Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal florada kendiliğinden yetişen sarıçiçekli gazal boynuzu (Lotus corniculatus L.) ve dar yapraklı gazal boynuzu (Lotus tenuis Waldst.&Kit.) türlerinin toprak tercihleri, komşu bitkileri ve yem değerleri

Yıl 2018, , 37 - 46, 15.02.2018
https://doi.org/10.7161/omuanajas.309644

Öz

Bu çalışmada, Karadeniz Bölgesi doğal
florasında yetişen sarıçiçekli gazal boynuzu (Lotus corniculatus L.) ve dar yapraklı gazal boynuzu (L. tenuis Waldst. & Kit.) türlerinin
tercih ettiği toprak özellikleri ile etkileşim halinde olduğu bitki türleri ve
yem değerleri incelenmiştir. L.
corniculatus
, L. tenuis’e göre
daha yüksek kireç (90.9’a karşılık 66.4 g kg-1, P=0.003) ve pH’lı
(7.41’e karşılık 7.14, P=0.001), düşük organik maddeli (20.0’a karşılık 26.8 g
kg-1, P=0.001) toprakları tercih ettiği belirlenmiştir. L. corniculatus’un 89 (%20.2 baklagil,
%22.5 buğdaygil ve %57.3 diğer familyalar), L.
tenuis
’in ise 61 (%41.0 baklagil, %19.7 buğdaygil ve %39.3 diğer bitki
familyalar) farklı bitki türüne komşu olduğu belirlenmiştir. Komşu bitki
familyalarının frekansı bakımından iki tür arasındaki farklılık önemli
bulunmuştur (
c2=10.814, P=0.004). Gazal boynuzu türleri
ile etkileşim halinde yetişen dominant bitki türleri Medicago lupulina, Trifolium
pratense
, Trifolium repens, Cynodon dactylon, Lolium perenne ve Plantago
lanceolata
olduğu belirlenmiştir. Dactylis
glomerata
’nın da L. corniculatus’a
yüksek oranda komşu olduğu belirlenmiştir. L.
tenuis
, daha yüksek fosfor, metabolik enerji ve nispi yem değeri ile daha
düşük asitte ve nötral çözeltide çözünmeyen lif oranına sahip olmuştur. Sonuç
olarak kurulacak suni mera tesislerinde ve doğal meraların ıslahında doğal ortamda
gazal boynuzu türleri ile uyum içerisinde yetişen ve olumlu etkileşim gösteren
yukarıda söz edilen türler tercih edilmelidir.

