Araştırma Makalesi
BibTex RIS Kaynak Göster

A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation

Yıl 2025, Cilt: 8 Sayı: 5, 2464 - 2482, 15.12.2025
https://doi.org/10.47495/okufbed.1660307

Öz

This study explores the application of the novel Atangana–Baleanu method to obtain highly accurate numerical solutions for coupled Burgers equation, which incorporates fractional derivatives in the sense of Atangana–Baleanu. To achieve this, the Atangana–Baleanu q-Elzaki homotopy analysis transform method (ABq-EHATM) is utilized as a computational technique to address the system effectively. This method uniquely combines the advantages of fractional calculus with the flexibility of q-Elzaki and homotopy analysis frameworks, offering a new perspective on handling nonlinearities and memory effects. A detailed investigation of the numerical solutions obtained through this hybrid approach is presented, emphasizing both the precision and computational efficiency of the proposed method. Furthermore, numerical simulations are carried out using Maple software for a range of fractional orders, allowing for a thorough examination of how variations in the fractional parameters influence the overall system dynamics. The results clearly demonstrate that the ABq-EHATM is not only an effective and flexible approach, but also a robust and reliable alternative for tackling complex. Overall, this study highlights a practical and innovative application of the ABq-EHATM, illustrating its potential benefits and underscoring its significance as a powerful tool in the field of fractional differential equation modeling.

Kaynakça

  • Anaç H. Conformable fractional Elzaki decomposition method of conformable fractional space-time fractional Telegraph equations. Ikonion Journal of Mathematics 2022; 4(2): 42-55.
  • Ahmed HF., Bahgat MSM., Zaki M. Analytical approaches to space-and time-fractional coupled Burgers’ equations. Pramana 2019; 92: 1-14.
  • Alkan A., Anaç H. A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics 2024; 9(10): 27979-27997.
  • Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model. arXiv preprint arXiv:1602.03408 2016; 20: 763–769.
  • Atangana A. Non validity of index law in fractional calculus: A fractional differential operator with markovian and non-markovian properties. Physica A: Statistical Mechanics and Its 2018; 505: 688-706.
  • Baleanu D., Diethelm K., Scalas E., Trujillo JJ. Fractional calculus: Models and Numerical Methods. World Scientific: Singapore 2012; 3: 15.
  • Baleanu D., Jajarmi A., Mohammadi H., Rezapour S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons and Fractals 2020; 134: 109705.
  • Bateman H. Some recent researhes on three motion of fluids. Monthly Weather Review 1915; Rec. 43: 163-170. Caputo M., Elasticita e dissipazione. Zanichelli, 1969, Bologna.
  • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 2015; 1(2): 73-85.
  • Elzaki TM. Application of new transform “Elzaki transform” to partial differential equations. Global Journal of Pure and Applied Mathematics 2011; 7: 65-70.
  • Elzaki TM. The new integral transform ‘Elzaki transform’. Global Journal of Pure and Applied Mathematics 2011; 7: 57-64.
  • Elzaki TM., Hilal EM. Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Mathematical Theory and Modeling 2012; 2: 33–42.
  • Engheta N. Fractional duality in electromagnetic theory. Proceeding of the URSI international symposium on electromagnetic theory, Thessaloniki, Greece 1998; 44(4): 554-566.
  • Esipov SE. Coupled Burgers equations: A model of polydispersive sedimentation. Physical Review E 1995; 52(4): 3711.
  • Fernandez A., Ozarslan MA., Baleanu D. On fractional calculus with general analytic kernels. Applied Mathematics and Computation 2019; 354: 248–265.
  • Güngör H. The efficient method to solve the conformable time fractional Benney equation. Journal of Mathematics 2024; 1: 3676521.
  • Haroon F., Mukhtar S., Shah R. Fractional view analysis of Fornberg–Whitham equations by using Elzaki transform. Symmetry 2022; 14(10): 2118. https://doi.org/10.3390/sym14102118.
  • Hristov J. On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation. In: Trends in theory and applications of fractional derivatives with Mittag–Leffler kernel. AG: Springer Nature 2019, Switzerland.
  • Jain PC., Holla DN. Numerical solutions of coupled Burgers’ equation. International Journal of Non-linear Mechanics 1978; 13: 213-222.
  • Kilbas AA., Srivastava HM., Trujillo JJ. Theory and applications of fractional differential equations. North-Holland Math. Studies, Elsevier 2006, Netherlands.
  • Kürkçü ÖK., Aslan E., Sezer M. A novel graph-operational matrix method for solving multidelay fractional differential equations with variable coefficients and a numerical comparative survey of fractional derivative types. Turkish Journal of Mathematics 2019; 43(1): 373-392.
  • Liu J., Hou G. Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method. Applied Mathematics and Computation 2011; 217(16): 7001-7008.
  • Machado JT., Kiryakova V., Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 2011; 16: 1140–1153.
  • Miller KS., Ross B. An introductionto fractional calculus and fractional differential equations. A Wiley 1993, New York.
  • Partal T. Numerical solution of some nonlinear partial differential equations by finite difference method. Firat University, Science İnstitute Master's Thesis 2021, Elazığ.
  • Podlubny I. Fractional differential equations, mathematics in science and engineering. Academic Press 1999, New York.
  • Veeresha P., Prakasha DG., Baskonus HM. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Mathematical Sciences 2019; 13: 115-128.
  • Prakasha DG., Veeresha P., Rawashdeh MS. Numerical solution for (2+1) dimensional time‐fractional coupled Burger equations using fractional natural decomposition method. Mathematical Methods in the Applied Sciences 2019; 42(10): 3409-3427.
  • Qureshi S., Rangaig NA., Baleanu D. New numerical aspects of Caputo- Fabrizio fractional derivative operator. Mathematics 2019; 7(4): 374.
  • Shah R., Saad AA., Weera W. A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform. Symmetry 2022; 14: 1458.
  • Uçar Y., Yağmurlu NM., Yiğit MK. Numerical solution of the coupled Burgers equation by trigonometric B‐spline collocation method. Mathematical Methods in the Applied Sciences 2023; 46(5): 6025-6041.
  • Yağmurlu M., Gagir A. Numerical simulation of two dimensional coupled Burgers equations by Rubin-Graves type linearization. Mathematical Sciences and Applications E-Notes 2021; 9(4): 158-169.
  • Yağmurlu M., Gagir A. A finite difference approximation for numerical simulation of 2D viscous coupled burgers equations. Mathematical Sciences and Applications E-Notes 2022; 10(3): 146-158.

