Araştırma Makalesi
BibTex RIS Kaynak Göster

Bilecik Şeyh Edebali Üniversitesi Kampüs Topraklarının Bazı Fiziko-Kimyasal ve Mekaniksel Özellikleri ve İşlenebilirlikleri

Yıl 2021, , 146 - 161, 15.02.2021
https://doi.org/10.7161/omuanajas.845696

Öz

Bu çalışmada, Bilecik Şeyh Edebali Üniversitesi Kampüs alanında yer alan toprak serilerinin bazı fiziko-kimyasal ve mekaniksel özellikleri ve işlenebilirlikleri için uygun nem düzeyleri belirlenmiştir. Gülümbe ve Aşağıköy toprak serilerinden 0-20 cm derinlikten 20 farklı noktadan toprak örnekleri alınmıştır. Gülümbe serisindeki topraklar killi (C) ve killi tın (CL) bünyeli, ortalama hacim ağırlığı 1.05 g cm-3, doygun hidrolik iletkenlik değeri 0.66 cm h-1, hafif alkalin (pH=7.74), orta düzeyde organik madde (%2.01), yüksek düzeyde kireç (%17.08), yetersiz düzeyde elverisli fosfor (1.92 kg P2O5 da-1), yeterli düzeyde elverişli potasyum (88.54 kg K2O da-1), katyon değişim kapasitesi 37.71 cmol kg-1, yetersiz düzeyde elverişli Fe (2.35 mg kg-1) ve Mn (5.18 mg kg-1), yeterli düzeyde elverişli Zn (1.81 mg kg-1) ve Cu (1.00 mg kg-1) içermektedir. Aşağıköy serisindeki topraklar tınlı (L) ve kumlu killi tın (SCL) tekstürlü, ortalama hacim ağırlığı 1.31 g cm-3, doygun hidrolik iletkenlik değeri 2.32 cm h-1, hafif alkalin (pH=7.74), düşük düzeyde organik madde (1.81%), orta düzeyde kireç (6.75%), yüksek düzeyde elverişli fosfor (18.76 kg P2O5 da-1), yeterli düzeyde elverişli potasyum (133.94 kg K2O da-1), katyon değişim kapasitesi 25.26 cmol kg-1, yeterli düzeyde elverişli Fe (5.67 mg kg-1) ve Cu (2.57 mg kg-1), yetersiz düzeyde elverişli Mn (3.21 mg kg-1) ve Zn (0.66 mg kg-1) içermektedir. En yüksek likit limit (LL) (%68.17) ve plastik limit (PL) (%31.49) değerleri en yüksek kil içeriğine sahip olan Gülümbe serisinde belirlenirken, en düşük LL (%46.50) ve PL (%24.80) değerleri en düşük kil içeriğine sahip olan Aşağıköy serisinde belirlenmiştir. Gülümbe and Aşağıköy serilerinde toprakların plastiklik indeksi (PI) sırasıyla %32.73 - 40.26 arasında olup ortalama %36.17 ve %21.70 - 28.0 arasında olup ortalama %24.73’tür. LL ve PI değerlerine göre, Gülümbe serisine ait topraklar “fazla plastik inorganik killer” grubuna ve Aşağıköy serisine ait topraklar ise “orta derecede plastik inorganik killer” grubunda sınıflandırılmıştır. Toprakların LL değerleri kil (0.88**), kum (-0.71*), PL (0.75**), PI (0.89**), kıvam ideksi (0.57*), organik madde (0.62*), katyon değişim kapasitesi (0.75**), elverişli potasyum (0.54*) ile önemli korelasyonlar göstermiştir. Gülümbe ve Aşağıköy serilerindeki toprakların optimum işlenmeleri için en uygun nem düzeyinin üst ve alt sınırı sırasıyla %29.15 - 23.50 ve %24.95 - 21.24 olarak belirlenmiştir. Bilecik Şeyh Edebali Üniversitesi Kampüs alanındaki toprakların kıvam indeksi değerlerinin 0.75 ile 1.00 arasında olması nedeniyle toprak strüktüründe bozulmalara neden olmadan tarla kapasitesindeki nem düzeylerinde işlenmelerinin uygun olacağı belirlenmiştir.

