Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.
Let $[n]=\{1,2,\ldots,n\}$ be a finite chain. Let $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ be Semigroups of partial and full transformations on $[n]$ respectively. Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in \dom~\alpha\}$ and $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: |x\alpha-y\alpha|\leq|x-y| \ \ \forall x, y\in [n]\}$, then $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ are subsemigroups of $\mathcal{P}_{n}$ and $\mathcal{T}_{n}$ respectively. In this paper, we characterize the idempotent elements and computed the number of idempotents of height, $n-1$ and $n-2$ for the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$ respectively.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makaleleri (RESEARCH ARTICLES) |
Yazarlar | |
Yayımlanma Tarihi | 15 Aralık 2021 |
Gönderilme Tarihi | 24 Eylül 2020 |
Kabul Tarihi | 14 Mart 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 4 Sayı: 3 |
* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)
* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).
* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)
* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.
*Dergi açık erişimli bir dergidir.
Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.