Derleme
BibTex RIS Kaynak Göster

Fall Detection and Prevention Systems: Sensor Type Perspective

Yıl 2025, Cilt: 8 Sayı: 3, 1488 - 1524, 16.06.2025
https://doi.org/10.47495/okufbed.1508992

Öz

Falls among older adults pose significant health risks, making their prevention and detection critical areas of research. This review examines fall detection and prevention systems, categorizing them based on sensor types and utilization methods: wearable sensors, environmental sensors, radio-frequency-based sensors, and hybrid systems. Additionally, it explores the methods employed within these systems. Given the limitations of traditional linear approaches in accurately detecting falls, recent research emphasizes artificial intelligence (AI) techniques, particularly machine learning (ML) and deep learning (DL), to enhance detection accuracy and system functionality. The review provides an overview of the sensors and algorithms used in fall detection and prevention systems, alongside their outcomes. Key findings and challenges related to specific sensors and systems are discussed in detail. This analysis offers researchers a comprehensive understanding of current technologies, highlights the contributions of AI methods, and outlines potential future directions in the field. By evaluating sensors, methodologies, and system sensitivities, the aim is to contribute to the development of effective solutions tailored to specific sensitivities.

Kaynakça

  • Akagunduz E., Aslan M., Sengu A., Wang H., Ince MC. Silhouette orientation volumes for efficient fall detection in depth videos. IEEE Journal of Biomedical and Health Informatics 2017; 21(3): 756–763.
  • Amiroh K., Rahmawati D., Wicaksono A. Intelligent system for fall prediction based on accelerometer and gyroscope of fatal injury in geriatric. Jurnal Nasional Teknik Elektro 2021; 10: 154–159.
  • Birku Y., Agrawal H. Survey on fall detection systems. International Journal of Pure and Applied Mathematics 118(18): 2537–2543.
  • Boutellaa E., Kerdjidj O., Ghanem K. Covariance matrix-based fall detection from multiple wearable sensors. Journal of Biomedical Informatics 2019; 94: Art. no. April.
  • Casilari E., Álvarez-Marco M., García-Lagos F. A study of the use of gyroscope measurements in wearable fall detection systems. Symmetry 2020; 12: 649.
  • Chaccour K., al Assaad H., Hajjam A., Darazi R., Andrès E. Sway analysis and fall prediction method based on spatio-temporal sliding window technique. IEEE HealthCom 2016.
  • Chen D., Wong AB., Wu K. Fall detection based on fusion of passive and active acoustic sensing. IEEE Internet of Things Journal 2024; 11(7): 11566–11578.
  • Chi G., et al. XFall: Domain adaptive Wi-Fi-based fall detection with cross-modal supervision. IEEE Journal on Selected Areas in Communications 2024; 42(9): 2457–2471.
  • Chu Y., Cumanan K., Sankarpandi SK., Smith S., Dobre OA. Deep learning-based fall detection using WiFi channel state information. IEEE Access 2023; 11: 83763–83780.
  • Denkovski S., Khan SS., Mihailidis A. Temporal shift - multi-objective loss function for improved anomaly fall detection. Proceedings of the 15th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 2024; 222: 295–310.
  • Droghini D., Principi E., Squartini S., Olivetti P., Piazza F. Human fall detection by using an innovative floor acoustic sensor. Smart Innovation, Systems and Technologies 2018; 97–107.
  • Ejupi A., Galang C., Aziz O., Park E. J., Robinovitch S. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2017; 2150–2153.
  • Ejupi A., Gschwind YJ., Valenzuela T., Lord SR., Delbaere K. A kinect and inertial sensor-based system for the self-assessment of fall risk: A home-based study in older people. Human–Computer Interaction 2015; 31(3–4): 261–293.
  • Faes MC., Reelick MF., Joosten-Weyn Banningh LW., de Gier M., Esselink RA., Olde Rikkert MG. Qualitative study on the impact of falling in frail older persons and family caregivers: foundations for an intervention to prevent falls. Aging and Mental Health 2010; 14(7): 834–842.
  • Fan K., Wang P., Hu Y., Dou B. Fall detection via human posture representation and support vector machine. Journal of Telecommunication, Electronic and Computer Engineering 2017; 13(5): 155014771770741.
  • Fan X., Zhang H., Leung C., Shen Z. Robust unobtrusive fall detection using infrared array sensors. DR-NTU (Nanyang Technological University) 2017.
  • Fawaz A., Elsayed M., Sharshar A., Sayed M., Abd El-Malek A., Zahhad M. Fall detection algorithm using a smart wearable system for remote health monitoring. Proceedings of ICBB23 2023.
  • Fino PC., Frames CW., Lockhart TE. Classifying step and spin turns using wireless gyroscopes and implications for fall risk assessments. Sensors 2015; 15(5): 10676–10685.
  • Guo W., Liu X., Lu C., Jing L. PIFall: A pressure insole-based fall detection system for the elderly using ResNet3D. Electronics 2024; 13(6): 1066.
  • Han H., Ma X., Oyama K. Flexible detection of fall events using bidirectional EMG sensor. Studies in Health Technology and Informatics 2017; 245: 1225.
  • He C., Liu S., Zhong G., Wu H., Cheng L., Lin J., Huang Q. A non-contact fall detection method for bathroom application based on MEMS infrared sensors. Micromachines 2023; 14(1): 130.
  • Hemmatpour M., Ferrero R., Montrucchio B., Rebaudengo M. A neural network model based on co-occurrence matrix for fall prediction. Lecture Notes in Computer Science 2017; 248: 241–248.
  • Howcroft J., Kofman J., Lemaire E. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017; 25(10): 1812–1820.