Kaynakça

  • Ahuja, L.R., Naney, J.W., Green, R.E., Nielsen, D.R., 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of America Journal, 48: 699-702. https://doi.org/10.2136/sssaj198 4.03615995004800040001x.
  • Atanur, A., 1973. Kireç stabilizasyonu ve yol yapımındaki tatbikatı. Bayın. Bak. Karayolları G.M. Yayın No: 208. Bahtiyar, M., 1996. Yerleşim Yeri Katı Atıklarının Tarımda Değerlendirmesi. Trakya`da Sanayileşme ve Çevre Sempozyumu, Çorlu, 3-6 Ocak 1996, s. 384-390.
  • Ball, B.C., Campbell, D.J., Hunter, E.A., 2000. Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Tillage Research 57, 83–91.
  • Baumgartl, T., 2002. Atterberg Limits. Encyc. of Soil Sci. Marcel Dekker Inc. pp:89-93.
  • Berry, W., Ketterings, Q., Antes, S., Page, S., Russell Anelli, J., Rao, R., DeGloria, S., 2007. Soil Texture. Agronomy Fact Sheet Series, Fact Sheet 29. Cornell University Cooperative Extension. Available at [Access date: 19.08.2018]: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet29.pdf.
  • Black, C.A., 1965. Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling, Agronomy Monograph 9.1, American Society of Agronomy (ASA), Soil Science Society of America Journal, Madison, Wisconsin, USA.
  • Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, 277(1): 1-18.
  • Brady, N.C., 1990. The nature and properties of soils, Macmillan Publishing Company Incorporated.
  • Buczko, U., Bens, O., 2006. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Sci. Soc. Am. J. 70: 718-727.
  • Campbell, D.J., Stafford, J.V., Blackwell, P.S., 1980. The plastic limit, as determined by the drop-cone test, in relation to the mechanical behavior of soil. Journal of Soil Science. 31(1), pp.11-24.
  • Canasveras, J.C., Barron, V., Del Campillo, M.C., Torrent, J., Gomez, J.A., 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158: 78-84.
  • Canbolat, M.Y., Öztaş, T., 1997. Toprağın Kıvam Limitleri Üzerine Etki Eden Bazı Faktörler ve Kıvam Limitlerinin Tarımsal Yönden Değerlendirilmesi. Atatürk Üni. Ziraat Fak. Dergisi. 28(1): 120-129.
  • Chris Sheba M., Devaki, R., Uma, R.N., 2019. Case study on the soil physical parameters disparity and NPK concentrations in regions found in and around Pachapalayam, Coimbatore, Tamil Nadu. 5th International Conference on Man Machine Systems. IOP Conf. Series: Materials Science and Engineering 705:012052. IOP Publishing. doi:10.1088/1757-899X/705/1/012052.
  • Cooper, J., 2001. Soil structure, management and effect on nutrient availability and crop production. Organic Producers Conference, Facing Current and Future Challenges, Newcastle University.
  • Demir, Z., 2020. Some Physical and Mechanical Properties and Workability of Soils in a Sarayköy Research and Application Station. IV. International Eurasian Agriculture And Natural Sciences Congress, 30-31 October 2020, pp. 341-348.
  • Demiralay, I., 1993. Soil Physical Analysis. Atatürk University, Faculty of Agriculture Publication, Erzurum-Turkey, 143:131. Demiralay, İ., Güresinli, Y.Z., 1979. Erzurum Ovası Topraklarının Kıvam Limitleri ve Sıkışabilirliği Üzerinde bir Araştırma. Atatürk Üni. Zir. Fak. Der. 10(1-2): 77-93.
  • Dexter, A.R., Bird, N.R.A. 2001. Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil Til.Res. 57: 203-212.
  • Dixon, J.B., Weed, S.B., (eds) (1989). Minerals in soil environment. SSSA book series no. 1. SSSA, Madison. Eissa, M.A., Nafady, M., Ragheb, H., Attia, K., 2010. Management of phosphorus fertigation for drip irrigated wheat under sandy calcareous soils. World Journal of Agricultural Sciences, 6(5): 510-516.
  • FAO, 2006. FAO Fertilizer and Plant Nutrition Bulletin-16. Plant nutrition for food security. A guide for integrated nutrient management. Viale delle Terme di Caracalla, 00100 Rome, Italy by R.N. Roy, A. Finck, G.J. Blair, H.L.S. Tandon. Soil fertility and crop production- Chapter 4. pp: 43.
  • Förstner, U., 1995. Land contamination by metals-global scope and magnitude of problem, in Metal Speciation and Contamination of Soil, H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers, Eds., pp. 1-33, CRC Press, Inc., Boca Raton, FL, USA.
  • Garcia, C., Nannipieri, P., Hernandez, T., 2018. Chapter 9 - The Future of Soil Carbon, in The Future of Soil Carbon: Its Conservation and Formation,Editor(s): Carlos Garcia, Paolo Nannipieri, Teresa Hernandez, Academic Press, pp. 239-267, ISBN 9780128116876, https://doi.org/10.1016/B978-0-12-811687-6.00009-2.
  • Garcia, C., Nannipieri, P., Hernandez, T., 2018. Chapter 9-The Future of Soil Carbon, in The Future of Soil Carbon: Its Conservation and Formation,Editor(s): Carlos Garcia, Paolo Nannipieri, Teresa Hernandez, Academic Press, Pages 239-267, ISBN 9780128116876, https://doi.org/10.1016/B978-0-12-811687-6.00009-2.
