Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi

Yıl 2015, Cilt: 30 Sayı: 3, 300 - 306, 08.12.2015
https://doi.org/10.7161/anajas.2015.30.3.300-306

Öz

Toprakta ısı iletkenliğinin teorik olarak belirlenmesi sıcaklık alanı ve sıcaklık alanına etki yapan ısı özellikleri ile ilişkilidir. Toprakta ısı özelliklerinin incelenmesi, toprak sıcaklığının tahmin edilmesi ve optimum toprak sıcaklığın oluşturulması için önemlidir. Bu çalışmada zamana ve mesafeye bağlı olarak sıcaklık alanı, sıcaklık gradyeni, ısı iletkenliği ve ısısal yayınım teorik olarak incelenmiştir. Aynı zamanda, ısı akımı için Fourier kuralı ve bir boyutlu ısı iletkenlik denklemi toprak sıcaklığına uygulanmış, toprakta sıcaklığın harmonik değişimini ifade eden çözüm gösterilmiştir.

Kaynakça

  • Andersland, O.B., Ladanyi, B. 1994. An Introduction to Frozen Ground Engineering. Chapman & Hall, New York, 352 pp.
  • Arkhangelskaya, T.A. 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling. Geoderma, 213: 608-616.
  • Arshad, M.A., Azooz, R.H. 1996. Tillage effects on soil thermal properties in a semiarid cold region. Soil Sci. Soc. Am. J., 60: 561-567.
  • Balland, V., Bhatti, J., Errington, R., Castonguay, M., Arp, P.A. 2006. Modeling snowpack and soil temperature and moisture conditions in a jack pine, black spruce and aspen forest stand in central Saskatchewan (BOREAS SSA). Can. J. Soil Sci. 86 (2): 203-217.
  • Beltrami, H., Chapman, D.S., Archambault, S., Bergeron, Y. 1995. Reconstruction of high resolution ground temperature histories combining dendrochronological and geothermal data. Earth Planet. Sci. Lett., 136 (3–4): 437–445.
  • Bodri, L., Cermak, V. 2007. Borehole Climatology: A New Method on How to Construct Climate. Elsevier, Amsterdam, 352 pp.
  • Bullard, E.C. 1939. Heat flow in South Africa. Proc. R. Soc. Lond. 173(955): 474–502.
  • Chung, S.O., Horton, R. 1987. Soil heat and water flow with a partia surface mulch. Water Resour. Res., 23(12): 2175-2186.
  • Cichota, R., Elias, E.A., de Jong van Lier, Q. 2004. Testing a finite-difference model for soil heat transfer by comparing numerical and analytical solutions. Environmental Modelling & Software, 19: 495-506.
  • Çanakci, H., Demirboğa, R., Karakoç, M.B., Şirin, O. 2007. Thermal conductivity of limestone from Gaziantep (Turkey). Building and Environment, 42: 1777-1782.
  • Çederberg, N.V. 1963. Teploprovodnost gazov i jidkostey. Gosenergoizdat Press, Moskova-Leningrad, 408 s.
  • Çirkin, B.S. 1959. Teplofiziçeskiye svoystva veşestv. Fizmatgiz Press, Moskova, 356 s.
  • de Vries, D.A. 1975. Heat Transfer in Soils. In de Vries, D. A. and Afgan, N. H. (eds.) Heat and Mass Transfer in the Biosphere. Scripta Book Co., Washington, DC., pp. 5-28.
  • de Vries, D.A. 1963. Thermal properties of soils. In van Wijk, W. R. (ed.) Physics of Plant Environment. North-Holland Publishing Co., Amsterdam, pp. 210-235.
  • Ekberli, I., Sarılar Y. 2014. Investigating soil temperature variability and thermal diffusivity in grass cowered and shaded areas by trees. Pocvovedeniye i Agrohimiya, Almatı, 4: 17-30.
  • Ekberli, İ., Sarılar, Y. 2015. Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 30(1): 74-85.
  • Ekberli, I. 2006a. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. J. of Applied Sci., 6(7): 1520-1526.
  • Ekberli, İ. 2006b. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. O.M.Ü. Zir. Fak. Dergisi, 21(2): 179-189.