  • Hu Y., Zhang F., Wu C., Wang B., Liu KJR. DeFall: Environment-independent passive fall detection using WiFi. IEEE Internet of Things Journal 2021; 1–1.
  • Hwang J., Kang J., Jang Y., Kim HC. Development of a novel algorithm and real-time monitoring ambulatory system using a Bluetooth module for fall detection in the elderly. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2004; 3: 2204–2207.
  • Irtaza A., Adnan S., Aziz S., Javed A., Ullah M., Mahmood M. A framework for fall detection of elderly people by analyzing environmental sounds through acoustic local ternary patterns. IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2017; 1558–1563.
  • Kangas, M., Konttila, A., Lindgren P., Winblad I., Jämsä T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Journal of Medical Engineering and Technology 2012; 36(2): 72-80.
  • Kavuncuoğlu Erhan. Comprehensive analysis of feature‐algorithm interactions for fall detection across age groups via machine learning. Computational Intelligence 2024; 40(5).
  • Ke Y., Yao Y., Xie Z., Xie H., Lin H., Dong C. Empowering intelligent home safety: Indoor family fall detection with YOLOv5. 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023; 942–949.
  • Kepski M., Kwolek B. Event-driven system for fall detection using body-worn accelerometer and depth sensor. IET Computer Vision 2018; 12(1): 48–58.
  • Kong X., Meng L., Tomiyama H. Fall detection for elderly persons using a depth camera. Proceedings of ICAMechS 2017; 273.
  • Kostopoulos P., Kyritsis A., Deriaz M., Konstantas D. F2D: A location-aware fall detection system tested with real data from the daily life of elderly people. Procedia Computer Science 2016; 98: 212–219.
  • Kutchka J., Tchuinkou D., Mandebi J., Nghonda E., Bobda C. Automatic assessment of environmental hazards for fall prevention using smart cameras. ScholarWorks - UARK (University of Arkansas at Fayetteville) 2016; 6: 24–29.
  • Kuzuya M., Enoki H., Hasegawa J., Izawa S., Hirakawa Y., Uemura K. Falls of the elderly are associated with the burden of caregivers in the community. International Journal of Geriatric Psychiatry 2006; 21(8): 740–745.
  • Leone A., Rescio G., Caroppo A., Siciliano P. An EMG-based system for pre-impact fall detection. IEEE Sensors Conference 2015; 1–4.
  • Leone A., Rescio G., Caroppo A., Siciliano P. Wireless electromyography technology for fall risk evaluation. Lecture Notes in Electrical Engineering 2018; 329: 1–1.
  • Leone A., Rescio G., Siciliano P. Fall risk evaluation by surface electromyography technology. IEEE International Conference on Emerging Technologies 2017; 1095.
  • Li H., et al. Multisensor data fusion for human activities classification and fall detection. 2017 IEEE International Conference on Sensors (ICSENS) 2017; 3: 1–1.
  • Li M., Xu G., He B., Ma X., Xie J. Pre-impact fall detection based on a modified zero moment point criterion using data from Kinect sensors. IEEE Sensors Journal 2018; 18: 5522–5531.
  • Li Q., Stankovic JA., Hanson MA., Barth AT., Lach J., Zhou G. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Proceedings of the 6th International Workshop on Wearable and Implantable Body Sensor Networks (BSN) 2009; 138–143.
  • Lin HC., Chen MJ., Lee CH., Kung LC., Huang JT. Fall recognition based on an IMU wearable device and fall verification through a smart speaker and the IoT. Sensors 2023; 23(12): 5472.
  • Lin TH., Yang CY., Shih WP. Fall prevention shoes using camera-based line-laser obstacle detection system. Journal of Healthcare Engineering 2017; 1–11.
  • Liu Y., Shany T., Woolgar J., Narayanan M., Lord SR., Lovell NH. Validation of an accelerometer-based fall prediction model. Proceedings of the IEEE Engineering in Medicine and Biology Society 2014; 4531–4534.
  • Liu, X., Li, H., Zhang, X., and Wang Y. Fall detection and prevention for the elderly: A systematic review. Sensors 2020; 20(14): 4085.
  • Lu C., Huang J., Lan Z., Wang Q. Bed exiting monitoring system with fall detection for the elderly living alone. 2016 International Conference on Advanced Robotics and Mechatronics (ICARM) 2016; 59–64.
  • Majumder AJ., Zerin I., Ahamed S., Smith R. A multi-sensor approach for fall risk prediction and prevention in elderly. ACM SIGAPP Applied Computing Review 2014; 14(1): 41–52.
  • Martelli D., Artoni F., Monaco V., Sabatini AM., Micera S. Pre-impact fall detection: Optimal sensor positioning based on a machine learning paradigm. PLOS ONE 2014; 9(3): e92037.
  • Mauldin T., Canby M., Metsis V., Ngu AH., Rivera C. SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 2018; 18: 3363.
  • McGrath D., et al. Taking balance measurement out of the laboratory and into the home: Discriminatory capability of novel centre of pressure measurement in fallers and non-fallers. IEEE Engineering in Medicine and Biology Society Proceedings 2012; 3296–3299.
  • Morgado J., Konig A. Low-power concept and prototype of distributed resistive temperature sensor based on networked intelligent devices for fall detection. Proceedings of the World Congress on Engineering 2008; 1: 1410–1413.
  • Muheidat F., Tawalbeh L., Tyrer H. Context-aware, accurate, and real-time fall detection system for elderly people. IEEE International Conference on Semantic Computing (ICSC) 2018.
  • Muheidat F., Tawalbeh LA. In-home floor based sensor system-smart carpet-to facilitate healthy aging in place (AIP). IEEE Access 2020; 8: 178627–178638.
  • Najafi B., Aminian K., Paraschiv-Ionescu A., Loew F., Bula CJ., Robert P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 2003; 50(6): 711-723.