Kaynakça

  • Acuña, H., Ortega, F., Seguel, I., Barrientos, L., 2012. Introduction, collection and characterization of Lotus spp. germplasm in Chile. Journal of Environmental Science and Engineering, 1(4), 533-552.
  • Adler, P., Raff, D., Lauenroth, W., 2001. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128(4), 465-479. doi.10.1007/s004420100737.
  • Al-Khayri, J.M., Jain, S.M., Johnson, D.V., 2016. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. 149-201, Springer. doi.10.1007/978-3-319-22518-0_1.
  • Aydin, I., Uzun, F., 2008. Potential decrease of grass tetany risk in rangelands combining N and K fertilization with MgO treatments. European Journal of Agronomy, 29, 33-37. doi.org/10.1016/j.eja.2008.02.003.
  • Callaway, R.M., 2007. Positive Interactions and Interdependence in Plant Communities. Springer, 415 s, Dordrecht, the Netherlands.
  • Callaway, R.M., Kikodze, D., Kikvidze, Z., 2000. Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains.
  • Oikos, 89, 275-282. doi:10.1034/j.1600-0706.2000.890208.x.
  • Callaway, R.M., Kikodze, D., Chiboshvili, M., Khetsuriani, L., 2005. Unpalatable plants protect neighbours from grazing and increase plant community diversity. Ecology, 86, 1856-1862. doi:10.1890/04-0784.
  • Christenhusz, M.J., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217. doi:org/10.11646/phytotaxa.261.3.1.
  • Clua, A., Orsini, H., Beltrano, J., 2009. Incidence of variable flooding period on Lotus tenuis biomass production and leaf senescence. Lotus Newsletter, 39, 13-20.
  • Degtjareva, G.V., Kramina, T.E., Sokoloff, D.D., Samigullin, T.H., Sandral, G., ValiejoRoman, C.M., 2008. New data on nrITS phylogeny of Lotus (Leguminosae, Loteae). Wulfenia, 15, 35-49.
  • Dönmez, H.B., Uzun, F., 2016. Geographical variation in nutrient composition of lotus tenuis (Waldst.&Kit.) populations from seeds collected from different locations. Türkiye Tarımsal Araştırmalar Dergisi, 3(1), 30-36. doi:10.19159/tutad.50527.
  • Dynes, R.A., Henry, D.A., Masters, D.G., 2003. Characterizing forages for ruminant feeding, Asian-Australian. Journal of Animal Science, 16(1), 116-123.
  • Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Sanjuán, J., Ruiz, O.A., 2012. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 182, 121-133. doi:10.1016/j.plantsci.2011.03.016.
  • Escaray, F.J., Passeri, V., Babuin, F.M., Marco, F., Carrasco, P., Damiani, F., Pieckenstain, L.F., Paolocci, F., Ruiz, O.A., 2014. Lotus tenuis x Lotus corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biology, 14, 40. doi:10.1186/1471-2229-14-40.
  • Felderer, B., Boldt-Burisch, K.M., Schneider, B.U., Hüttl, R.F.J., Schulin, R., 2013. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil. Biogeosciences, 10(3), 1737-1749. doi:10.5194/bg-10-1737-2013.
  • Gebrehiwot, L., Beuselinck, P.R., Roberts, C.A., 2002. Seasonal variations in condensed tannin concentration of three species. Agronomy Journal, 94(5), 1059-1065. doi:10.2134/agronj2002.1059.
  • Graham, P.H., Vance, C.P., 2003. Legumes: importance and constraints to greater use. Plant physiology, 131(3), 872-877. doi:10.1104/pp.017004.
  • Howard, K.S., Eldridge, D.J., Soliveres, S., 2012. Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 13(2), 159-168. doi:10.1016/j.baae.2012.02.008.
  • Holzapfel, C., Tielborgerb, K., Paragb, H.A., Kigelc, J., Sternberga, M., 2006. Annual plant–shrub interactions along an aridity gradient. Basic and Applied Ecology, 7, 268–279. doi:10.1016/j.baae.2005.08.003.
  • Kacar, B., 2009. Toprak Analizleri. Nobel Kitabevi, Yayın No:1387, Ankara.
  • Khojasteh, F., Chahouki, M.A.Z., Azarnivand, H., Kikvidze, Z., 2013. Life form and preference can drive spatial relationships among plant species in semi-arid rangelands of middle Iran. The Rangeland Journal, 35(1), 63-69. doi:10.1071/RJ12052.
  • Kikvidze, Z., Pugnaire, F.I., Choler, P., Lortie, C.J., Michalet, R., Callaway, R.M., 2005. Linking patterns and processes in alpine plant communities: a global study. Ecology, 86, 1395-1400. doi:10.1890/04-1926.
  • Llobet, M., Vignolio, O.R., Savé, R., Biel, C., 2012. Above-and below-ground interactions between Lotus tenuis and Cynodon dactylon under different fertilization levels. Canadian Journal of Plant Science, 92(1), 45-53. http://doi/abs/10.4141/cjps2010-002.
  • MGM, 2017. Meteoroloji Genel Müdürlüğü, Klimatoloji Şube Müdürlüğü. İklim sınıflandırmaları. https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari.pdf [Erişim: 14.04.2017].
  • Moniello, G., Infascelli, F., Pinna, W., Camboni, G., 2005. Mineral requirements of dairy sheep. Italian Journal of Animal Science, 4(Supp. 1), 63-74. doi.org/10.4081/ijas.2005.1s.63.
  • Moore, J.E., Undersander, D.J., 2002. Relative forage quality: An alternative to relative feed value and quality index. In Proceedings 13th Annual Florida Ruminant Nutrition Symposium, University of Florida, 16-32.
