Derleme
BibTex RIS Kaynak Göster

Potential Antimicrobials of Rhizobacteria: Bacteriocins

Yıl 2024, Cilt: 7 Sayı: 5, 2393 - 2404, 10.12.2024

Öz

Plant pathogenic bacteria are a significant threat to agricultural products. These pathogens are responsible for numerous plant diseases and devastating losses in many crops. Current disease management strategies to reduce yield losses often involve the application of chemicals that are harmful to both human health and the environment.Bacteria produce and secrete a versatile compound to defend against microbial rivals. Bacteriocins are small protein antibiotics produced by bacteria to kill closely related bacteria and thus establish dominance within a niche. They represent a potentially safer alternative to chemical drugs. This review includes: produced by bacteria in the plant rhizosphere; Studies on bacteriocins that could be used in agriculture are summarized.

Kaynakça

  • Abriouel H., Franz CMAP., Omar N., and Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 2011; 35(1): 201–232.
  • Ahmad E., Holmstrom S. Siderophores in environmental research: Roles and applications. Microbial Biotechnology 2014; 7(3):196–208.
  • Alvarez-Sieiro P., Montalbán-López M., Mu D., and Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology & Biotechnology 2016; 100: 2939-2951.
  • Bolivar-Anillo HJ., Oronzo-Sanchez CJ., Da Silva Lima G., and dos Santos CJO. Endophytic microorganisms isolated of plants grown in Colombia: A Short Review. Journal of Microbial and Biochemical Technology 2016; 8(8): 509-513.
  • Cesa-Luna C., Baez A., Quintero-Hernandez V., De La Cruz-Enriquez J., Castaneda-Antonio MD., and Munoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biologica Colombiana 2020; 25(1): 140-154.
  • Chaurasia B., Pandey A., Palni LMS., Trivedi P., Kumar B., and Colvin N. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiological Research 2005; 160(1): 75–81.
  • Cherif A., Chehimi S., Limem F., Hansen BM., Hendriksen NB., and Daffonchio D. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal Applied Microbiology 2003; 95: 990–1000.
  • De la Fuente-Salcido N., Alanís-Guzmaan MG., Bideshi D., Salcedo-Hernandez R., Bautista-Justo M., and Barboza-Corona JE. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Archives of Microbiology 2008; 190: 633–640.
  • Ghrairi T, Braiek OB., and Hani K. Detection and characterization of a bacteriocin, putadicin T01, produced by Pseudomonas putida isolated from hot spring water. Journal of Pathology, Microbiology and Immunology 2014; 2: 260– 268.
  • Godino A., Principe A., and Fischer S. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere. Research of Microbiology 2016; 167: 178–189.
  • Gray E., Lee K., Souleimanov A., Di Falco M., Zhou X., and Ly A. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. Journal of Applied Microbiology 2006; 100: 545–554.
  • Hafeez FY., Naeem FI., Naeem R., Zaidi AH., and Malik KA. Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environmental and Experimental Botany 2005; 54: 142–147.
  • Hammami I., Rhouma A., Jaouadi B., Rebai A., and Nesme X. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Letters Applied Microbiology 2009;48(2):253–60.
  • Haas D., Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 2005; 3: 307-319.
  • He L., Chen W., Liu Y. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis. Microbial Research 2006; 161:321–326.
  • Holtsmark VG., Eijsink MB., and Brurberg MB. Bacteriocins from plant pathogenic bacteria. FEMS Microbiology Letters 2008; 280: 1-7.
  • Holtsmark I., Mantzilas D., Eijsink VGH., and Brurberg MB. Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. Michiganensis. Applied Environmental Microbiology 2006; 72:5814–5821.
  • Jabeen N., Rasool S. A., Ahmad S., Ajaz M., and Saeed S. Isolation, identification and bacteriocin production by indigenous diseased plant and soil associated bacteria. Pakistan Journal of Biological Science 2004; 7: 1893–1897
  • Kai M., Effmert U., and Piechulla B. Bacterial-plant-interactions: Approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Frontiers Microbiology 2016;7:108.
  • Kamoun F., Mejdoub H., Aouissaoui H., Reinbolt J., Hammami A., and Jaoua S. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology 2005; 98: 881–888.
  • Kemperman R., Kuipers A., Karsens H., Nauta A., Kuipers O., and Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied Environmental Microbiology 2003; 69(3):1589–1597.
  • Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviwers 12, 39-85.
  • Kumar A., Singh VK., Tripathi V., Singh PP., and Singh AK. Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In crop improvement through microbial biotechnology. NY: Elsevier; 2018 p. 333-342.
  • Küçük Ç., Kıvanç M. Bacteriocin production by bean root bacteria. III. International Conference on Environmental, Industrial and Applied Microbiology, Fostering Cross-disciplinary Applied Research in Microbiology and Microbial Biotechnology, BioMicroWorld, 2-4 December 2009, p.779, Lisbon, Portugal.
  • Laue BE., Jiang Y., Chhabra SR., Jacob S., Stewart GSAB., and Hardman A. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology. 2000; 146(10):2469–80.