  • Nishiguchi S., Yamada M., Uemura K., Matsumura T., Takahashi M., Moriguchi T., Aoyama T. A novel infrared laser device that measures multilateral parameters of stepping performance for assessment of fall risk in elderly individuals. Aging Clinical and Experimental Research 2013; 25(3): 311–316.
  • Ojetola, OD., Gaura E., Brusey J. Fall detection with wearable sensors—Safe longitudinal evaluation. IEEE Sensors Journal 2015; 15(12): 7085-7094.
  • Otanasap N. Pre-impact fall detection system using logistic regression model. 2023 IEEE Proceedings; 9: 30–43.
  • Putra I., Brusey J., Gaura E., Vesilo R. An event-triggered machine learning approach for accelerometer-based fall detection. Sensors 2018; 18(2): 20.
  • Qiu C., Johansson G., Zhu F., Kivipelto M., Winblad B. Prevention of cognitive decline in old age—varying effects of interventions in different populations. Annals of Translational Medicine 2019; 7(Suppl 3): Suppl 3.
  • Quadros T., Lazzaretti A., Schneider F. A movement decomposition and machine learning-based fall detection system using a wrist wearable device. IEEE Sensors Journal 2018; online early access: 1–1.
  • Quadros T., Lazzaretti A., Schneider F. A movement decomposition and machine learning-based fall detection system using wrist wearable device. IEEE Sensors Journal 2018; PP(4): 1–1.
  • Quero J., Burns M., Razzaq M., Nugent C., Espinilla M. Detection of falls from non-invasive thermal vision sensors using convolutional neural networks. Proceedings 2018; 2(19): 1236.
  • Raeis H., Kazemi M., Shirmohammadi S. Human activity recognition with device-free sensors for well-being assessment in smart homes. IEEE Instrumentation and Measurement Magazine 2021; 24(6): 46–57.
  • Rafferty J., Synnott J., Nugent C., Morrison G., Tamburini E. Fall detection through thermal vision sensing. Lecture Notes in Computer Science 2016; 84–90.
  • Ramezani R., Xiao Y., Naeim A. Sensing-Fi: Wi-Fi CSI and accelerometer fusion system for fall detection. Proceedings of BHI 2018; 405: 1–1.
  • Rantz M., et al. Automated in-home fall risk assessment and detection sensor system for elders. The Gerontologist 2015; 55(Suppl 1): 78–87.
  • Rezaei AM., Mascheroni A., Stevens MC., Argha R., Papandrea M., Puiatti A., Hamilton Lovell N. Unobtrusive human fall detection system using mmWave radar and data-driven methods. IEEE Sensors Journal 2023; 23: 7968–7976.
  • Rezaei A. Human activity recognition and fall detection using unobtrusive technologies. (Thesis). 2023. http://hdl.handle.net/1959.4/101392
  • Salah O., Abdulla R., Selvaperumal SK. Accelerometer-based elderly fall detection system using edge artificial intelligence architecture. International Journal of Electrical and Computer Engineering 2022; 12: 4430–4438.
  • Shahzad A., Kim K. FallDroid: An automated smartphone-based fall detection system using multiple kernel learning. IEEE Transactions on Industrial Informatics 2018; 15(1): 35–44.
  • Shahzad A., Ko S., Lee S., Lee JA., Kim K. Quantitative assessment of balance impairment for fall-risk estimation using wearable triaxial accelerometer. IEEE Sensors Journal 2017; 17(20): 6743–6751.
  • Shakeri S. A smartphone-based fall detection system using accelerometer and microphone. 2017. Accessed: August 2, 2023. Available: semanticscholar.org.
  • Shiba K., Kaburagi T., Kurihara Y. Fall detection utilizing frequency distribution trajectory by microwave Doppler sensor. IEEE Sensors Journal 2017; 1–1.
  • Simila H., Mantyjarvi J., Merilahti J., Lindholm M., Ermes M. Accelerometry-based berg balance scale score estimation. IEEE Journal of Biomedical and Health Informatics 2014; 18(4): 1114–1121.
  • Siwadamrongpong W., Chinrungrueng J., Hasegawa S., Nantajeewarawat E. Fall detection and prediction based on IMU and EMG sensors for elders. 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), Bangkok, Thailand, 2022; 1–6.
  • Song KS., Nho YH., Kwon DS. Histogram-based fall prediction of patients using a thermal imagery camera. Proceedings of URAI 2017; 1–2.
  • Su Y., Liu D., Wu Y. A multi-sensor based pre-impact fall detection system with a hierarchical classifier. Proceedings of CISP-BMEI 2016; 1731.
  • Sun J., Wang Z., Chen L., Wang B., Ji C., Tao S. A plantar inclinometer-based approach to fall detection in open environments. Proceedings of Advanced Systems Research 2016; 647: 1–13.
  • Sun J., Wang Z., Pei B., Tao S., Chen L. Fall detection using plantar inclinometer sensor. Proceedings of the IEEE UIC-ATC-ScalCom-CBDCom-IoP 2015; 1692–1697.
  • Suriani NS., Rashid FN.,Yunos NY. Optimal accelerometer placement for fall detection of rehabilitation patients. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 2018; 10(2–5): 2–5.
  • Tang Y., Peng Z., Li C. An experimental study on the feasibility of fall prevention using a wearable K-band FMCW radar. USNC-URSI NRSM 2017; 1–2.
  • Tang Y., Peng Z., Ran L., Li C. iPrevent: A novel wearable radio frequency range detector for fall prevention. IEEE RFIT 2016; 1–3.
  • Thella AK., Suryadevara VK., Rizkalla M., Hossain G. Smart unit care for pre-fall detection and prevention. 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS) 2016; 220–224.