  • Ekberli, İ., Gülser, C. 2014. Estımatıon of soil temperature by heat conductivity equation. Vestnik Bashkir State Agrarian University (Вестник Башкирского Государственного Аграрного Университета), 2(30):12-15.
  • Ekwue, E.I., Stone, R.J., Maharaj, V.V., Bhagwat, D. 2005. Thermal conductivity and diffusivity of four trinidadian soils as affected by peat content. Trans. of ASAE, 48: 1803-1815.
  • Evett, S.R., Agam, N., Kustas, W.P., Colaizzi, P.D., Schwartz,
  • R.C. 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Feddes, R.A. 1973. Some physical aspects of heat transfer in soil. Acta Hort. 27: 189-196.
  • Filippov, L.P. 1970. İssledovaniye teploprovodnosti jidkostey. İzd-vo MGU, Moskova, 240 s.
  • Fourier, J. 1822. Theorie analytique de la chaleur (The Analytic Theory of Heat). Firmin Didot Père et Fils, Paris.
  • Ghuman, B.S., Lal, R. 1985. Thermal conductivity, thermal diffusivity and thermal capacity of some Nigerian soils. Soil Sci., 139: 74-80.
  • Gülser, C., Ekberli, I. 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. J. of Applied Sci., 4(3): 418-423.
  • Hillel, D. 1982. Introduction to Soil Physics. Academic Press, San Diego, CA., 392 pp.
  • Hillel, D. 1998. Environmental Soil Physics. Academic Press, New York, 771 pp.
  • Hinkel, K.M. 1997. Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Reg. Sci. and Technol., 26: 1-15.
  • Hinkel, K.M., Paetzold, F., Nelson, F.E., Bockheim, J.G. 2001. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Global and Planetary Change, 29: 293-309.
  • Horton, R., Wierenga, P.J., Nielsen, D.R. 1983. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Soc. Am. J., 47: 25-32.
  • İsacenko, V.P., Osipova, V.A., Sukomel, A.S. 1981. Teploperedaça. Energoizdat Press, Moskova, 417s.
  • Kahimba, F.C., Ranjan, R.S., Mann, D.D. 2009. Modeling soil temperature, frost depth, and soilmoisture redistribution in seasonally frozen agricultural soils. Appl. Eng. Agric. 25(6): 871-882.
  • Kane, D.L., Hinkel, K. M., Goering, D.J., Hinzman, L.D., Outcalt, S.İ. 2001. Non-conductive heat transfer associated with frozen soils. Global and Planetary Change, 29: 275-292.
  • Kelvin,W. 1861. On the reduction of observations of underground temperature. Trans. R. Soc. Edinb. 22: 405-427.
  • Kreith, F., Black, W.Z. 1983. Bazic Heat Transfer. Mir Press, Moscow, 512 pp.
  • Krzewinski, T.G., Tart, R.G. (Eds.), 1985. Technical council on cold regions engineering. Thermal Design Considerations in Frozen Ground Engineering: A State of the Practice Report ASCE, New York, N.Y., 277 pp.
  • Kurylyk, B.L., MacQuarrie, K.T.B., McKenzie, J.M. 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews, 138: 313-334.
  • Lesperance,M., Smerdon, J.E., Beltrami, H. 2010. Propagation of linear surface air temperature trends into the terrestrial subsurface. J. Geophys. Res. Atmos., 115(21): D21115.
  • Luikov, A.V. 1948. Teploprovodnost nestaçionarnıx proçessov. Gosudarstvennoye Energetiçeskoye İzdatelstvo, Moskova-Leningrad, 232 s.
  • Luikov, A.V. 1967. Teoriya teploprovodnosti. Vısşaya Şkola Press, Moskova, 599 s.
  • Luikov, A.V., Mikhailov, Y.A. 1965. Theory of energy and mass transfers. Oxford, UK: Pergamon Press.
  • Luikov, A.V., Mikhailov, Y.A. 1959. Teoriya perenosa energii i veşestva. İzdatelstvo Akademii Nauk BSSR, Minsk, 332 s.
  • Lunardini, V.J. 1981. Heat Transfer in Cold Climates. Van Nostrand Reinhold Co., New York, 731 pp.