  • Gillman, G.P., 2007. An analytical tool for understanding the properties and behaviour of variable charge soils, Soil Research, 45(2): 83-90.
  • Gülser, C., Candemir, F., 2004. Changes In Atterberg Limits With Different Organic Waste Applications. Natural Resource Management for Sustainable Development, International Soil Congress, SSST, Atatürk University, Turkey.
  • Gülser, C., İç, S., Candemir, F., Demir, Z., 2008. Effects of rice husk application on mechanical properties and cultivation of a clay soil with and without planting. International Meeting on Soil Fertility Land Manag. & Agroclimatology, p:217-223, 29 Oct. -01 Nov., Kuşadası, Turkey.
  • Gülser, C., Candemir, F., 2006. Some mechanical properties and workability of Ondokuz Mayıs University Kurupelit Campus Soils. J.of Fac.of Agric. OMU, 2006, 21 (2): 213-217.
  • Gülser, C, Selvi, Ç., İç, S., 2009. Some Mechanical Properties and Workability of Soils in a Karadeniz Agricultural Research Institute Field. J Agricultural Machinery Sci., 5(4): 423-428.
  • Gülser, C, Dengiz, O., İç, S., Demir, Z., Selvi, K.Ç., 2010. Some mechanical properties and workability of Aşağı Aksu Basin soils. In: Proceedings of the International Soil Science Congress on Management of Natural Resources to Sustain Soil Health and Quality. R.Kizilkaya, C.Gulser, O.Dengiz (eds.), May 26-28, 2010. Ondokuz Mayis University, Samsun, Turkey. pp. 82-87.
  • Hartsock, N.J., Mueller, T.G., Thomas, G.W., Barnhisel, R.I.,Wells, K.L., Shearer, S.A., 2000. Soil electrical conductivity variability. In International conference on precision agriculture. (Vol. 5).
  • He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., Wysocki, D., 2012. Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma. 185: 1861217.
  • Hillel, D., 1982. Introduction to Soil Phyics. Academic Press Limited, p. 14-28. Oval Road, London.
  • Jackson, M.L., 1958. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.
  • Jiao, Y., Xu, Z., Zhao, J., 2009. Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia. Acta Ecologica Sinica, 29: 150-154.
  • Jumikis, A.R., 1984. Soil Mechanics. Robert E. Krieger Publishing Company, Inc., Malabar, Florida.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, USA.
  • Kacar, B., 1994. Chemical Analysis of Plant and Soil-III. Soil Analysis, 705. Ankara University Faculty of Agriculture, Ankara, Turkey. No.3.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution In: Methods of Soil Analysis, 2nd Edn. Part I. (Ed.: A. Klute) ASA, Madison, WI. p. 425-442.
  • Kezdi, A., 1969. Handbuch der Bodenmechanik. Band 1, Bodenphysik, 259 pp., Band 3, Bodenmechanisches Versuchswesen, 1st edn. Berlin/Kiado Budapest: VEB Verlag für Bauwesen, p. 274.
  • Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover. Functional Plant Biology 30, 207-222.
  • Lal, R., Shukla, M.K., 2004. Principles of Soil Physics. New York, NY, USA: Marcel Dekker Inc.
  • Leo, W.M., 1963. A rapid method for estimating structural stability of soils. Soil Science, 96:342-346.
  • Lindsay, W.L., Norwell, W.A., 1969. Development of DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Amer. Proc., 33: 49-54.
  • Mbagwu, J.S.C., Abeh, O.G., 1998. Prediction of Engineering Properties of Tropical Soils Using Intrinsic Pedological Parameters. Soil Sci., 163(2): 93-102.
  • Sönmez, K., Öztaş, T. 1988. Iğdır Ovası Yüzey Topraklarının Bazı Fiziksel ve Kimyasal Özellikleri İle Mekaniksel Özellikleri Mekaniksel Özellikleri Arasındaki İlişkiler. Atatürk Üni. Ziraat Fak. Dergisi, 19(1-4): 145-153.
  • Mueller, L., Schindler, U., Fausey, N.R., Lal, R., 2003. Comparison of methods for estimating maximum soil water content for optimum workability. Soil Till. Res. 72: 9-20.
  • Munsuz, N., 1985. Toprak mekaniği ve teknolojisi. Ankara Üniversitesi, Ziraat Fak. Yayınları: 922, Ders Kitabı:260, Ankara.
  • Niewczas, J., Witkowska-Walczak, B., 2003. Index of soil aggregate stability as linear function value of transition matrix elements. Soil Till. Res. 70 (2): 121-130.
  • Nyéki, A., Milics, G., Kovács, A.J., Neményi, M., 2017. Effects of Soil Compaction on Cereal Yield. Cereal Research Communications, 45(1):1-22.
  • Oades, J.M. 1989. An introduction to organic matter in mineral soils. p. 89-159. In J.B. Dixon and S.B. Weed (ed.) Minerals in soil environments. 2nd ed. SSSA, Madison, WI.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, Vol 939 (p.19). Washington D.C., United States Department of Agriculture. U.S. Government Printing Office.