  • Tian Y., Lee GH., He H., Hsu CY., Katabi D. RF-based fall monitoring using convolutional neural networks. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018; 2(3): 1–24.
  • Tian Z., Zhang L., Wang G., Wang X. An RGB camera-based fall detection algorithm in complex home environments. Interdisciplinary Nursing Research 2022; 1: 14–26.
  • Tong, L., Song, Q., Ge, Y., Liu M. HMM-based human fall detection and prediction method using wearable sensors. Sensors 2018; 18(10): 3377.
  • Verghese J., Holtzer R., Lipton R.B., Wang C. Quantitative gait markers and incident fall risk in older adults. Journal of Gerontology: Series A, Biological Sciences and Medical Sciences 2009; 64(8): 896–901.
  • Visvanathan R., Ranasinghe DC., Shinmoto Torres RL., Hill K. Framework for preventing falls in acute hospitals using passive sensor-enabled radio frequency identification technology. Proceedings of the IEEE Engineering in Medicine and Biology Society 2012.
  • Wang H., Zhang D., Wang Y., Ma J., Wang Y., Li S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Transactions on Mobile Computing 2016; 16: online early access: 1–1.
  • Wang H., Zhang D., Wang Y., Ma J., Wang Y., Li S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Transactions on Mobile Computing 2016; 16: 1–1.
  • Wang S., Gao J., Lu F., Wang F., You Z., Huang M., Fang W., Liu X., Li Y., Liu Y. Human motion recognition by a shoes-floor triboelectric nanogenerator and its application in fall detection. Nano Energy 2023; 108: 108230.
  • Wang Y., Sarvari P., Khadraoui D. Fusion of machine learning and threshold-based approaches for fall detection in healthcare using inertial sensors. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, 2024; 573–582.
  • Wu Y., Su Y., Hu Y., Yu N., Feng R. A multi-sensor fall detection system based on multivariate statistical process analysis. Journal of Medical and Biological Engineering 2018; 39.
  • Xi X., Tang M., Miran SM., Luo Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 2017; 17(6): Article 6.
  • Yacchirema D., Puga J., Palau C., Esteve M. Fall detection system for elderly people using IoT and Big Data. Procedia Computer Science 2018; 130: 603–610.
  • Yang X., Xiong F., Shao Y., Niu Q. WmFall: WiFi-based multistage fall detection with channel state information. International Journal of Distributed Sensor Networks 2018; 14(10): 155014771880571.
  • Yang Z., Zhang Y., Zhang Q. Rethinking fall detection with Wi-Fi. IEEE Transactions on Mobile Computing 2023; 22(10): 6126–6143.
  • Yang CC., Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010; 10(8): 7772-7788.
  • Youngkong P., Panpanyatep W. A novel double pressure sensors-based monitoring and alarming system for fall detection. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2021; 1–5.
  • Yu X. Approaches and principles of fall detection for elderly and patient. Proceedings of the IEEE International Conference on Health 2008; 47.
  • Yu X., Zeng N., Liu S., Zhang Y.D. Utilization of denseNet201 for the diagnosis of breast abnormality. Machine Vision and Applications 2019; 30(7): 1135–1144.
  • Yusuf M., Farooq H., Wood K., Fidler G., Yang C., Zou X. Human sensing in reverberant environments: RF-based occupancy and fall detection in ships. IEEE Transactions on Vehicular Technology 2021; online early access: 1–1.
  • Zhang Q., Ren L., Shi W. Honey: A multimodality fall detection and telecare system. Telemedicine and e-Health 2013; 19: online publication.
  • Zhang Q., Ren L., Shi W. Honey: A multimodality fall detection and telecare system. Telemedicine and e-Health 2013; 19: 1–1.
  • Zhao F., Cao Z., Xiao Y., Mao J., Yuan J. Real-time detection of fall from bed using a single depth camera. IEEE Transactions on Automation Science and Engineering 2019; 16(3): 1018–1032.
  • Zhu H., Samtani S., Brown R. A deep learning approach for recognizing activity of daily living (ADL) for senior care: exploiting interaction dependency and temporal patterns. Management Information Systems Quarterly 2021; 45: 859–896.
  • ZiYing F., Neo D., Jue W., YiCheng Z., Lam YYH. An integrated fall prevention system with single-channel EEG and EMG sensor. 2021 4th International Conference on Circuits, Systems and Simulation (ICCSS), Kuala Lumpur, Malaysia, 2021; 183–189.

Sensör Tipleri Perspektifinden: Düşme Algılama ve Önleme Sistemleri

Yıl 2025, Cilt: 8 Sayı: 3, 1488 - 1524, 16.06.2025
https://doi.org/10.47495/okufbed.1508992

Öz

Yaşlı bireylerde düşmeler, önemli sağlık riskleri oluşturmakta ve bu durum, önleme ve tespit çalışmalarını kritik bir araştırma alanı haline getirmektedir. Bu derleme, düşme tespit ve önleme sistemlerini kullanılan sensör türleri ve yöntemlerine göre sınıflandırarak incelemektedir: giyilebilir sensörler, çevresel sensörler, radyo frekansı tabanlı sensörler ve hibrit sistemler. Ayrıca, bu sistemlerde kullanılan yöntemler ele alınmaktadır. Geleneksel doğrusal yaklaşımların düşme olaylarını doğru bir şekilde tespit etmedeki sınırlamaları göz önüne alındığında, son yıllarda makine öğrenmesi (ML) ve derin öğrenme (DL) gibi yapay zeka (YZ) teknikleri üzerine yapılan araştırmalar ön plana çıkmaktadır. Bu derleme, düşme tespit ve önleme sistemlerinde kullanılan sensörler ve algoritmalar ile bunların sonuçlarına dair kapsamlı bir bilgi sunmaktadır. Belirli sensörler ve sistemlerle ilgili temel bulgular ve zorluklar detaylı bir şekilde tartışılmaktadır. Çalışma, mevcut teknolojiler hakkında araştırmacılara geniş bir bakış açısı kazandırmayı, YZ yöntemlerinin katkılarını vurgulamayı ve alanın gelecekteki yönelimlerini ortaya koymayı hedeflemektedir. Sensörler, metodolojiler ve sistem duyarlılıkları değerlendirilerek, etkili ve hassasiyetlere uygun çözümlerin geliştirilmesine katkı sağlanması amaçlanmaktadır.

