Araştırma Makalesi
BibTex RIS Kaynak Göster

The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease

Yıl 2025, Cilt: 8 Sayı: 5, 2039 - 2056, 15.12.2025
https://doi.org/10.47495/okufbed.1569653

Öz

Memory effect, one of the most important advantages of fractional derivative and integral operators, is a prominent characteristic of a disease. Mycobacterium tuberculosis is one of such memory-dependent precarious disease that affects the lungs. Therefore, we investigate this serious public health infection by means of the Caputo operator having memory. Firstly, some fundamental features of the proposed model such as the positiveness of solutions, the disease-free equilibrium, and endemic equilibrium points are presented. Then, the basic reproduction number to characterize the disease model under consideration is calculated. In addition, stability analysis is performed by using these basic calculations, and comments are made on the course of the tuberculosis infection. On the other hand, we numerical simulations in order to show the effect of non-integer order on the mycobacterium tuberculosis transmission are carried out. Lastly, comparison analysis between the classical and fractional mathematical models is supported by various graphs. The results show that fractional order can greatly affect the course of the tuberculosis transmission

Kaynakça

  • Acay B., Bas E., Abdeljawad T. Non-local fractional calculus from different viewpoint generated by truncated M-derivative. Journal of Computational and Applied Mathematics 2020; 366: 112410.
  • Acay B., Inc M., Chu YM., Almohsen B. Modeling of pressure–volume controlled artificial respiration with local derivatives. Advances in Difference Equations 2021a; 2021(1): 1-21.
  • Acay B., Inc M. Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator. Fractal and Fractional 2021b; 5(1): 9.
  • Diethelm K., Ford NJ., Freed ADA. Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 2002; 29: 3-22.
  • Diethelm K., Ford NJ., Freed AD. Detailed error analysis for a fractional Adams method. Numerical Algorithms 2004; 36: 31-52.
  • Farman M., Alfiniyah C., Shehzad A. Modelling and analysis tuberculosis (TB) model with hybrid fractional operator. Alexandria Engineering Journal 2023; 72: 463-478.
  • Inc M., Acay B., Berhe HW., Yusuf A., Khan A., Yao SW. Analysis of novel fractional COVID-19 model with real-life data application. Results in Physics 2021; 23: 103968.
  • Jarad F., Abdeljawad T., Alzabut J. Generalized fractional derivatives generated by a class of local proportional derivatives. The European Physical Journal Special Topics 2017; 226: 3457-3471.
  • Khan MA., Gómez‐Aguilar F. Tuberculosis model with relapse via fractional conformable derivative with power law. Mathematical Methods in the Applied Sciences 2019; 42(18): 7113-7125.
  • Khajanchi S., Das DK., Kar TK. Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A: Statistical Mechanics and its Applications 2018; 497: 52-71.
  • Miller KS., Ross B. An introduction to the fractional calculus and fractional differential equations. New York: John Wiley and Sons 1993.
  • Mustapha UT., Idris B., Musa SS., Yusuf A. Mathematical modeling and analysis of mycobacterium tuberculosis transmission in humans with hospitalization and reinfection. Journal of Applied Mathematics and Computational Mechanics 2022; 21(1).
  • Murphy BM., Singer BH., Kirschner D. On treatment of tuberculosis in heterogeneous populations. Journal of Theoretical Biology 2003; 223(4): 391-404.
  • Ojo MM., Peter OJ., Goufo EFD., Panigoro HS., Oguntolu FA. Mathematical model for control of tuberculosis epidemiology. Journal of Applied Mathematics and Computing 2023; 69(1): 69-87.
  • Olaniyi S., Abimbade SF., Chuma FM., Adepoju OA., Falowo ODA. Fractional-order tuberculosis model with efficient and cost-effective optimal control interventions. Decision Analytics Journal 2023; 8: 100324.
  • Qureshi S., Jan R. Modeling of measles epidemic with optimized fractional order under Caputo differential operator. Chaos, Solitons & Fractals 2021; 145: 110766.
  • Qureshi S., Yusuf A. Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator. Chaos, Solitons & Fractals 2019; 126: 32-40.
  • Sweilam NH., Al-Mekhlafi SM. Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. Journal of Advanced Research 2016; 7(2): 271-283.
  • Ucakan Y., Gulen S., Koklu K. Analysing of tuberculosis in Turkey through SIR, SEIR and BSEIR mathematical models. Mathematical and Computer Modelling of Dynamical Systems 2021; 27(1): 179-202.
  • Ullah S., Khan MA., Farooq MA. Fractional model for the dynamics of TB virus. Chaos, Solitons & Fractals 2018; 116: 63-71.
  • Van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 2002; 180(1-2): 29-48.
  • Yusuf A., Acay B., Mustapha UT., Inc M., Baleanu D. Mathematical modeling of pine wilt disease with Caputo fractional operator. Chaos, Solitons & Fractals 2021; 143: 110569.
  • Zafar ZUA., Zaib S., Hussain MT., Tunç C., Javeed S. Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos, Solitons & Fractals 2022; 160: 112202.