Atangana-Baleanu Kesirli Coupled Burgers Denklemi Üzerine Güçlü Bir Çalışma

Yıl 2025, Cilt: 8 Sayı: 5, 2464 - 2482, 15.12.2025
https://doi.org/10.47495/okufbed.1660307

Öz

Bu çalışma, Atangana-Baleanu anlamında kesirli türevleri içeren, bağlı Burgers denklemi için oldukça doğru sayısal çözümler elde etmek amacıyla yeni Atangana-Baleanu yönteminin uygulanmasını araştırmaktadır. Bunu başarmak için, Atangana-Baleanu q-Elzaki homotopi analiz dönüşümü yöntemi (ABq-EHATM), sistemi etkili bir şekilde ele almak için bir hesaplama tekniği olarak kullanılmıştır. Bu yöntem, kesirli hesaplamanın avantajlarını q-Elzaki homotopi analiz çerçevelerinin esnekliğiyle benzersiz bir şekilde birleştirerek, doğrusal olmayanlıkların ve bellek etkilerinin ele alınması konusunda yeni bir bakış açısı sunmaktadır. Bu hibrit yaklaşımla elde edilen sayısal çözümlerin ayrıntılı bir incelemesi sunulmakta ve önerilen yöntemin hem hassasiyeti hem de hesaplama verimliliği vurgulanmaktadır. Ayrıca, kesirli mertebeler aralığı için Maple yazılımı kullanılarak sayısal simülasyonlar gerçekleştirilmekte ve bu da kesirli parametrelerdeki değişimlerin genel sistem dinamiklerini nasıl etkilediğinin kapsamlı bir şekilde incelenmesine olanak sağlamaktadır. Sonuçlar ABqEHATM'nin yalnızca etkili ve esnek bir yaklaşım değil, aynı zamanda karmaşık doğrusal olmayan kesirli diferansiyel denklemlerle başa çıkmak için sağlam ve güvenilir bir alternatif olduğunu açıkça göstermektedir. Genel olarak, bu çalışma ABq-EHATM'nin pratik ve yenilikçi bir uygulamasını vurgulayarak potansiyel faydalarını göstermekte ve kesirli diferansiyel denklem modellemesi alanında güçlü bir araç olarak önemini vurgulamaktadır.