Kaynakça

  • Akagunduz E., Aslan M., Sengu A., Wang H., Ince MC. Silhouette orientation volumes for efficient fall detection in depth videos. IEEE Journal of Biomedical and Health Informatics 2017; 21(3): 756–763.
  • Amiroh K., Rahmawati D., Wicaksono A. Intelligent system for fall prediction based on accelerometer and gyroscope of fatal injury in geriatric. Jurnal Nasional Teknik Elektro 2021; 10: 154–159.
  • Birku Y., Agrawal H. Survey on fall detection systems. International Journal of Pure and Applied Mathematics 118(18): 2537–2543.
  • Boutellaa E., Kerdjidj O., Ghanem K. Covariance matrix-based fall detection from multiple wearable sensors. Journal of Biomedical Informatics 2019; 94: Art. no. April.
  • Casilari E., Álvarez-Marco M., García-Lagos F. A study of the use of gyroscope measurements in wearable fall detection systems. Symmetry 2020; 12: 649.
  • Chaccour K., al Assaad H., Hajjam A., Darazi R., Andrès E. Sway analysis and fall prediction method based on spatio-temporal sliding window technique. IEEE HealthCom 2016.
  • Chen D., Wong AB., Wu K. Fall detection based on fusion of passive and active acoustic sensing. IEEE Internet of Things Journal 2024; 11(7): 11566–11578.
  • Chi G., et al. XFall: Domain adaptive Wi-Fi-based fall detection with cross-modal supervision. IEEE Journal on Selected Areas in Communications 2024; 42(9): 2457–2471.
  • Chu Y., Cumanan K., Sankarpandi SK., Smith S., Dobre OA. Deep learning-based fall detection using WiFi channel state information. IEEE Access 2023; 11: 83763–83780.
  • Denkovski S., Khan SS., Mihailidis A. Temporal shift - multi-objective loss function for improved anomaly fall detection. Proceedings of the 15th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 2024; 222: 295–310.
  • Droghini D., Principi E., Squartini S., Olivetti P., Piazza F. Human fall detection by using an innovative floor acoustic sensor. Smart Innovation, Systems and Technologies 2018; 97–107.
  • Ejupi A., Galang C., Aziz O., Park E. J., Robinovitch S. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2017; 2150–2153.
  • Ejupi A., Gschwind YJ., Valenzuela T., Lord SR., Delbaere K. A kinect and inertial sensor-based system for the self-assessment of fall risk: A home-based study in older people. Human–Computer Interaction 2015; 31(3–4): 261–293.
  • Faes MC., Reelick MF., Joosten-Weyn Banningh LW., de Gier M., Esselink RA., Olde Rikkert MG. Qualitative study on the impact of falling in frail older persons and family caregivers: foundations for an intervention to prevent falls. Aging and Mental Health 2010; 14(7): 834–842.
  • Fan K., Wang P., Hu Y., Dou B. Fall detection via human posture representation and support vector machine. Journal of Telecommunication, Electronic and Computer Engineering 2017; 13(5): 155014771770741.
  • Fan X., Zhang H., Leung C., Shen Z. Robust unobtrusive fall detection using infrared array sensors. DR-NTU (Nanyang Technological University) 2017.
  • Fawaz A., Elsayed M., Sharshar A., Sayed M., Abd El-Malek A., Zahhad M. Fall detection algorithm using a smart wearable system for remote health monitoring. Proceedings of ICBB23 2023.
  • Fino PC., Frames CW., Lockhart TE. Classifying step and spin turns using wireless gyroscopes and implications for fall risk assessments. Sensors 2015; 15(5): 10676–10685.
  • Guo W., Liu X., Lu C., Jing L. PIFall: A pressure insole-based fall detection system for the elderly using ResNet3D. Electronics 2024; 13(6): 1066.
  • Han H., Ma X., Oyama K. Flexible detection of fall events using bidirectional EMG sensor. Studies in Health Technology and Informatics 2017; 245: 1225.
  • He C., Liu S., Zhong G., Wu H., Cheng L., Lin J., Huang Q. A non-contact fall detection method for bathroom application based on MEMS infrared sensors. Micromachines 2023; 14(1): 130.
  • Hemmatpour M., Ferrero R., Montrucchio B., Rebaudengo M. A neural network model based on co-occurrence matrix for fall prediction. Lecture Notes in Computer Science 2017; 248: 241–248.
  • Howcroft J., Kofman J., Lemaire E. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017; 25(10): 1812–1820.
  • Hu Y., Zhang F., Wu C., Wang B., Liu KJR. DeFall: Environment-independent passive fall detection using WiFi. IEEE Internet of Things Journal 2021; 1–1.
  • Hwang J., Kang J., Jang Y., Kim HC. Development of a novel algorithm and real-time monitoring ambulatory system using a Bluetooth module for fall detection in the elderly. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2004; 3: 2204–2207.
  • Irtaza A., Adnan S., Aziz S., Javed A., Ullah M., Mahmood M. A framework for fall detection of elderly people by analyzing environmental sounds through acoustic local ternary patterns. IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2017; 1558–1563.