  • Nyatwere, M., Mkabwa, L.K.M., Zachariah, K.R., 2012. Distribution patterns of plant species around North Mara Gold Mine in Tanzania. International Journal of Agricultural Sciences. 2, 302-312. doi: cabdirect.org/cabdirect/abstract/20123239836.
  • Orcen, N., 2013. Regeneration of bird’s-foot trefoil (Lotus corniculatus L.) native race of Aegean region. International Journal of AgriScience, 2(4), 302-312.
  • Pugnaire, F.I., Armas, C., Maestre, F.T., 2011. Positive plant interactions in the Iberian South-east: mechanisms, environmental gradients, and ecosystem function. Journal of Arid Environments, 75, 1310-1320. doi: 10.1016/j.jaridenv.2011.01.016.
  • Ramírez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., Kemp, P.D., Harvey, T.G., 2005. Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dryland farming conditions. Animal Feed Science Technology, 121, 23-43. doi:10.1016/j.anifeedsci.2005 .02.006.
  • Ramírez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., 2006. Organic matter digestibility of condensed tannin-containing Lotus corniculatus and its prediction in vitro using cellulase/hemicellulase enzymes Animal Feed Science Technology, 125, 61-71. doi.org/10.1016/j.anifeedsci.2005.05.012.
  • Sleugh, B., Moore, K.J., George, J.R., Brummer, E.C., 2000. Binary legume-grass mixtures improve forage yield, quality, and seasonal distribution. Agronomy Journal, 92, 24–29. doi:10.2134/agronj2000.92124x.
  • Smit, C., Vandenberghe, C., den Ouden, J., Muller-Sharer, H., 2007. Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia, 152, 265-273. doi 10.1007/s00442-006-0650-6.
  • Soliveres, S., García-Palacios, P., Castillo-Monroy, A.P., Maestre, F.T., Escudero, A., Valladares, F., 2011. Temporal dynamics of herbivory and water availability interactively modulate the outcome of a grass–shrub interaction in a semi-arid ecosystem. Oikos, 120, 710-719. doi: 10.1111/j.1600-0706.2010.18993.x.
  • Sthultz, C.M., Gehring, C.A., Whitham, T.G., 2007. Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semi-arid woodland. New Phytologist 173, 135-145. doi:10.1111/j.1469-8137.2006.01915.x.
  • Sun, Z., Wang, Z., Zhong, Q., Zhou, D., 2014. Seasonal variations in voluntary intake and apparent digestibility of forages in goats grazing on introduced Leymus chinensis pasture. Asian-Australasian Journal of Animal Science, 27(6), 818-824. doi:10.5713/ajas.2013.13626.
  • Trannin, W.S., Urquiaga, S., Guerra, G., Ibijbijen, J., Cadisch, G., 2000. Interspecies competition and N transfer in a tropical grass-legume mixture. Biology and Fertility of Soils, 2(6), 441-448.
  • Teakle, N.L., Flowers, T.J., Real, D., Colmer, T.D., 2007. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl- from the xylem. Journal of Experimental Botany, 58, 2169-2180. doi:org/10.1093/jxb/erm102.
  • Uzun, F., 2010. Mineral element analizi. In: Uzun, F. (Ed). Tarla Bitkilerinde Laboratuvar Analizleri (Uygulama Ders Notu). Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi, Ders Notu No:1, s.44-46. Samsun.
  • Uzun, F., Dönmez, H.B., Ocak, N., 2015. Genetic potential of wild birdsfoot trefoil (Lotus corniculatus L.) seeds collected from different geographical locations regarding to nutrient composition and nutritive value. Agroforestry Systems, 89(6), 963-972. doi:10.1007/s10457-015-9828-4.
  • Uzun, F., Dal, A., Dönmez, H.B., Sürmen, M., Yavuz, T., Özyazıcı, M.A., Çankaya, N., 2016a. Morphological, agronomical, phenological and stand persistence traits of some wild narrowleaf birdsfoot trefoil (Lotus tenuis Waldst.&Kit.) populations, Journal of Agricultural Sciences, 22(2), 152-160.
  • Uzun, F., Ocak, N., Şenel, M.Z., Karadağ, Y., 2016b. The rates of desirable grazing plant species in rangelands: effect of different animal species and grazing pressures. 15th Meeting of the Mediterranean Sub-Network of the FAO-CIHEAM International Network for the Research and Development of Pastures and Fodder Crops, No.114, pp. 83-86, Orestiada, Greece, 12-14 April 2016.
  • Uzun, F., Alay, F., İspirli, K., 2016c. Bartın ili meralarının bazı özellikleri. Türkiye Tarımsal Araştırmalar Dergisi, 3(2), 174-183. doi:10.19159/tutad.54652.
  • Valkov, V.T., Chiurazzi, M., 2016. An In Vitro Procedure for Phenotypic Screening of Growth Parameters and Symbiotic Performances in Lotus corniculatus Cultivars Maintained in Different Nutritional Conditions. Plants, 5(4), 40-51. doi:10.3390/plants5040040.
  • Van der Putten, W.H., Macel, M., Visser, M.E., 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2025-2034. doi:org/10.1098 /rstb.2010.0037.
  • Yulianto, R., Xuan, T.D., Kawamura, K., Lim, J., Yoshitoshi, R., Xinyan, F., Zhe, G., 2016. Abundance frequency of plant species as animal feeds to determine ideal cattle grazing. International Letters of Natural Sciences 58, 70-76. doi:10.18052/www.scipress.com/ILNS.58.70.
  • Zhang, Z., Hu, G., Zhu, J., Ni, J., 2013. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. Journal of Plant Ecology, 6(2), 131-140. doi.org/10.1093/jpe/rts027.

