J. F., Lu Z. H., Bender T. P., (2010) “Fluorinated phenoxy boron subphthalocyanines in organic light-emitting diodes” ACS Applied Materials & Interfaces, vol.2(7), pp.1934-1944.
  • Renshaw K. C., Xu X., Forrest S. R., (2010) “A monolithically integrated organic photodetector and thin film transistor” Organic Electronics, vol.11, pp.175-178.
  • Li J. Y., Yeung H. S., Xu W., Li X., Ng D. K. P. (2008) “Highly Efficient Energy Transfer in Subphthalocyanine−BODIPY Conjugates” Organic Letters, vol.10, 23, pp.5421–5424.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Seda Çetindere 0000-0001-7599-8491

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 4 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çetindere, S. (2022). Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open Journal of Nano, 7(2), 74-80. https://doi.org/10.56171/ojn.1053225
AMA Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. OJN. Aralık 2022;7(2):74-80. doi:10.56171/ojn.1053225
Chicago Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano 7, sy. 2 (Aralık 2022): 74-80. https://doi.org/10.56171/ojn.1053225.
EndNote Çetindere S (01 Aralık 2022) Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open Journal of Nano 7 2 74–80.
IEEE S. Çetindere, “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”, OJN, c. 7, sy. 2, ss. 74–80, 2022, doi: 10.56171/ojn.1053225.
ISNAD Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano 7/2 (Aralık 2022), 74-80. https://doi.org/10.56171/ojn.1053225.
JAMA Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. OJN. 2022;7:74–80.
MLA Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano, c. 7, sy. 2, 2022, ss. 74-80, doi:10.56171/ojn.1053225.
Vancouver Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. OJN. 2022;7(2):74-80.

Open Journal of Nano(OJN), dergisi molekülerden mikro boyuttaki yapılara kadar değişen fiziksel, kimyasal ve biyolojik olaylar ve süreçlerle ilgili (ancak bunlarla sınırlı olmayan) bilgilerle ilgilenir.
Cc_by-nc_icon.svgThe Open Journal of Nano dergisinde yayınlanan tüm yayınlar Atıf-GayriTicari 4.0 Uluslararası (CC BY-NC 4.0) lisansı altında lisanlanmıştır.