  • Lavermicocca P., Lognigro SL., Valerio F., and Evidente A. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccarone. Applied and Environmental Microbiology 2002; 68:1403-1407.
  • Lee KD., Gray EJ., Mabood F., Jung WJ., Charles T., and Clark SRD. The class IId bacteriocin thuricin-17 increases plant growth. Planta 2009; 229: 747–755.
  • Logeshwaran P, Thangaraju M., and Rajasundari K. In vitro suppression of soil borne pathogenic fungi and pyoluteorin production by Gluconacetobacter diazotrophicus. Journal of Basic and Applied Scientific Research. 2011; 1(3):150–156.
  • Lotz W., Mayer F. Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. Journal of Virology 1972; 9:160-173.
  • Mabood F., Zhou X., and Smith DL. Microbial signaling and plant growth promotion. Canadian Journal of Plant Science 2014; 94: 1051–1063.
  • Matilla MA., Krell T. Plant growth promotion and biocontrol mediated by plant-associated bacteria. In: Egamberdieva D., Ahmad P. (eds) Plant microbiome stress response microorganisms for sustainability, vol 5, Singapore; Springer 2018, p.45-80.
  • Maan H., Itkin M., Malitsky S., Friedman J., and Kolodkin-Gal, I. Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nature Communications 2022; 13:1-15.
  • McCaughey LC, Grinter R, Josts I, Roszak AW, Waloen KI, and Cogdell RJ. Lectin-Like bacteriocins from Pseudomonas spp. utilise D-Rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathology. 2014; 10(2):1–15
  • Mendez M, Mercado EC, and Pineda EG. Azospirillum una rizobacteria con uso potencial en la agricultura. Biologicas 2014; 16(1):11–18.
  • Mojgani N. Bacteriocin-producing rhizosphere bacteria and their potential as a biocontrol agent. Rhizotrophs Plant Growth Promotion Bioremediation 2017; 2: 165-181
  • Mouloud G., Daoud H., Bassem J., Atef IL., Hani B. New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Applied Biochemistry Biotechnology 2013; 171: 2186–2200.
  • Munoz-Rojas J, Fuentes-Ramírez L, and Caballero-Mellado J. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiology Ecology 2005; 54:57–66.
  • Naz SA, Jabeen N, Sohail M, and Rasool SA. Biophysicochemical characterization of pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology 2015; 46(4):1147–1154.
  • Nazari M., Smith DL. A PGPR produced bacteriocin for sustainable agriculture: A review of thuricin 17 characteristics and application. Frontiers in Plant Science 2020; 11: 1-7.
  • Nes IF., Brede DA., and Holo H. The nonlantibiotic heat-stable bacteriocins in Gram-positive bacteria. In Handbook of biologically active peptides. NY: Academic Press Elsevier; 2006; 107-114.
  • Niehus R., Oliveira NM., Li A., Fletcher AG., Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. Elife 2021; 10: e69756.
  • Oresnik IJ., Twelker S., and Hynes MF. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Applied Environmental Microbiology 1999; 65: 2833–2840
  • Oscariz JC., Lasa I., and Pisabarro AG. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiology Letters 1999; 178: 337–341
  • Paik HD., Bae SS., Park SH., and Pan JG. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. Journal of Industrial Microbiology and Biotechnology 1997; 19: 294–298
  • Parret AHA., Schoofs, G., Proost, P., and De Mot, R. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. Journal of Bacteriology 2003; 185: 897-908.
  • Parret AHA., Temmerman K., and De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Applied Environmental Microbiology 2005;71(9):5197–5207.
  • Raddadi N., Belaouis A., Tamagnini I., Hansen BM., Hendriksen NB., and Boudabous A. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Journal of Basic Microbiology 2009; 49: 293–303.
  • Riley MA. Molecular mechanisms of bacteriocin evolution. Annual Review Genetics 1998; 32: 255–278.
  • Riley MA, Wertz JE. Bacteriocins: evolution, ecology and application. Annual Review Microbiology 2002; 56:117–37.
  • Rooney WMR., Chai JJ., Milner D., and Walker D. Bacteriocins targeting Gram-negative phytopathogenic bacteria: plantibiotics of the future. Frontier Microbiology 2020; 11: 575981.
  • Sakthivel N., Mew TW. Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial blight disease of rice (Oryza sativa L.). Canadian Journal of Microbiology 1991; 37: 764-768.
  • Scholz R., Vater J., Budiharjo A., Wang Z., He Y., Dietel K., Schewecke T., Herfort S., Lasch P., and Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. Journal of Bacteriology 2014; 196:1842-1852.
  • Schwinghamer EA., Brockwell, J. Competitive advantage of bacteriocin and phage-producing strains of Rhizobium trifolii in mixed culture. Soil Biology Biochemistry 1978; 10: 383–387.
  • Subramanian S., Smith DL. Bacteriocins from the rhizosphere microbiome - from an agriculture perspective. Frontiers Plant Science 2015; 6: 909.
  • Uğraş S., Sezen K., Kati H., and Demirbağ Z. Purification and characterization of the Bacteriocin thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. Journal of Microbiology and Biotechnology 2013; 23(2):167– 176.
  • Yao GW., Duarte I., Le TT., Carmody L., Li Puma JJ., Young R., and Gonzalez CF. A Broad-host-range Tailocin from Burkholderia cenocepacia. Applid Environmental Microbiology 2017; 83(10): e03414-16.
  • Wilson R., Handley B., and Beringer J. Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biology Biochemistry 1998; 30: 413–417

Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler

Yıl 2024, Cilt: 7 Sayı: 5, 2393 - 2404, 10.12.2024

Öz

Bitki patojeni bakteriler tarımsal ürünler için önemli bir tehdittir. Bu patojenler, çok sayıda bitki hastalığından sorumludur ve birçok üründe yıkıcı kayıplardan sorumludur. Verim kayıplarını azaltmaya yönelik mevcut hastalık yönetim stratejileri, genellikle hem insan sağlığına hem de çevreye zararlı olan kimyasalların uygulanmasını içermektedir. Bakteriler, mikrobiyal rakiplerine karşı savunma için çok yönlü bir bileşik üretir ve salgılar. Bakteriyosinler, bakteriler tarafından yakın ilişkili bakterileri öldürmek ve böylece bir niş içerisinde hakimiyet kurmak için üretilen küçük proteinli antibiyotiklerdir. Kimyasal ilaçlara göre potansiyel olarak daha güvenli bir alternatif oluştururlar. Bu derleme, bitki rizosferindeki bakteriler tarafından üretilen; tarımda kullanım alanı olabilecek bakteriyosinler ile ilgili yapılan çalışmalar özetlenmiştir.

Kaynakça

  • Abriouel H., Franz CMAP., Omar N., and Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 2011; 35(1): 201–232.
  • Ahmad E., Holmstrom S. Siderophores in environmental research: Roles and applications. Microbial Biotechnology 2014; 7(3):196–208.
  • Alvarez-Sieiro P., Montalbán-López M., Mu D., and Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology & Biotechnology 2016; 100: 2939-2951.
  • Bolivar-Anillo HJ., Oronzo-Sanchez CJ., Da Silva Lima G., and dos Santos CJO. Endophytic microorganisms isolated of plants grown in Colombia: A Short Review. Journal of Microbial and Biochemical Technology 2016; 8(8): 509-513.
  • Cesa-Luna C., Baez A., Quintero-Hernandez V., De La Cruz-Enriquez J., Castaneda-Antonio MD., and Munoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biologica Colombiana 2020; 25(1): 140-154.
  • Chaurasia B., Pandey A., Palni LMS., Trivedi P., Kumar B., and Colvin N. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiological Research 2005; 160(1): 75–81.
  • Cherif A., Chehimi S., Limem F., Hansen BM., Hendriksen NB., and Daffonchio D. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal Applied Microbiology 2003; 95: 990–1000.
  • De la Fuente-Salcido N., Alanís-Guzmaan MG., Bideshi D., Salcedo-Hernandez R., Bautista-Justo M., and Barboza-Corona JE. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Archives of Microbiology 2008; 190: 633–640.
  • Ghrairi T, Braiek OB., and Hani K. Detection and characterization of a bacteriocin, putadicin T01, produced by Pseudomonas putida isolated from hot spring water. Journal of Pathology, Microbiology and Immunology 2014; 2: 260– 268.
  • Godino A., Principe A., and Fischer S. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere. Research of Microbiology 2016; 167: 178–189.
  • Gray E., Lee K., Souleimanov A., Di Falco M., Zhou X., and Ly A. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. Journal of Applied Microbiology 2006; 100: 545–554.
  • Hafeez FY., Naeem FI., Naeem R., Zaidi AH., and Malik KA. Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environmental and Experimental Botany 2005; 54: 142–147.
  • Hammami I., Rhouma A., Jaouadi B., Rebai A., and Nesme X. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Letters Applied Microbiology 2009;48(2):253–60.
  • Haas D., Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 2005; 3: 307-319.
  • He L., Chen W., Liu Y. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis. Microbial Research 2006; 161:321–326.
  • Holtsmark VG., Eijsink MB., and Brurberg MB. Bacteriocins from plant pathogenic bacteria. FEMS Microbiology Letters 2008; 280: 1-7.
  • Holtsmark I., Mantzilas D., Eijsink VGH., and Brurberg MB. Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. Michiganensis. Applied Environmental Microbiology 2006; 72:5814–5821.
  • Jabeen N., Rasool S. A., Ahmad S., Ajaz M., and Saeed S. Isolation, identification and bacteriocin production by indigenous diseased plant and soil associated bacteria. Pakistan Journal of Biological Science 2004; 7: 1893–1897