  • Ouhadi, V.R., Goodarzi, A.R., 2007. Factors impacting the electro conductivity variatons of clayey soils. Iran. J. Sci. Technol. Trans. B: Eng. 31: 109-121.
  • Özdemir, N., 1998. Toprak Fiziği. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Yayınları, No: 30, Samsun.
  • Parfitt, R.L., Eason, C.T., Morgan, A.J., Wright, G.R., Burke, C.M., 1994. The fate of sodium monofluoroacetate (1080) in soil and water. Pages 59-66 in Seawright, A.A., Eason, C.T. editors. Proceedings of the Science Workshop on 1080, 12-14 .
  • December 1993, Christchurch, New Zealand. Royal Society of New Zealand, Wellington.
  • Petelkau, H., 1984. Auswirkungen von Schadverdichtungen auf Bodenigenschaften und Pflanzenertrag sowie Massnahmen zu ihrer Minderung. Grundlagen und Verfahren der rationellen Bodenbearbeitung und Erschliessung des Unterbodens fuer Pflanzen. Akademia der Landwirtschaftswissenschaften der DDR, Tagungsbericht Nr. 227: 25-34.
  • Phogat, V.K., Tomar, V.S., Dahiya, R., 2015. Soil physical properties. In: Rattan, R.K., Katyal, J.C., Dwivedi, B.S., Sarkar, A.K., Bhattachatyya, Tapan, Tarafdar, J.C. (Eds.), Soil Science: An Introduction. Indian Society of Soil Science, India, pp. 135-171.
  • Pirmoradian, N., Sepaskhah, A.R., Hajabbasi, M.A., 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosyst. Eng. 90(2): 227-234.
  • Rice, C.W., 2006. Organic matter and nutrient dynamics. Encyclopedia of Soil Science, 2: 1180-1183.
  • Richards, L.A., 1954. Diagnosis and Improvement of Saline and Alkaline Soils. United States Salinity Laboratory Staff. United States Department of Agriculture, 60:160.
  • Rieuwerts, J.S., Thornton, I., Farago, M.E., Ashmore, M.R., 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals, Chemical Speciation & Bioavailability, 10(2): 61-75.
  • Rounsevell, M.D.A., 1993. A review of soil workability models and their limitations in temperate regions. Soil Manage. 9: 15-20.
  • Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., Miransari, M., 2010 Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria, Australian Journal of Crop Science, 4(5): 330-334.
  • Sangamner, N.A., Malpani Commerce, D.J., Sarda, B.N., 2012 Evaluation of soil fertility status from Sangamner area, Ahmednagar District, Maharashtra, India. RASAYAN. J. Chem, 5(3): 398-406.
  • Sharma, B., Bora, P. K., 2003. Plastic limit, liquid limit and undrained shear strength of soil – reappraisal. J. Geotechnical and Geoenvironmental Engineering, ASCE, 129(8): 774-777.
  • Sharma, R.P., Singh, M., Sharma, J.P., 2003. Correlation studies on micronutrients vis-à-vis soil properties in some soils of Nagpur district in semi- arid region of Rajashan. Journal of the Indian Society of Soil Science, 51: 522-527.
  • Sillanpää, M., 1990. Micronutrient assessment at country level: An international study. FAO Soils Bulletin 63. Food and Agricultural Organization of the United Nations, Rome.
  • Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79: 7-31.
  • Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79: 7-31.
  • Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Science Society of America Journal 64: 681-689.
  • Skempton, A.W., 1953. The colloidal activity of clays. In: Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering, pp. 57-61.
  • Soane, B.D., Campbell, D.J., Herkes, S.M., 1972. The characterization of one Scottish arable topsoils by agricultural and engineering methods. Journal of Soil Science, 23: 93-104.
  • Soil Quality Staff., 1999. Soil Quality Test Kit Guide. Agric. Res. Serv., Natural Resource Conserv. Serv., Soil Quality Inst., USDA.
  • Soil Survey Staff., 1993. National Soil Survey Handbook. USDA-SCS, Soil Survey Division. U.S. Gov. Print. Office, Washington, DC. Section 618.
  • Soil Survey Staff., 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, version 5.0. Burt R. et al. (eds). U.S. Department of Agriculture, Natural Resources Conservation Service, p. 279-281.
  • Tümsavaş, Z., 2003. Bursa İli Vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 17(2): 9-21.
  • Tüzüner, A., 1990. Soil and water analysis laboratory manual. Ministry of Agriculture, Forestry and Rural Affairs, General Directorate of Rural Services, Ankara, Turkey.
  • US Salinity Lab. Staff., 1954. Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60, Washington, DC: U. S. Government Printing Office.
  • USDA, 1987. Soil Mechanics Level I. Module 3 - USDA Textural Soil Classification. Study Guide., Stillwater, OK, USA: USDA, Soil Conservation Service.
  • Ülgen, N., Yurtsever, N., 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, s.230, Ankara.