  • Kangas, M., Konttila, A., Lindgren P., Winblad I., Jämsä T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Journal of Medical Engineering and Technology 2012; 36(2): 72-80.
  • Kavuncuoğlu Erhan. Comprehensive analysis of feature‐algorithm interactions for fall detection across age groups via machine learning. Computational Intelligence 2024; 40(5).
  • Ke Y., Yao Y., Xie Z., Xie H., Lin H., Dong C. Empowering intelligent home safety: Indoor family fall detection with YOLOv5. 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023; 942–949.
  • Kepski M., Kwolek B. Event-driven system for fall detection using body-worn accelerometer and depth sensor. IET Computer Vision 2018; 12(1): 48–58.
  • Kong X., Meng L., Tomiyama H. Fall detection for elderly persons using a depth camera. Proceedings of ICAMechS 2017; 273.
  • Kostopoulos P., Kyritsis A., Deriaz M., Konstantas D. F2D: A location-aware fall detection system tested with real data from the daily life of elderly people. Procedia Computer Science 2016; 98: 212–219.
  • Kutchka J., Tchuinkou D., Mandebi J., Nghonda E., Bobda C. Automatic assessment of environmental hazards for fall prevention using smart cameras. ScholarWorks - UARK (University of Arkansas at Fayetteville) 2016; 6: 24–29.
  • Kuzuya M., Enoki H., Hasegawa J., Izawa S., Hirakawa Y., Uemura K. Falls of the elderly are associated with the burden of caregivers in the community. International Journal of Geriatric Psychiatry 2006; 21(8): 740–745.
  • Leone A., Rescio G., Caroppo A., Siciliano P. An EMG-based system for pre-impact fall detection. IEEE Sensors Conference 2015; 1–4.
  • Leone A., Rescio G., Caroppo A., Siciliano P. Wireless electromyography technology for fall risk evaluation. Lecture Notes in Electrical Engineering 2018; 329: 1–1.
  • Leone A., Rescio G., Siciliano P. Fall risk evaluation by surface electromyography technology. IEEE International Conference on Emerging Technologies 2017; 1095.
  • Li H., et al. Multisensor data fusion for human activities classification and fall detection. 2017 IEEE International Conference on Sensors (ICSENS) 2017; 3: 1–1.
  • Li M., Xu G., He B., Ma X., Xie J. Pre-impact fall detection based on a modified zero moment point criterion using data from Kinect sensors. IEEE Sensors Journal 2018; 18: 5522–5531.
  • Li Q., Stankovic JA., Hanson MA., Barth AT., Lach J., Zhou G. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Proceedings of the 6th International Workshop on Wearable and Implantable Body Sensor Networks (BSN) 2009; 138–143.
  • Lin HC., Chen MJ., Lee CH., Kung LC., Huang JT. Fall recognition based on an IMU wearable device and fall verification through a smart speaker and the IoT. Sensors 2023; 23(12): 5472.
  • Lin TH., Yang CY., Shih WP. Fall prevention shoes using camera-based line-laser obstacle detection system. Journal of Healthcare Engineering 2017; 1–11.
  • Liu Y., Shany T., Woolgar J., Narayanan M., Lord SR., Lovell NH. Validation of an accelerometer-based fall prediction model. Proceedings of the IEEE Engineering in Medicine and Biology Society 2014; 4531–4534.
  • Liu, X., Li, H., Zhang, X., and Wang Y. Fall detection and prevention for the elderly: A systematic review. Sensors 2020; 20(14): 4085.
  • Lu C., Huang J., Lan Z., Wang Q. Bed exiting monitoring system with fall detection for the elderly living alone. 2016 International Conference on Advanced Robotics and Mechatronics (ICARM) 2016; 59–64.
  • Majumder AJ., Zerin I., Ahamed S., Smith R. A multi-sensor approach for fall risk prediction and prevention in elderly. ACM SIGAPP Applied Computing Review 2014; 14(1): 41–52.
  • Martelli D., Artoni F., Monaco V., Sabatini AM., Micera S. Pre-impact fall detection: Optimal sensor positioning based on a machine learning paradigm. PLOS ONE 2014; 9(3): e92037.
  • Mauldin T., Canby M., Metsis V., Ngu AH., Rivera C. SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 2018; 18: 3363.
  • McGrath D., et al. Taking balance measurement out of the laboratory and into the home: Discriminatory capability of novel centre of pressure measurement in fallers and non-fallers. IEEE Engineering in Medicine and Biology Society Proceedings 2012; 3296–3299.
  • Morgado J., Konig A. Low-power concept and prototype of distributed resistive temperature sensor based on networked intelligent devices for fall detection. Proceedings of the World Congress on Engineering 2008; 1: 1410–1413.
  • Muheidat F., Tawalbeh L., Tyrer H. Context-aware, accurate, and real-time fall detection system for elderly people. IEEE International Conference on Semantic Computing (ICSC) 2018.
  • Muheidat F., Tawalbeh LA. In-home floor based sensor system-smart carpet-to facilitate healthy aging in place (AIP). IEEE Access 2020; 8: 178627–178638.
  • Najafi B., Aminian K., Paraschiv-Ionescu A., Loew F., Bula CJ., Robert P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 2003; 50(6): 711-723.
  • Nishiguchi S., Yamada M., Uemura K., Matsumura T., Takahashi M., Moriguchi T., Aoyama T. A novel infrared laser device that measures multilateral parameters of stepping performance for assessment of fall risk in elderly individuals. Aging Clinical and Experimental Research 2013; 25(3): 311–316.
  • Ojetola, OD., Gaura E., Brusey J. Fall detection with wearable sensors—Safe longitudinal evaluation. IEEE Sensors Journal 2015; 15(12): 7085-7094.