  • Kai M., Effmert U., and Piechulla B. Bacterial-plant-interactions: Approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Frontiers Microbiology 2016;7:108.
  • Kamoun F., Mejdoub H., Aouissaoui H., Reinbolt J., Hammami A., and Jaoua S. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology 2005; 98: 881–888.
  • Kemperman R., Kuipers A., Karsens H., Nauta A., Kuipers O., and Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied Environmental Microbiology 2003; 69(3):1589–1597.
  • Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviwers 12, 39-85.
  • Kumar A., Singh VK., Tripathi V., Singh PP., and Singh AK. Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In crop improvement through microbial biotechnology. NY: Elsevier; 2018 p. 333-342.
  • Küçük Ç., Kıvanç M. Bacteriocin production by bean root bacteria. III. International Conference on Environmental, Industrial and Applied Microbiology, Fostering Cross-disciplinary Applied Research in Microbiology and Microbial Biotechnology, BioMicroWorld, 2-4 December 2009, p.779, Lisbon, Portugal.
  • Laue BE., Jiang Y., Chhabra SR., Jacob S., Stewart GSAB., and Hardman A. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology. 2000; 146(10):2469–80.
  • Lavermicocca P., Lognigro SL., Valerio F., and Evidente A. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccarone. Applied and Environmental Microbiology 2002; 68:1403-1407.
  • Lee KD., Gray EJ., Mabood F., Jung WJ., Charles T., and Clark SRD. The class IId bacteriocin thuricin-17 increases plant growth. Planta 2009; 229: 747–755.
  • Logeshwaran P, Thangaraju M., and Rajasundari K. In vitro suppression of soil borne pathogenic fungi and pyoluteorin production by Gluconacetobacter diazotrophicus. Journal of Basic and Applied Scientific Research. 2011; 1(3):150–156.
  • Lotz W., Mayer F. Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. Journal of Virology 1972; 9:160-173.
  • Mabood F., Zhou X., and Smith DL. Microbial signaling and plant growth promotion. Canadian Journal of Plant Science 2014; 94: 1051–1063.
  • Matilla MA., Krell T. Plant growth promotion and biocontrol mediated by plant-associated bacteria. In: Egamberdieva D., Ahmad P. (eds) Plant microbiome stress response microorganisms for sustainability, vol 5, Singapore; Springer 2018, p.45-80.
  • Maan H., Itkin M., Malitsky S., Friedman J., and Kolodkin-Gal, I. Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nature Communications 2022; 13:1-15.
  • McCaughey LC, Grinter R, Josts I, Roszak AW, Waloen KI, and Cogdell RJ. Lectin-Like bacteriocins from Pseudomonas spp. utilise D-Rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathology. 2014; 10(2):1–15
  • Mendez M, Mercado EC, and Pineda EG. Azospirillum una rizobacteria con uso potencial en la agricultura. Biologicas 2014; 16(1):11–18.
  • Mojgani N. Bacteriocin-producing rhizosphere bacteria and their potential as a biocontrol agent. Rhizotrophs Plant Growth Promotion Bioremediation 2017; 2: 165-181
  • Mouloud G., Daoud H., Bassem J., Atef IL., Hani B. New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Applied Biochemistry Biotechnology 2013; 171: 2186–2200.
  • Munoz-Rojas J, Fuentes-Ramírez L, and Caballero-Mellado J. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiology Ecology 2005; 54:57–66.
  • Naz SA, Jabeen N, Sohail M, and Rasool SA. Biophysicochemical characterization of pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology 2015; 46(4):1147–1154.
  • Nazari M., Smith DL. A PGPR produced bacteriocin for sustainable agriculture: A review of thuricin 17 characteristics and application. Frontiers in Plant Science 2020; 11: 1-7.
  • Nes IF., Brede DA., and Holo H. The nonlantibiotic heat-stable bacteriocins in Gram-positive bacteria. In Handbook of biologically active peptides. NY: Academic Press Elsevier; 2006; 107-114.