Kaynakça

  • Anaç H. Conformable fractional Elzaki decomposition method of conformable fractional space-time fractional Telegraph equations. Ikonion Journal of Mathematics 2022; 4(2): 42-55.
  • Ahmed HF., Bahgat MSM., Zaki M. Analytical approaches to space-and time-fractional coupled Burgers’ equations. Pramana 2019; 92: 1-14.
  • Alkan A., Anaç H. A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics 2024; 9(10): 27979-27997.
  • Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model. arXiv preprint arXiv:1602.03408 2016; 20: 763–769.
  • Atangana A. Non validity of index law in fractional calculus: A fractional differential operator with markovian and non-markovian properties. Physica A: Statistical Mechanics and Its 2018; 505: 688-706.
  • Baleanu D., Diethelm K., Scalas E., Trujillo JJ. Fractional calculus: Models and Numerical Methods. World Scientific: Singapore 2012; 3: 15.
  • Baleanu D., Jajarmi A., Mohammadi H., Rezapour S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons and Fractals 2020; 134: 109705.
  • Bateman H. Some recent researhes on three motion of fluids. Monthly Weather Review 1915; Rec. 43: 163-170. Caputo M., Elasticita e dissipazione. Zanichelli, 1969, Bologna.
  • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 2015; 1(2): 73-85.
  • Elzaki TM. Application of new transform “Elzaki transform” to partial differential equations. Global Journal of Pure and Applied Mathematics 2011; 7: 65-70.
  • Elzaki TM. The new integral transform ‘Elzaki transform’. Global Journal of Pure and Applied Mathematics 2011; 7: 57-64.
  • Elzaki TM., Hilal EM. Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Mathematical Theory and Modeling 2012; 2: 33–42.
  • Engheta N. Fractional duality in electromagnetic theory. Proceeding of the URSI international symposium on electromagnetic theory, Thessaloniki, Greece 1998; 44(4): 554-566.
  • Esipov SE. Coupled Burgers equations: A model of polydispersive sedimentation. Physical Review E 1995; 52(4): 3711.
  • Fernandez A., Ozarslan MA., Baleanu D. On fractional calculus with general analytic kernels. Applied Mathematics and Computation 2019; 354: 248–265.
  • Güngör H. The efficient method to solve the conformable time fractional Benney equation. Journal of Mathematics 2024; 1: 3676521.
  • Haroon F., Mukhtar S., Shah R. Fractional view analysis of Fornberg–Whitham equations by using Elzaki transform. Symmetry 2022; 14(10): 2118. https://doi.org/10.3390/sym14102118.
  • Hristov J. On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation. In: Trends in theory and applications of fractional derivatives with Mittag–Leffler kernel. AG: Springer Nature 2019, Switzerland.
  • Jain PC., Holla DN. Numerical solutions of coupled Burgers’ equation. International Journal of Non-linear Mechanics 1978; 13: 213-222.
  • Kilbas AA., Srivastava HM., Trujillo JJ. Theory and applications of fractional differential equations. North-Holland Math. Studies, Elsevier 2006, Netherlands.
  • Kürkçü ÖK., Aslan E., Sezer M. A novel graph-operational matrix method for solving multidelay fractional differential equations with variable coefficients and a numerical comparative survey of fractional derivative types. Turkish Journal of Mathematics 2019; 43(1): 373-392.
  • Liu J., Hou G. Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method. Applied Mathematics and Computation 2011; 217(16): 7001-7008.
  • Machado JT., Kiryakova V., Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 2011; 16: 1140–1153.
  • Miller KS., Ross B. An introductionto fractional calculus and fractional differential equations. A Wiley 1993, New York.
  • Partal T. Numerical solution of some nonlinear partial differential equations by finite difference method. Firat University, Science İnstitute Master's Thesis 2021, Elazığ.
  • Podlubny I. Fractional differential equations, mathematics in science and engineering. Academic Press 1999, New York.
  • Veeresha P., Prakasha DG., Baskonus HM. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Mathematical Sciences 2019; 13: 115-128.
  • Prakasha DG., Veeresha P., Rawashdeh MS. Numerical solution for (2+1) dimensional time‐fractional coupled Burger equations using fractional natural decomposition method. Mathematical Methods in the Applied Sciences 2019; 42(10): 3409-3427.
  • Qureshi S., Rangaig NA., Baleanu D. New numerical aspects of Caputo- Fabrizio fractional derivative operator. Mathematics 2019; 7(4): 374.
  • Shah R., Saad AA., Weera W. A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform. Symmetry 2022; 14: 1458.
  • Uçar Y., Yağmurlu NM., Yiğit MK. Numerical solution of the coupled Burgers equation by trigonometric B‐spline collocation method. Mathematical Methods in the Applied Sciences 2023; 46(5): 6025-6041.
  • Yağmurlu M., Gagir A. Numerical simulation of two dimensional coupled Burgers equations by Rubin-Graves type linearization. Mathematical Sciences and Applications E-Notes 2021; 9(4): 158-169.
  • Yağmurlu M., Gagir A. A finite difference approximation for numerical simulation of 2D viscous coupled burgers equations. Mathematical Sciences and Applications E-Notes 2022; 10(3): 146-158.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diferansiyel ve İntegral Denklemlerin Sayısal Çözümü
Bölüm Araştırma Makalesi
Yazarlar

Hakkı Güngör 0000-0002-9546-665X

Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 15 Haziran 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Güngör, H. (2025). A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(5), 2464-2482. https://doi.org/10.47495/okufbed.1660307
AMA Güngör H. A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2025;8(5):2464-2482. doi:10.47495/okufbed.1660307
Chicago Güngör, Hakkı. “A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 5 (Aralık 2025): 2464-82. https://doi.org/10.47495/okufbed.1660307.
EndNote Güngör H (01 Aralık 2025) A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 5 2464–2482.
IEEE H. Güngör, “A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation”, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, ss. 2464–2482, 2025, doi: 10.47495/okufbed.1660307.
ISNAD Güngör, Hakkı. “A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/5 (Aralık2025), 2464-2482. https://doi.org/10.47495/okufbed.1660307.
JAMA Güngör H. A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8:2464–2482.
MLA Güngör, Hakkı. “A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 5, 2025, ss. 2464-82, doi:10.47495/okufbed.1660307.
Vancouver Güngör H. A Robust Study on Atangana-Baleanu Fractional Coupled Burgers Equation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2025;8(5):2464-82.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.