Soil preferences, neighbor plants and feed values of birdsfoot trefoil (Lotus corniculatus L.) and narrowleaf birdsfoot trefoil (Lotus tenuis Waldst. & Kit.) grown in natural flora

Yıl 2018, , 37 - 46, 15.02.2018
https://doi.org/10.7161/omuanajas.309644

Öz

In this study, soil preferences and plant
species in which the they interacts as well as feed values of wild birdsfoot
trefoil (Lotus corniculatus L.) and
narrowleaf birdsfoot trefoil (L tenuis
Waldst. & Kit.) species growing in natural flora of the Black Sea Region
(Turkey) were studied. L. corniculatus
was preferred to soils having higher lime (90.9 vs. 66.4 g kg-1,
P=0.003), pH (7.41 vs. 7.14, P=0.001) and containing lower organic matter (20.0
vs. 26.8 g kg-1, P=0.001) compared to L. tenuis. L. corniculatus was neighbor to 89 different species
(20.2% legume, 22.5% grass and 57.3% others), whereas L. tenuis was neighbor to 61 different species (41.0% legume, 19.7%
grass and 39.3% others). The difference between two species in terms of the
proportions of the neighbor families was significant (
c2=10.814, P=0.004).
Dominant plant species that grow in interaction with these Lotus species were Medicago
lupulina
, Trifolium pratense, Trifolium repens, Cynodon dactylon, Lolium
perenne
and Plantago lanceolata. Dactylis glomerata was also neighbor
with higher frequency to L. corniculatus.
L. tenuis
had higher phosphorus, metabolizable energy and relative feed
value, and lower acid and neutral detergent fiber contents. As a result, in the
artificial pastures establishments or the improvement of natural rangelands,
species mentioned above which grow in harmony in natural environment and
exhibit positive interaction with Lotus
species of studied should be preferred.