Tüberküloz Hastalığının Matematiksel Modellemesine Caputo Kesirli Türevinin Etkisi

Yıl 2025, Cilt: 8 Sayı: 5, 2039 - 2056, 15.12.2025
https://doi.org/10.47495/okufbed.1569653

Öz

Kesirli türev ve integral operatörlerinin en önemli avantajlarından biri olan hafıza etkisi, bir hastalığın belirgin bir özelliğidir. Mikobakteriyum tüberküloz, akciğerleri etkileyen hafızaya bağlı bu tür tehlikeli hastalıklardan biridir. Bu nedenle, bu ciddi halk sağlığı enfeksiyonu hafıza etkisine sahip Caputo operatörü aracılığıyla araştırılmıştır. İlk olarak, çözümlerin pozitifliği, hastalıksız denge ve endemik denge noktaları gibi önerilen modelin bazı temel özellikleri sunulmuştur. Daha sonra, söz konusu hastalık modelini karakterize etmek için temel üreme sayısı hesaplanmıştır. Ayrıca, bu temel hesaplamalar kullanılarak kararlılık analizi gerçekleştirilmiştir ve tüberküloz enfeksiyonunun seyri hakkında yorumlar yapılmıştır. Öte yandan, tam sayı olmayan mertebenin mikobakteriyum tüberküloz yayılımı üzerindeki etkisini göstermek için sayısal simülasyonlar gerçekleştirilmiştir. Son olarak, klasik ve kesirli matematiksel modeller arasındaki karşılaştırma analizi çeşitli grafiklerle desteklenmiştir. Sonuçlar, kesirli sıranın tüberküloz yayılmasını seyrini büyük ölçüde etkileyebileceğini ve bu küresel sağlık sorunu hakkında daha spesifik tahminlere izin verdiğini göstermektedir.

