Araştırma Makalesi
BibTex RIS Kaynak Göster

On the idempotents of semigroup of partial contractions of a finite chain

Yıl 2021, , 242 - 249, 15.12.2021
https://doi.org/10.47495/okufbed.799385

Öz

Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.

Kaynakça

  • Ali, B., Umar, A. and Zubairu, M. M. Regularity and Green’s relations on the semigroup of partial contractions of a finite chain. arXiv:1803.02146v1.
  • Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. J. Combin. Math. Combin. Comput. 106, (2018) 37-49.
  • Clifford, A. H. and Preston, G.B. The algebraic theory of semigroups, vol.1. Providence, R. I.: American Mathematical Society, 1961.
  • Garba, G. U. Idempotents in partial transformation semifroups. Proc. Roy. Soc. Edinburghn 116 A. (1990), 359-366.
  • Gracinda, M. S. Gomes and Howie, J. M. On the ranks of certain semigroups of order preserving transformations. Semigroup Forum 45 (1992), 272-282.
  • Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. Springer−Verlag: London Limited (2009).
  • Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1971) 223-236.
  • Howie, J. M . Fundamental of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
  • Laradji, A. and Umar A. Combinatorial results for semifroups of order preserving partial transformations. Journal of Algebra 278 (2004), 342-358.
  • Tainter, T. A characterization of idempotents in semigroups. J. Combinatorial Theory 5 (1968) 370-373.
  • Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Journal of Algebra and Discrete Mathematics 17 (2014) 1 110-134.
  • Umar, A. and Zubairu, M. M. On certain semigroups of partial contractions of a finite chain. arXiv:1803.02604.
  • Umar, A. and Zubairu, M. M. On certain semigroups of full contractions of a finite chain. arXiv:1804.10057.

On the idempotents of semigroup of partial contractions of a finite chain

Yıl 2021, , 242 - 249, 15.12.2021
https://doi.org/10.47495/okufbed.799385

Öz

Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.

Kaynakça

  • Ali, B., Umar, A. and Zubairu, M. M. Regularity and Green’s relations on the semigroup of partial contractions of a finite chain. arXiv:1803.02146v1.
  • Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. J. Combin. Math. Combin. Comput. 106, (2018) 37-49.
  • Clifford, A. H. and Preston, G.B. The algebraic theory of semigroups, vol.1. Providence, R. I.: American Mathematical Society, 1961.
  • Garba, G. U. Idempotents in partial transformation semifroups. Proc. Roy. Soc. Edinburghn 116 A. (1990), 359-366.
  • Gracinda, M. S. Gomes and Howie, J. M. On the ranks of certain semigroups of order preserving transformations. Semigroup Forum 45 (1992), 272-282.
  • Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups. Springer−Verlag: London Limited (2009).
  • Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1971) 223-236.
  • Howie, J. M . Fundamental of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
  • Laradji, A. and Umar A. Combinatorial results for semifroups of order preserving partial transformations. Journal of Algebra 278 (2004), 342-358.
  • Tainter, T. A characterization of idempotents in semigroups. J. Combinatorial Theory 5 (1968) 370-373.
  • Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Journal of Algebra and Discrete Mathematics 17 (2014) 1 110-134.
  • Umar, A. and Zubairu, M. M. On certain semigroups of partial contractions of a finite chain. arXiv:1803.02604.
  • Umar, A. and Zubairu, M. M. On certain semigroups of full contractions of a finite chain. arXiv:1804.10057.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Muhammad Mansur Zubairu

Bashir Ali Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 24 Eylül 2020
Kabul Tarihi 14 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Zubairu, M. M., & Ali, B. (2021). On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 242-249. https://doi.org/10.47495/okufbed.799385
AMA Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Aralık 2021;4(3):242-249. doi:10.47495/okufbed.799385
Chicago Zubairu, Muhammad Mansur, ve Bashir Ali. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4, sy. 3 (Aralık 2021): 242-49. https://doi.org/10.47495/okufbed.799385.
EndNote Zubairu MM, Ali B (01 Aralık 2021) On the idempotents of semigroup of partial contractions of a finite chain. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 3 242–249.
IEEE M. M. Zubairu ve B. Ali, “On the idempotents of semigroup of partial contractions of a finite chain”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 4, sy. 3, ss. 242–249, 2021, doi: 10.47495/okufbed.799385.
ISNAD Zubairu, Muhammad Mansur - Ali, Bashir. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4/3 (Aralık 2021), 242-249. https://doi.org/10.47495/okufbed.799385.
JAMA Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2021;4:242–249.
MLA Zubairu, Muhammad Mansur ve Bashir Ali. “On the Idempotents of Semigroup of Partial Contractions of a Finite Chain”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 4, sy. 3, 2021, ss. 242-9, doi:10.47495/okufbed.799385.
Vancouver Zubairu MM, Ali B. On the idempotents of semigroup of partial contractions of a finite chain. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2021;4(3):242-9.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.