Kaynakça

  • Acuña, H., Ortega, F., Seguel, I., Barrientos, L., 2012. Introduction, collection and characterization of Lotus spp. germplasm in Chile. Journal of Environmental Science and Engineering, 1(4), 533-552.
  • Adler, P., Raff, D., Lauenroth, W., 2001. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128(4), 465-479. doi.10.1007/s004420100737.
  • Al-Khayri, J.M., Jain, S.M., Johnson, D.V., 2016. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. 149-201, Springer. doi.10.1007/978-3-319-22518-0_1.
  • Aydin, I., Uzun, F., 2008. Potential decrease of grass tetany risk in rangelands combining N and K fertilization with MgO treatments. European Journal of Agronomy, 29, 33-37. doi.org/10.1016/j.eja.2008.02.003.
  • Callaway, R.M., 2007. Positive Interactions and Interdependence in Plant Communities. Springer, 415 s, Dordrecht, the Netherlands.
  • Callaway, R.M., Kikodze, D., Kikvidze, Z., 2000. Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains.
  • Oikos, 89, 275-282. doi:10.1034/j.1600-0706.2000.890208.x.
  • Callaway, R.M., Kikodze, D., Chiboshvili, M., Khetsuriani, L., 2005. Unpalatable plants protect neighbours from grazing and increase plant community diversity. Ecology, 86, 1856-1862. doi:10.1890/04-0784.
  • Christenhusz, M.J., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217. doi:org/10.11646/phytotaxa.261.3.1.
  • Clua, A., Orsini, H., Beltrano, J., 2009. Incidence of variable flooding period on Lotus tenuis biomass production and leaf senescence. Lotus Newsletter, 39, 13-20.
  • Degtjareva, G.V., Kramina, T.E., Sokoloff, D.D., Samigullin, T.H., Sandral, G., ValiejoRoman, C.M., 2008. New data on nrITS phylogeny of Lotus (Leguminosae, Loteae). Wulfenia, 15, 35-49.
  • Dönmez, H.B., Uzun, F., 2016. Geographical variation in nutrient composition of lotus tenuis (Waldst.&Kit.) populations from seeds collected from different locations. Türkiye Tarımsal Araştırmalar Dergisi, 3(1), 30-36. doi:10.19159/tutad.50527.
  • Dynes, R.A., Henry, D.A., Masters, D.G., 2003. Characterizing forages for ruminant feeding, Asian-Australian. Journal of Animal Science, 16(1), 116-123.
  • Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Sanjuán, J., Ruiz, O.A., 2012. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 182, 121-133. doi:10.1016/j.plantsci.2011.03.016.
  • Escaray, F.J., Passeri, V., Babuin, F.M., Marco, F., Carrasco, P., Damiani, F., Pieckenstain, L.F., Paolocci, F., Ruiz, O.A., 2014. Lotus tenuis x Lotus corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biology, 14, 40. doi:10.1186/1471-2229-14-40.
  • Felderer, B., Boldt-Burisch, K.M., Schneider, B.U., Hüttl, R.F.J., Schulin, R., 2013. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil. Biogeosciences, 10(3), 1737-1749. doi:10.5194/bg-10-1737-2013.
  • Gebrehiwot, L., Beuselinck, P.R., Roberts, C.A., 2002. Seasonal variations in condensed tannin concentration of three species. Agronomy Journal, 94(5), 1059-1065. doi:10.2134/agronj2002.1059.
  • Graham, P.H., Vance, C.P., 2003. Legumes: importance and constraints to greater use. Plant physiology, 131(3), 872-877. doi:10.1104/pp.017004.
  • Howard, K.S., Eldridge, D.J., Soliveres, S., 2012. Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 13(2), 159-168. doi:10.1016/j.baae.2012.02.008.
  • Holzapfel, C., Tielborgerb, K., Paragb, H.A., Kigelc, J., Sternberga, M., 2006. Annual plant–shrub interactions along an aridity gradient. Basic and Applied Ecology, 7, 268–279. doi:10.1016/j.baae.2005.08.003.