  • Niehus R., Oliveira NM., Li A., Fletcher AG., Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. Elife 2021; 10: e69756.
  • Oresnik IJ., Twelker S., and Hynes MF. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Applied Environmental Microbiology 1999; 65: 2833–2840
  • Oscariz JC., Lasa I., and Pisabarro AG. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiology Letters 1999; 178: 337–341
  • Paik HD., Bae SS., Park SH., and Pan JG. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. Journal of Industrial Microbiology and Biotechnology 1997; 19: 294–298
  • Parret AHA., Schoofs, G., Proost, P., and De Mot, R. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. Journal of Bacteriology 2003; 185: 897-908.
  • Parret AHA., Temmerman K., and De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Applied Environmental Microbiology 2005;71(9):5197–5207.
  • Raddadi N., Belaouis A., Tamagnini I., Hansen BM., Hendriksen NB., and Boudabous A. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Journal of Basic Microbiology 2009; 49: 293–303.
  • Riley MA. Molecular mechanisms of bacteriocin evolution. Annual Review Genetics 1998; 32: 255–278.
  • Riley MA, Wertz JE. Bacteriocins: evolution, ecology and application. Annual Review Microbiology 2002; 56:117–37.
  • Rooney WMR., Chai JJ., Milner D., and Walker D. Bacteriocins targeting Gram-negative phytopathogenic bacteria: plantibiotics of the future. Frontier Microbiology 2020; 11: 575981.
  • Sakthivel N., Mew TW. Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial blight disease of rice (Oryza sativa L.). Canadian Journal of Microbiology 1991; 37: 764-768.
  • Scholz R., Vater J., Budiharjo A., Wang Z., He Y., Dietel K., Schewecke T., Herfort S., Lasch P., and Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. Journal of Bacteriology 2014; 196:1842-1852.
  • Schwinghamer EA., Brockwell, J. Competitive advantage of bacteriocin and phage-producing strains of Rhizobium trifolii in mixed culture. Soil Biology Biochemistry 1978; 10: 383–387.
  • Subramanian S., Smith DL. Bacteriocins from the rhizosphere microbiome - from an agriculture perspective. Frontiers Plant Science 2015; 6: 909.
  • Uğraş S., Sezen K., Kati H., and Demirbağ Z. Purification and characterization of the Bacteriocin thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. Journal of Microbiology and Biotechnology 2013; 23(2):167– 176.
  • Yao GW., Duarte I., Le TT., Carmody L., Li Puma JJ., Young R., and Gonzalez CF. A Broad-host-range Tailocin from Burkholderia cenocepacia. Applid Environmental Microbiology 2017; 83(10): e03414-16.
  • Wilson R., Handley B., and Beringer J. Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biology Biochemistry 1998; 30: 413–417
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Mikrobiyolojisi
Bölüm Derlemeler (REVIEWS)
Yazarlar

Çiğdem Küçük 0000-0001-5688-5440

Yayımlanma Tarihi 10 Aralık 2024
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 8 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 5

Kaynak Göster

APA Küçük, Ç. (2024). Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2393-2404.
AMA Küçük Ç. Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Aralık 2024;7(5):2393-2404.
Chicago Küçük, Çiğdem. “Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 5 (Aralık 2024): 2393-2404.
EndNote Küçük Ç (01 Aralık 2024) Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2393–2404.
IEEE Ç. Küçük, “Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 7, sy. 5, ss. 2393–2404, 2024.
ISNAD Küçük, Çiğdem. “Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (Aralık 2024), 2393-2404.
JAMA Küçük Ç. Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7:2393–2404.
MLA Küçük, Çiğdem. “Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 5, 2024, ss. 2393-04.
Vancouver Küçük Ç. Rizobakterilerin Potansiyel Antimikrobiyalleri Bakteriyosinler. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7(5):2393-404.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.