  • Otanasap N. Pre-impact fall detection system using logistic regression model. 2023 IEEE Proceedings; 9: 30–43.
  • Putra I., Brusey J., Gaura E., Vesilo R. An event-triggered machine learning approach for accelerometer-based fall detection. Sensors 2018; 18(2): 20.
  • Qiu C., Johansson G., Zhu F., Kivipelto M., Winblad B. Prevention of cognitive decline in old age—varying effects of interventions in different populations. Annals of Translational Medicine 2019; 7(Suppl 3): Suppl 3.
  • Quadros T., Lazzaretti A., Schneider F. A movement decomposition and machine learning-based fall detection system using a wrist wearable device. IEEE Sensors Journal 2018; online early access: 1–1.
  • Quadros T., Lazzaretti A., Schneider F. A movement decomposition and machine learning-based fall detection system using wrist wearable device. IEEE Sensors Journal 2018; PP(4): 1–1.
  • Quero J., Burns M., Razzaq M., Nugent C., Espinilla M. Detection of falls from non-invasive thermal vision sensors using convolutional neural networks. Proceedings 2018; 2(19): 1236.
  • Raeis H., Kazemi M., Shirmohammadi S. Human activity recognition with device-free sensors for well-being assessment in smart homes. IEEE Instrumentation and Measurement Magazine 2021; 24(6): 46–57.
  • Rafferty J., Synnott J., Nugent C., Morrison G., Tamburini E. Fall detection through thermal vision sensing. Lecture Notes in Computer Science 2016; 84–90.
  • Ramezani R., Xiao Y., Naeim A. Sensing-Fi: Wi-Fi CSI and accelerometer fusion system for fall detection. Proceedings of BHI 2018; 405: 1–1.
  • Rantz M., et al. Automated in-home fall risk assessment and detection sensor system for elders. The Gerontologist 2015; 55(Suppl 1): 78–87.
  • Rezaei AM., Mascheroni A., Stevens MC., Argha R., Papandrea M., Puiatti A., Hamilton Lovell N. Unobtrusive human fall detection system using mmWave radar and data-driven methods. IEEE Sensors Journal 2023; 23: 7968–7976.
  • Rezaei A. Human activity recognition and fall detection using unobtrusive technologies. (Thesis). 2023. http://hdl.handle.net/1959.4/101392
  • Salah O., Abdulla R., Selvaperumal SK. Accelerometer-based elderly fall detection system using edge artificial intelligence architecture. International Journal of Electrical and Computer Engineering 2022; 12: 4430–4438.
  • Shahzad A., Kim K. FallDroid: An automated smartphone-based fall detection system using multiple kernel learning. IEEE Transactions on Industrial Informatics 2018; 15(1): 35–44.
  • Shahzad A., Ko S., Lee S., Lee JA., Kim K. Quantitative assessment of balance impairment for fall-risk estimation using wearable triaxial accelerometer. IEEE Sensors Journal 2017; 17(20): 6743–6751.
  • Shakeri S. A smartphone-based fall detection system using accelerometer and microphone. 2017. Accessed: August 2, 2023. Available: semanticscholar.org.
  • Shiba K., Kaburagi T., Kurihara Y. Fall detection utilizing frequency distribution trajectory by microwave Doppler sensor. IEEE Sensors Journal 2017; 1–1.
  • Simila H., Mantyjarvi J., Merilahti J., Lindholm M., Ermes M. Accelerometry-based berg balance scale score estimation. IEEE Journal of Biomedical and Health Informatics 2014; 18(4): 1114–1121.
  • Siwadamrongpong W., Chinrungrueng J., Hasegawa S., Nantajeewarawat E. Fall detection and prediction based on IMU and EMG sensors for elders. 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), Bangkok, Thailand, 2022; 1–6.
  • Song KS., Nho YH., Kwon DS. Histogram-based fall prediction of patients using a thermal imagery camera. Proceedings of URAI 2017; 1–2.
  • Su Y., Liu D., Wu Y. A multi-sensor based pre-impact fall detection system with a hierarchical classifier. Proceedings of CISP-BMEI 2016; 1731.
  • Sun J., Wang Z., Chen L., Wang B., Ji C., Tao S. A plantar inclinometer-based approach to fall detection in open environments. Proceedings of Advanced Systems Research 2016; 647: 1–13.
  • Sun J., Wang Z., Pei B., Tao S., Chen L. Fall detection using plantar inclinometer sensor. Proceedings of the IEEE UIC-ATC-ScalCom-CBDCom-IoP 2015; 1692–1697.
  • Suriani NS., Rashid FN.,Yunos NY. Optimal accelerometer placement for fall detection of rehabilitation patients. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 2018; 10(2–5): 2–5.
  • Tang Y., Peng Z., Li C. An experimental study on the feasibility of fall prevention using a wearable K-band FMCW radar. USNC-URSI NRSM 2017; 1–2.
  • Tang Y., Peng Z., Ran L., Li C. iPrevent: A novel wearable radio frequency range detector for fall prevention. IEEE RFIT 2016; 1–3.
  • Thella AK., Suryadevara VK., Rizkalla M., Hossain G. Smart unit care for pre-fall detection and prevention. 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS) 2016; 220–224.
  • Tian Y., Lee GH., He H., Hsu CY., Katabi D. RF-based fall monitoring using convolutional neural networks. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018; 2(3): 1–24.
  • Tian Z., Zhang L., Wang G., Wang X. An RGB camera-based fall detection algorithm in complex home environments. Interdisciplinary Nursing Research 2022; 1: 14–26.
  • Tong, L., Song, Q., Ge, Y., Liu M. HMM-based human fall detection and prediction method using wearable sensors. Sensors 2018; 18(10): 3377.