  • Kacar, B., 2009. Toprak Analizleri. Nobel Kitabevi, Yayın No:1387, Ankara.
  • Khojasteh, F., Chahouki, M.A.Z., Azarnivand, H., Kikvidze, Z., 2013. Life form and preference can drive spatial relationships among plant species in semi-arid rangelands of middle Iran. The Rangeland Journal, 35(1), 63-69. doi:10.1071/RJ12052.
  • Kikvidze, Z., Pugnaire, F.I., Choler, P., Lortie, C.J., Michalet, R., Callaway, R.M., 2005. Linking patterns and processes in alpine plant communities: a global study. Ecology, 86, 1395-1400. doi:10.1890/04-1926.
  • Llobet, M., Vignolio, O.R., Savé, R., Biel, C., 2012. Above-and below-ground interactions between Lotus tenuis and Cynodon dactylon under different fertilization levels. Canadian Journal of Plant Science, 92(1), 45-53. http://doi/abs/10.4141/cjps2010-002.
  • MGM, 2017. Meteoroloji Genel Müdürlüğü, Klimatoloji Şube Müdürlüğü. İklim sınıflandırmaları. https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari.pdf [Erişim: 14.04.2017].
  • Moniello, G., Infascelli, F., Pinna, W., Camboni, G., 2005. Mineral requirements of dairy sheep. Italian Journal of Animal Science, 4(Supp. 1), 63-74. doi.org/10.4081/ijas.2005.1s.63.
  • Moore, J.E., Undersander, D.J., 2002. Relative forage quality: An alternative to relative feed value and quality index. In Proceedings 13th Annual Florida Ruminant Nutrition Symposium, University of Florida, 16-32.
  • Nyatwere, M., Mkabwa, L.K.M., Zachariah, K.R., 2012. Distribution patterns of plant species around North Mara Gold Mine in Tanzania. International Journal of Agricultural Sciences. 2, 302-312. doi: cabdirect.org/cabdirect/abstract/20123239836.
  • Orcen, N., 2013. Regeneration of bird’s-foot trefoil (Lotus corniculatus L.) native race of Aegean region. International Journal of AgriScience, 2(4), 302-312.
  • Pugnaire, F.I., Armas, C., Maestre, F.T., 2011. Positive plant interactions in the Iberian South-east: mechanisms, environmental gradients, and ecosystem function. Journal of Arid Environments, 75, 1310-1320. doi: 10.1016/j.jaridenv.2011.01.016.
  • Ramírez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., Kemp, P.D., Harvey, T.G., 2005. Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dryland farming conditions. Animal Feed Science Technology, 121, 23-43. doi:10.1016/j.anifeedsci.2005 .02.006.
  • Ramírez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., 2006. Organic matter digestibility of condensed tannin-containing Lotus corniculatus and its prediction in vitro using cellulase/hemicellulase enzymes Animal Feed Science Technology, 125, 61-71. doi.org/10.1016/j.anifeedsci.2005.05.012.
  • Sleugh, B., Moore, K.J., George, J.R., Brummer, E.C., 2000. Binary legume-grass mixtures improve forage yield, quality, and seasonal distribution. Agronomy Journal, 92, 24–29. doi:10.2134/agronj2000.92124x.
  • Smit, C., Vandenberghe, C., den Ouden, J., Muller-Sharer, H., 2007. Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia, 152, 265-273. doi 10.1007/s00442-006-0650-6.
  • Soliveres, S., García-Palacios, P., Castillo-Monroy, A.P., Maestre, F.T., Escudero, A., Valladares, F., 2011. Temporal dynamics of herbivory and water availability interactively modulate the outcome of a grass–shrub interaction in a semi-arid ecosystem. Oikos, 120, 710-719. doi: 10.1111/j.1600-0706.2010.18993.x.
  • Sthultz, C.M., Gehring, C.A., Whitham, T.G., 2007. Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semi-arid woodland. New Phytologist 173, 135-145. doi:10.1111/j.1469-8137.2006.01915.x.