Some Physico-Chemical and Mechanical Properties and Workability of Bilecik Şeyh Edebali University Campus Soils

Yıl 2021, , 146 - 161, 15.02.2021
https://doi.org/10.7161/omuanajas.845696

Öz

In this study, some physico-chemical and mechanical properties and appropriate moisture levels for workability of soil series in Bilecik Şeyh Edebali University Campus area in Turkey were determined. Soil samples were taken from 0 - 20 cm depth of 20 different points in Gülümbe and Aşağıköy series. Soils in the Gülümbe were clay (C) and clay loam (CL) in texture with a mean bulk density of 1.05 g cm-3, saturated hydraulic conductivity of 0.66 cm h-1, slightly alkaline (pH=7.74), medium soil organic matter (SOM) (2.01%), high lime (17.08%), insufficient available phosphorus (1.92 kg P2O5 da-1), sufficient available potassium (88.54 kg K2O da-1), cation exchange capacity (CEC) of 37.71 cmol kg-1, insufficient available Fe (2.35 mg kg-1) and available Mn (5.18 mg kg-1), sufficient available Zn (1.81 mg kg-1) and available Cu (1.00 mg kg-1) contents. Soils in the Aşağıköy were loamy (L) and sand-clay-loam (SCL) in texture with a bulk density of 1.31 g cm-3, saturated hydraulic conductivity of 2.32 cm h-1, slightly alkaline (pH=7.74), low organic matter (1.81%), medium lime (6.75%), high available phosphorus (18.76 kg P2O5 da-1), sufficient available potassium (133.94 kg K2O da-1), CEC of 25.26 cmol kg-1, sufficient available Fe (5.67 mg kg-1) and available Cu (2.57 mg kg-1), insufficient available Mn (3.21 mg kg-1) and available Zn (0.66 mg kg-1) contents. While the highest liquid limit (LL) (68.17%) and plastic limit (PL) (31.49%) values were determined in Gülümbe series with the highest clay content and the lowest LL (46.50%) and PL (24.80%) values were in Aşağıköy series with the lowest clay content. Plasticity index (PI) of the soils in Gülümbe and Aşağıköy series respectively varied between 32.73 - 40.26% with a mean of 36.17% and between 21.70 - 28.0% with a mean of 24.73%. Based on LL and PI values, Gülümbe soils were classified as “highly plastic inorganic clays” and Aşağıköy soils were classified as “moderately plastic inorganic clays”. LL values of the soils had significant correlations with clay (0.88**), sand (-0.71*), PL (0.75**), PI (0.89**), consistency index (0.57*), SOM (0.62*), CEC (0.75**) and available K2O (0.54*). The upper and lower moisture limits for optimum tillage were recommended as 29.15 - 23.50% for Gülümbe series and as 24.95 - 21.24% for Aşağıköy series. It was concluded that campus soils could be cultivated at field capacity without any structural deformations because of the consistency index values were between 0.75 - 1.00.

Teşekkür

The authors would like to thank the Soil Fertilizer and Water Resources Central Research Institute and Prof. Dr. Abdullah Baran and Çağla Temiz (PhD student) of Ankara University Agricultural Faculty for providing the facilities and working environment for this study.