Kaynakça

  • Acay B., Bas E., Abdeljawad T. Non-local fractional calculus from different viewpoint generated by truncated M-derivative. Journal of Computational and Applied Mathematics 2020; 366: 112410.
  • Acay B., Inc M., Chu YM., Almohsen B. Modeling of pressure–volume controlled artificial respiration with local derivatives. Advances in Difference Equations 2021a; 2021(1): 1-21.
  • Acay B., Inc M. Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator. Fractal and Fractional 2021b; 5(1): 9.
  • Diethelm K., Ford NJ., Freed ADA. Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 2002; 29: 3-22.
  • Diethelm K., Ford NJ., Freed AD. Detailed error analysis for a fractional Adams method. Numerical Algorithms 2004; 36: 31-52.
  • Farman M., Alfiniyah C., Shehzad A. Modelling and analysis tuberculosis (TB) model with hybrid fractional operator. Alexandria Engineering Journal 2023; 72: 463-478.
  • Inc M., Acay B., Berhe HW., Yusuf A., Khan A., Yao SW. Analysis of novel fractional COVID-19 model with real-life data application. Results in Physics 2021; 23: 103968.
  • Jarad F., Abdeljawad T., Alzabut J. Generalized fractional derivatives generated by a class of local proportional derivatives. The European Physical Journal Special Topics 2017; 226: 3457-3471.
  • Khan MA., Gómez‐Aguilar F. Tuberculosis model with relapse via fractional conformable derivative with power law. Mathematical Methods in the Applied Sciences 2019; 42(18): 7113-7125.
  • Khajanchi S., Das DK., Kar TK. Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A: Statistical Mechanics and its Applications 2018; 497: 52-71.
  • Miller KS., Ross B. An introduction to the fractional calculus and fractional differential equations. New York: John Wiley and Sons 1993.
  • Mustapha UT., Idris B., Musa SS., Yusuf A. Mathematical modeling and analysis of mycobacterium tuberculosis transmission in humans with hospitalization and reinfection. Journal of Applied Mathematics and Computational Mechanics 2022; 21(1).
  • Murphy BM., Singer BH., Kirschner D. On treatment of tuberculosis in heterogeneous populations. Journal of Theoretical Biology 2003; 223(4): 391-404.
  • Ojo MM., Peter OJ., Goufo EFD., Panigoro HS., Oguntolu FA. Mathematical model for control of tuberculosis epidemiology. Journal of Applied Mathematics and Computing 2023; 69(1): 69-87.
  • Olaniyi S., Abimbade SF., Chuma FM., Adepoju OA., Falowo ODA. Fractional-order tuberculosis model with efficient and cost-effective optimal control interventions. Decision Analytics Journal 2023; 8: 100324.
  • Qureshi S., Jan R. Modeling of measles epidemic with optimized fractional order under Caputo differential operator. Chaos, Solitons & Fractals 2021; 145: 110766.
  • Qureshi S., Yusuf A. Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator. Chaos, Solitons & Fractals 2019; 126: 32-40.
  • Sweilam NH., Al-Mekhlafi SM. Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. Journal of Advanced Research 2016; 7(2): 271-283.
  • Ucakan Y., Gulen S., Koklu K. Analysing of tuberculosis in Turkey through SIR, SEIR and BSEIR mathematical models. Mathematical and Computer Modelling of Dynamical Systems 2021; 27(1): 179-202.
  • Ullah S., Khan MA., Farooq MA. Fractional model for the dynamics of TB virus. Chaos, Solitons & Fractals 2018; 116: 63-71.
  • Van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 2002; 180(1-2): 29-48.
  • Yusuf A., Acay B., Mustapha UT., Inc M., Baleanu D. Mathematical modeling of pine wilt disease with Caputo fractional operator. Chaos, Solitons & Fractals 2021; 143: 110569.
  • Zafar ZUA., Zaib S., Hussain MT., Tunç C., Javeed S. Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos, Solitons & Fractals 2022; 160: 112202.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyolojik Matematik
Bölüm Araştırma Makalesi
Yazarlar

Bahar Acay Öztürk

Gönderilme Tarihi 18 Ekim 2024
Kabul Tarihi 2 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Acay Öztürk, B. (2025). The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2039-2056. https://doi.org/10.47495/okufbed.1569653
AMA 1.Acay Öztürk B. The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2039-2056. doi:10.47495/okufbed.1569653
Chicago Acay Öztürk, Bahar. 2025. “The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 (5): 2039-56. https://doi.org/10.47495/okufbed.1569653.
EndNote Acay Öztürk B (01 Aralık 2025) The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2039–2056.
IEEE [1]B. Acay Öztürk, “The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy 5, ss. 2039–2056, Ara. 2025, doi: 10.47495/okufbed.1569653.
ISNAD Acay Öztürk, Bahar. “The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (01 Aralık 2025): 2039-2056. https://doi.org/10.47495/okufbed.1569653.
JAMA 1.Acay Öztürk B. The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2039–2056.
MLA Acay Öztürk, Bahar. “The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy 5, Aralık 2025, ss. 2039-56, doi:10.47495/okufbed.1569653.
Vancouver 1.Acay Öztürk B. The Impact of Caputo Fractional Derivative on Mathematical Modeling of Tuberculosis Disease. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi [Internet]. 01 Aralık 2025;8(5):2039-56. Erişim adresi: https://izlik.org/JA59ML73TY

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.