  • Sun, Z., Wang, Z., Zhong, Q., Zhou, D., 2014. Seasonal variations in voluntary intake and apparent digestibility of forages in goats grazing on introduced Leymus chinensis pasture. Asian-Australasian Journal of Animal Science, 27(6), 818-824. doi:10.5713/ajas.2013.13626.
  • Trannin, W.S., Urquiaga, S., Guerra, G., Ibijbijen, J., Cadisch, G., 2000. Interspecies competition and N transfer in a tropical grass-legume mixture. Biology and Fertility of Soils, 2(6), 441-448.
  • Teakle, N.L., Flowers, T.J., Real, D., Colmer, T.D., 2007. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl- from the xylem. Journal of Experimental Botany, 58, 2169-2180. doi:org/10.1093/jxb/erm102.
  • Uzun, F., 2010. Mineral element analizi. In: Uzun, F. (Ed). Tarla Bitkilerinde Laboratuvar Analizleri (Uygulama Ders Notu). Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi, Ders Notu No:1, s.44-46. Samsun.
  • Uzun, F., Dönmez, H.B., Ocak, N., 2015. Genetic potential of wild birdsfoot trefoil (Lotus corniculatus L.) seeds collected from different geographical locations regarding to nutrient composition and nutritive value. Agroforestry Systems, 89(6), 963-972. doi:10.1007/s10457-015-9828-4.
  • Uzun, F., Dal, A., Dönmez, H.B., Sürmen, M., Yavuz, T., Özyazıcı, M.A., Çankaya, N., 2016a. Morphological, agronomical, phenological and stand persistence traits of some wild narrowleaf birdsfoot trefoil (Lotus tenuis Waldst.&Kit.) populations, Journal of Agricultural Sciences, 22(2), 152-160.
  • Uzun, F., Ocak, N., Şenel, M.Z., Karadağ, Y., 2016b. The rates of desirable grazing plant species in rangelands: effect of different animal species and grazing pressures. 15th Meeting of the Mediterranean Sub-Network of the FAO-CIHEAM International Network for the Research and Development of Pastures and Fodder Crops, No.114, pp. 83-86, Orestiada, Greece, 12-14 April 2016.
  • Uzun, F., Alay, F., İspirli, K., 2016c. Bartın ili meralarının bazı özellikleri. Türkiye Tarımsal Araştırmalar Dergisi, 3(2), 174-183. doi:10.19159/tutad.54652.
  • Valkov, V.T., Chiurazzi, M., 2016. An In Vitro Procedure for Phenotypic Screening of Growth Parameters and Symbiotic Performances in Lotus corniculatus Cultivars Maintained in Different Nutritional Conditions. Plants, 5(4), 40-51. doi:10.3390/plants5040040.
  • Van der Putten, W.H., Macel, M., Visser, M.E., 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2025-2034. doi:org/10.1098 /rstb.2010.0037.
  • Yulianto, R., Xuan, T.D., Kawamura, K., Lim, J., Yoshitoshi, R., Xinyan, F., Zhe, G., 2016. Abundance frequency of plant species as animal feeds to determine ideal cattle grazing. International Letters of Natural Sciences 58, 70-76. doi:10.18052/www.scipress.com/ILNS.58.70.
  • Zhang, Z., Hu, G., Zhu, J., Ni, J., 2013. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. Journal of Plant Ecology, 6(2), 131-140. doi.org/10.1093/jpe/rts027.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarla Bitkileri
Yazarlar

Ferat Uzun

Nuh Ocak

Yayımlanma Tarihi 15 Şubat 2018
Kabul Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Uzun, F., & Ocak, N. (2018). Doğal florada kendiliğinden yetişen sarıçiçekli gazal boynuzu (Lotus corniculatus L.) ve dar yapraklı gazal boynuzu (Lotus tenuis Waldst.&Kit.) türlerinin toprak tercihleri, komşu bitkileri ve yem değerleri. Anadolu Tarım Bilimleri Dergisi, 33(1), 37-46. https://doi.org/10.7161/omuanajas.309644
Online ISSN: 1308-8769