Kaynakça

  • Ahuja, L.R., Naney, J.W., Green, R.E., Nielsen, D.R., 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of America Journal, 48: 699-702. https://doi.org/10.2136/sssaj198 4.03615995004800040001x.
  • Atanur, A., 1973. Kireç stabilizasyonu ve yol yapımındaki tatbikatı. Bayın. Bak. Karayolları G.M. Yayın No: 208. Bahtiyar, M., 1996. Yerleşim Yeri Katı Atıklarının Tarımda Değerlendirmesi. Trakya`da Sanayileşme ve Çevre Sempozyumu, Çorlu, 3-6 Ocak 1996, s. 384-390.
  • Ball, B.C., Campbell, D.J., Hunter, E.A., 2000. Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Tillage Research 57, 83–91.
  • Baumgartl, T., 2002. Atterberg Limits. Encyc. of Soil Sci. Marcel Dekker Inc. pp:89-93.
  • Berry, W., Ketterings, Q., Antes, S., Page, S., Russell Anelli, J., Rao, R., DeGloria, S., 2007. Soil Texture. Agronomy Fact Sheet Series, Fact Sheet 29. Cornell University Cooperative Extension. Available at [Access date: 19.08.2018]: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet29.pdf.
  • Black, C.A., 1965. Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling, Agronomy Monograph 9.1, American Society of Agronomy (ASA), Soil Science Society of America Journal, Madison, Wisconsin, USA.
  • Bradl, H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, 277(1): 1-18.
  • Brady, N.C., 1990. The nature and properties of soils, Macmillan Publishing Company Incorporated.
  • Buczko, U., Bens, O., 2006. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Sci. Soc. Am. J. 70: 718-727.
  • Campbell, D.J., Stafford, J.V., Blackwell, P.S., 1980. The plastic limit, as determined by the drop-cone test, in relation to the mechanical behavior of soil. Journal of Soil Science. 31(1), pp.11-24.
  • Canasveras, J.C., Barron, V., Del Campillo, M.C., Torrent, J., Gomez, J.A., 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158: 78-84.
  • Canbolat, M.Y., Öztaş, T., 1997. Toprağın Kıvam Limitleri Üzerine Etki Eden Bazı Faktörler ve Kıvam Limitlerinin Tarımsal Yönden Değerlendirilmesi. Atatürk Üni. Ziraat Fak. Dergisi. 28(1): 120-129.
  • Chris Sheba M., Devaki, R., Uma, R.N., 2019. Case study on the soil physical parameters disparity and NPK concentrations in regions found in and around Pachapalayam, Coimbatore, Tamil Nadu. 5th International Conference on Man Machine Systems. IOP Conf. Series: Materials Science and Engineering 705:012052. IOP Publishing. doi:10.1088/1757-899X/705/1/012052.
  • Cooper, J., 2001. Soil structure, management and effect on nutrient availability and crop production. Organic Producers Conference, Facing Current and Future Challenges, Newcastle University.
  • Demir, Z., 2020. Some Physical and Mechanical Properties and Workability of Soils in a Sarayköy Research and Application Station. IV. International Eurasian Agriculture And Natural Sciences Congress, 30-31 October 2020, pp. 341-348.
  • Demiralay, I., 1993. Soil Physical Analysis. Atatürk University, Faculty of Agriculture Publication, Erzurum-Turkey, 143:131. Demiralay, İ., Güresinli, Y.Z., 1979. Erzurum Ovası Topraklarının Kıvam Limitleri ve Sıkışabilirliği Üzerinde bir Araştırma. Atatürk Üni. Zir. Fak. Der. 10(1-2): 77-93.
  • Dexter, A.R., Bird, N.R.A. 2001. Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil Til.Res. 57: 203-212.
  • Dixon, J.B., Weed, S.B., (eds) (1989). Minerals in soil environment. SSSA book series no. 1. SSSA, Madison. Eissa, M.A., Nafady, M., Ragheb, H., Attia, K., 2010. Management of phosphorus fertigation for drip irrigated wheat under sandy calcareous soils. World Journal of Agricultural Sciences, 6(5): 510-516.
  • FAO, 2006. FAO Fertilizer and Plant Nutrition Bulletin-16. Plant nutrition for food security. A guide for integrated nutrient management. Viale delle Terme di Caracalla, 00100 Rome, Italy by R.N. Roy, A. Finck, G.J. Blair, H.L.S. Tandon. Soil fertility and crop production- Chapter 4. pp: 43.
  • Förstner, U., 1995. Land contamination by metals-global scope and magnitude of problem, in Metal Speciation and Contamination of Soil, H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers, Eds., pp. 1-33, CRC Press, Inc., Boca Raton, FL, USA.
  • Garcia, C., Nannipieri, P., Hernandez, T., 2018. Chapter 9 - The Future of Soil Carbon, in The Future of Soil Carbon: Its Conservation and Formation,Editor(s): Carlos Garcia, Paolo Nannipieri, Teresa Hernandez, Academic Press, pp. 239-267, ISBN 9780128116876, https://doi.org/10.1016/B978-0-12-811687-6.00009-2.
  • Garcia, C., Nannipieri, P., Hernandez, T., 2018. Chapter 9-The Future of Soil Carbon, in The Future of Soil Carbon: Its Conservation and Formation,Editor(s): Carlos Garcia, Paolo Nannipieri, Teresa Hernandez, Academic Press, Pages 239-267, ISBN 9780128116876, https://doi.org/10.1016/B978-0-12-811687-6.00009-2.