  • Verghese J., Holtzer R., Lipton R.B., Wang C. Quantitative gait markers and incident fall risk in older adults. Journal of Gerontology: Series A, Biological Sciences and Medical Sciences 2009; 64(8): 896–901.
  • Visvanathan R., Ranasinghe DC., Shinmoto Torres RL., Hill K. Framework for preventing falls in acute hospitals using passive sensor-enabled radio frequency identification technology. Proceedings of the IEEE Engineering in Medicine and Biology Society 2012.
  • Wang H., Zhang D., Wang Y., Ma J., Wang Y., Li S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Transactions on Mobile Computing 2016; 16: online early access: 1–1.
  • Wang H., Zhang D., Wang Y., Ma J., Wang Y., Li S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Transactions on Mobile Computing 2016; 16: 1–1.
  • Wang S., Gao J., Lu F., Wang F., You Z., Huang M., Fang W., Liu X., Li Y., Liu Y. Human motion recognition by a shoes-floor triboelectric nanogenerator and its application in fall detection. Nano Energy 2023; 108: 108230.
  • Wang Y., Sarvari P., Khadraoui D. Fusion of machine learning and threshold-based approaches for fall detection in healthcare using inertial sensors. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, 2024; 573–582.
  • Wu Y., Su Y., Hu Y., Yu N., Feng R. A multi-sensor fall detection system based on multivariate statistical process analysis. Journal of Medical and Biological Engineering 2018; 39.
  • Xi X., Tang M., Miran SM., Luo Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 2017; 17(6): Article 6.
  • Yacchirema D., Puga J., Palau C., Esteve M. Fall detection system for elderly people using IoT and Big Data. Procedia Computer Science 2018; 130: 603–610.
  • Yang X., Xiong F., Shao Y., Niu Q. WmFall: WiFi-based multistage fall detection with channel state information. International Journal of Distributed Sensor Networks 2018; 14(10): 155014771880571.
  • Yang Z., Zhang Y., Zhang Q. Rethinking fall detection with Wi-Fi. IEEE Transactions on Mobile Computing 2023; 22(10): 6126–6143.
  • Yang CC., Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010; 10(8): 7772-7788.
  • Youngkong P., Panpanyatep W. A novel double pressure sensors-based monitoring and alarming system for fall detection. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2021; 1–5.
  • Yu X. Approaches and principles of fall detection for elderly and patient. Proceedings of the IEEE International Conference on Health 2008; 47.
  • Yu X., Zeng N., Liu S., Zhang Y.D. Utilization of denseNet201 for the diagnosis of breast abnormality. Machine Vision and Applications 2019; 30(7): 1135–1144.
  • Yusuf M., Farooq H., Wood K., Fidler G., Yang C., Zou X. Human sensing in reverberant environments: RF-based occupancy and fall detection in ships. IEEE Transactions on Vehicular Technology 2021; online early access: 1–1.
  • Zhang Q., Ren L., Shi W. Honey: A multimodality fall detection and telecare system. Telemedicine and e-Health 2013; 19: online publication.
  • Zhang Q., Ren L., Shi W. Honey: A multimodality fall detection and telecare system. Telemedicine and e-Health 2013; 19: 1–1.
  • Zhao F., Cao Z., Xiao Y., Mao J., Yuan J. Real-time detection of fall from bed using a single depth camera. IEEE Transactions on Automation Science and Engineering 2019; 16(3): 1018–1032.
  • Zhu H., Samtani S., Brown R. A deep learning approach for recognizing activity of daily living (ADL) for senior care: exploiting interaction dependency and temporal patterns. Management Information Systems Quarterly 2021; 45: 859–896.
  • ZiYing F., Neo D., Jue W., YiCheng Z., Lam YYH. An integrated fall prevention system with single-channel EEG and EMG sensor. 2021 4th International Conference on Circuits, Systems and Simulation (ICCSS), Kuala Lumpur, Malaysia, 2021; 183–189.
Toplam 106 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Makine Öğrenme (Diğer)
Bölüm Derleme
Yazarlar

Mehmet Akif Buzpınar

Gönderilme Tarihi 5 Temmuz 2024
Kabul Tarihi 4 Mart 2025
Yayımlanma Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Buzpınar, M. A. (2025). Fall Detection and Prevention Systems: Sensor Type Perspective. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3), 1488-1524. https://doi.org/10.47495/okufbed.1508992
AMA Buzpınar MA. Fall Detection and Prevention Systems: Sensor Type Perspective. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Haziran 2025;8(3):1488-1524. doi:10.47495/okufbed.1508992
Chicago Buzpınar, Mehmet Akif. “Fall Detection and Prevention Systems: Sensor Type Perspective”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 3 (Haziran 2025): 1488-1524. https://doi.org/10.47495/okufbed.1508992.
EndNote Buzpınar MA (01 Haziran 2025) Fall Detection and Prevention Systems: Sensor Type Perspective. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 3 1488–1524.
IEEE M. A. Buzpınar, “Fall Detection and Prevention Systems: Sensor Type Perspective”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 3, ss. 1488–1524, 2025, doi: 10.47495/okufbed.1508992.
ISNAD Buzpınar, Mehmet Akif. “Fall Detection and Prevention Systems: Sensor Type Perspective”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/3 (Haziran2025), 1488-1524. https://doi.org/10.47495/okufbed.1508992.
JAMA Buzpınar MA. Fall Detection and Prevention Systems: Sensor Type Perspective. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:1488–1524.
MLA Buzpınar, Mehmet Akif. “Fall Detection and Prevention Systems: Sensor Type Perspective”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 3, 2025, ss. 1488-24, doi:10.47495/okufbed.1508992.
Vancouver Buzpınar MA. Fall Detection and Prevention Systems: Sensor Type Perspective. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(3):1488-524.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.