  • Gillman, G.P., 2007. An analytical tool for understanding the properties and behaviour of variable charge soils, Soil Research, 45(2): 83-90.
  • Gülser, C., Candemir, F., 2004. Changes In Atterberg Limits With Different Organic Waste Applications. Natural Resource Management for Sustainable Development, International Soil Congress, SSST, Atatürk University, Turkey.
  • Gülser, C., İç, S., Candemir, F., Demir, Z., 2008. Effects of rice husk application on mechanical properties and cultivation of a clay soil with and without planting. International Meeting on Soil Fertility Land Manag. & Agroclimatology, p:217-223, 29 Oct. -01 Nov., Kuşadası, Turkey.
  • Gülser, C., Candemir, F., 2006. Some mechanical properties and workability of Ondokuz Mayıs University Kurupelit Campus Soils. J.of Fac.of Agric. OMU, 2006, 21 (2): 213-217.
  • Gülser, C, Selvi, Ç., İç, S., 2009. Some Mechanical Properties and Workability of Soils in a Karadeniz Agricultural Research Institute Field. J Agricultural Machinery Sci., 5(4): 423-428.
  • Gülser, C, Dengiz, O., İç, S., Demir, Z., Selvi, K.Ç., 2010. Some mechanical properties and workability of Aşağı Aksu Basin soils. In: Proceedings of the International Soil Science Congress on Management of Natural Resources to Sustain Soil Health and Quality. R.Kizilkaya, C.Gulser, O.Dengiz (eds.), May 26-28, 2010. Ondokuz Mayis University, Samsun, Turkey. pp. 82-87.
  • Hartsock, N.J., Mueller, T.G., Thomas, G.W., Barnhisel, R.I.,Wells, K.L., Shearer, S.A., 2000. Soil electrical conductivity variability. In International conference on precision agriculture. (Vol. 5).
  • He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., Wysocki, D., 2012. Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma. 185: 1861217.
  • Hillel, D., 1982. Introduction to Soil Phyics. Academic Press Limited, p. 14-28. Oval Road, London.
  • Jackson, M.L., 1958. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.
  • Jiao, Y., Xu, Z., Zhao, J., 2009. Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia. Acta Ecologica Sinica, 29: 150-154.
  • Jumikis, A.R., 1984. Soil Mechanics. Robert E. Krieger Publishing Company, Inc., Malabar, Florida.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, USA.
  • Kacar, B., 1994. Chemical Analysis of Plant and Soil-III. Soil Analysis, 705. Ankara University Faculty of Agriculture, Ankara, Turkey. No.3.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution In: Methods of Soil Analysis, 2nd Edn. Part I. (Ed.: A. Klute) ASA, Madison, WI. p. 425-442.
  • Kezdi, A., 1969. Handbuch der Bodenmechanik. Band 1, Bodenphysik, 259 pp., Band 3, Bodenmechanisches Versuchswesen, 1st edn. Berlin/Kiado Budapest: VEB Verlag für Bauwesen, p. 274.
  • Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover. Functional Plant Biology 30, 207-222.
  • Lal, R., Shukla, M.K., 2004. Principles of Soil Physics. New York, NY, USA: Marcel Dekker Inc.
  • Leo, W.M., 1963. A rapid method for estimating structural stability of soils. Soil Science, 96:342-346.
  • Lindsay, W.L., Norwell, W.A., 1969. Development of DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Amer. Proc., 33: 49-54.
  • Mbagwu, J.S.C., Abeh, O.G., 1998. Prediction of Engineering Properties of Tropical Soils Using Intrinsic Pedological Parameters. Soil Sci., 163(2): 93-102.
  • Sönmez, K., Öztaş, T. 1988. Iğdır Ovası Yüzey Topraklarının Bazı Fiziksel ve Kimyasal Özellikleri İle Mekaniksel Özellikleri Mekaniksel Özellikleri Arasındaki İlişkiler. Atatürk Üni. Ziraat Fak. Dergisi, 19(1-4): 145-153.
  • Mueller, L., Schindler, U., Fausey, N.R., Lal, R., 2003. Comparison of methods for estimating maximum soil water content for optimum workability. Soil Till. Res. 72: 9-20.
  • Munsuz, N., 1985. Toprak mekaniği ve teknolojisi. Ankara Üniversitesi, Ziraat Fak. Yayınları: 922, Ders Kitabı:260, Ankara.
  • Niewczas, J., Witkowska-Walczak, B., 2003. Index of soil aggregate stability as linear function value of transition matrix elements. Soil Till. Res. 70 (2): 121-130.
  • Nyéki, A., Milics, G., Kovács, A.J., Neményi, M., 2017. Effects of Soil Compaction on Cereal Yield. Cereal Research Communications, 45(1):1-22.
  • Oades, J.M. 1989. An introduction to organic matter in mineral soils. p. 89-159. In J.B. Dixon and S.B. Weed (ed.) Minerals in soil environments. 2nd ed. SSSA, Madison, WI.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, Vol 939 (p.19). Washington D.C., United States Department of Agriculture. U.S. Government Printing Office.
  • Ouhadi, V.R., Goodarzi, A.R., 2007. Factors impacting the electro conductivity variatons of clayey soils. Iran. J. Sci. Technol. Trans. B: Eng. 31: 109-121.
  • Özdemir, N., 1998. Toprak Fiziği. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Yayınları, No: 30, Samsun.
  • Parfitt, R.L., Eason, C.T., Morgan, A.J., Wright, G.R., Burke, C.M., 1994. The fate of sodium monofluoroacetate (1080) in soil and water. Pages 59-66 in Seawright, A.A., Eason, C.T. editors. Proceedings of the Science Workshop on 1080, 12-14 .
  • December 1993, Christchurch, New Zealand. Royal Society of New Zealand, Wellington.
  • Petelkau, H., 1984. Auswirkungen von Schadverdichtungen auf Bodenigenschaften und Pflanzenertrag sowie Massnahmen zu ihrer Minderung. Grundlagen und Verfahren der rationellen Bodenbearbeitung und Erschliessung des Unterbodens fuer Pflanzen. Akademia der Landwirtschaftswissenschaften der DDR, Tagungsbericht Nr. 227: 25-34.
  • Phogat, V.K., Tomar, V.S., Dahiya, R., 2015. Soil physical properties. In: Rattan, R.K., Katyal, J.C., Dwivedi, B.S., Sarkar, A.K., Bhattachatyya, Tapan, Tarafdar, J.C. (Eds.), Soil Science: An Introduction. Indian Society of Soil Science, India, pp. 135-171.
  • Pirmoradian, N., Sepaskhah, A.R., Hajabbasi, M.A., 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosyst. Eng. 90(2): 227-234.
  • Rice, C.W., 2006. Organic matter and nutrient dynamics. Encyclopedia of Soil Science, 2: 1180-1183.
  • Richards, L.A., 1954. Diagnosis and Improvement of Saline and Alkaline Soils. United States Salinity Laboratory Staff. United States Department of Agriculture, 60:160.
  • Rieuwerts, J.S., Thornton, I., Farago, M.E., Ashmore, M.R., 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals, Chemical Speciation & Bioavailability, 10(2): 61-75.
  • Rounsevell, M.D.A., 1993. A review of soil workability models and their limitations in temperate regions. Soil Manage. 9: 15-20.
  • Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., Miransari, M., 2010 Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria, Australian Journal of Crop Science, 4(5): 330-334.
  • Sangamner, N.A., Malpani Commerce, D.J., Sarda, B.N., 2012 Evaluation of soil fertility status from Sangamner area, Ahmednagar District, Maharashtra, India. RASAYAN. J. Chem, 5(3): 398-406.
  • Sharma, B., Bora, P. K., 2003. Plastic limit, liquid limit and undrained shear strength of soil – reappraisal. J. Geotechnical and Geoenvironmental Engineering, ASCE, 129(8): 774-777.
  • Sharma, R.P., Singh, M., Sharma, J.P., 2003. Correlation studies on micronutrients vis-à-vis soil properties in some soils of Nagpur district in semi- arid region of Rajashan. Journal of the Indian Society of Soil Science, 51: 522-527.
  • Sillanpää, M., 1990. Micronutrient assessment at country level: An international study. FAO Soils Bulletin 63. Food and Agricultural Organization of the United Nations, Rome.
  • Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79: 7-31.
  • Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79: 7-31.
  • Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Science Society of America Journal 64: 681-689.
  • Skempton, A.W., 1953. The colloidal activity of clays. In: Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering, pp. 57-61.
  • Soane, B.D., Campbell, D.J., Herkes, S.M., 1972. The characterization of one Scottish arable topsoils by agricultural and engineering methods. Journal of Soil Science, 23: 93-104.
  • Soil Quality Staff., 1999. Soil Quality Test Kit Guide. Agric. Res. Serv., Natural Resource Conserv. Serv., Soil Quality Inst., USDA.
  • Soil Survey Staff., 1993. National Soil Survey Handbook. USDA-SCS, Soil Survey Division. U.S. Gov. Print. Office, Washington, DC. Section 618.
  • Soil Survey Staff., 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, version 5.0. Burt R. et al. (eds). U.S. Department of Agriculture, Natural Resources Conservation Service, p. 279-281.
  • Tümsavaş, Z., 2003. Bursa İli Vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 17(2): 9-21.
  • Tüzüner, A., 1990. Soil and water analysis laboratory manual. Ministry of Agriculture, Forestry and Rural Affairs, General Directorate of Rural Services, Ankara, Turkey.
  • US Salinity Lab. Staff., 1954. Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60, Washington, DC: U. S. Government Printing Office.
  • USDA, 1987. Soil Mechanics Level I. Module 3 - USDA Textural Soil Classification. Study Guide., Stillwater, OK, USA: USDA, Soil Conservation Service.
  • Ülgen, N., Yurtsever, N., 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, s.230, Ankara.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Zeynep Demir 0000-0002-7589-3216

Zeki Mut 0000-0003-0429-3325

Hanife Mut 0000-0002-5814-5275

Erdem Gülümser 0000-0001-6291-3831

Yayımlanma Tarihi 15 Şubat 2021
Kabul Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Demir, Z., Mut, Z., Mut, H., Gülümser, E. (2021). Some Physico-Chemical and Mechanical Properties and Workability of Bilecik Şeyh Edebali University Campus Soils. Anadolu Tarım Bilimleri Dergisi, 36(1), 146-161. https://doi.org/10.7161/omuanajas.845696
Online ISSN: 1308-8769