  • Luo, L.F., Robock, A., Vinnikov, K.Y., Schlosser, C.A., Slater, A.G., Boone, A., Braden, H., Cox, P., de Rosnay, P., Dickinson, R.E., Dai, Y.J., Duan, Q.Y., Etchevers, P., Henderson-Sellers, A., Gedney, N., Gusev, Y.M., Habets, F., Kim, J.W., Kowalczyk, E.,Mitchell, K., Nasonova, O.N., Noilhan, J., Pitman, A.J., Schaake, J., Shmakin, A.B., Smirnova, T.G.,Wetzel, P., Xue, Y.K., Yang, Z.L., Zeng, Q.C. 2003. Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. Journal of Hydrometeorology, 4(2): 334-351.
  • Marshall, T.J., Holmes, J.W., Rose, C.W. 1996. Soil Physics. 3rd Edition. Cambridge Univ. Press, New York, 469 pp.
  • Mellander, P., Lofvenius, M.O., Laudon, H. 2007. Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim. Chang. 89(1–2): 179-193.
  • Misnar, A. 1968. Teploprovodnost tverdıx tel, jidkostey, gazov i ix kompoziçiy. Mir Press, Moskova, 460 s.
  • Monteith, J.L., Unsworth, M.H. 1990. Principles of Environmental Physics. Edward Arnold, London, 291 pp.
  • Nerpin, S.V., Chudnovskii, A.F. 1984. Heat and Mass Transfer in the Plant-Soil-Air System. Translated from Russian. Published for USDA and National Sci. Found., Washington. D.S., by Amerind Publishing Co. Pvt. Ltd., New Delhi, India, 355 pp.
  • Nikiforova, T., Savytskyi, M., Limam, K., Bosschaerts, W., Belarbi, R. 2013. Methods and results of experimental researches of thermal conductivity of soils. Energy Procedia 42: 775-783.
  • Petuhov, B.S. 1952. Opıtnoye izuçeniye proçessov teploperedaçi. Gosenergoizdat Press, Moskova, 344 s.
  • Rees, S.W., Adjali, M.H., Zhou, Z., Davies, M., Thomas, H.R. 2000. Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews, 4: 213-265.
  • Tikhonravova, P.I. 2007. Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the transvolga region. Eurasian Soil Sci., 40: 47–50.
  • Usowicz, B., Lipiec, J., Ferrero, A. 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49: 5010-5017.
  • Usowicz, B., Lipiec, J., Usowicz, J.B. 2008. Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planetary and Space Science, 56: 438-447.
  • Usowicz, B., Lipiec, J., Usowicz, J.B., Marczewski, W. 2013. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536-541.
  • Vargaftik, N.B. 1956. Teplofiziçeskiye svoystva veşestv (spravoçnik). Gosenergoizdat Press, Moskova-Leningrad, 368 s.
  • Williams, P.J., Smith, M.W. 1989. The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge; New York, 306 pp.
  • Woo, M. 2012. Permafrost Hydrology. Springer-Verlag, Berlin, 519 pp.
  • Wu, J., Nofziger, D.L. 1999. Incorporating temperature effects on pesticide degradation into a management model. J. Environ. Quality, 28: 92-100.
  • Zambra, C.E., Moraga, N.O. 2013. Heat and mass transfer in landfills: Simulation of the pile self-heating and of the soil contamination. International Journal of Heat and Mass Transfer, 66: 324-333.
  • Zhou, X., Persaud, N., Belesky, D.P., Clark, R.B. 2007. Significance of transients in soil temperature series. Pedosphere, 17(6): 766-775.

Theoretical investigation of heat parameters influencing heat conductivity in soil

Yıl 2015, Cilt: 30 Sayı: 3, 300 - 306, 08.12.2015
https://doi.org/10.7161/anajas.2015.30.3.300-306

Öz

Theoretical determination of heat conductivity in soil is related with heat area and heat parameters influencing heat area. Investigation of heat properties in soil is important for predicting soil temperature and obtaning optimum soil temperature. In this study, heat area, heat gradient, heat conductivity and heat diffusivity of soils with respect to time and length are theoretically investigated. Also, Fourier law for heat flow and one dimensional heat conductivity equation have been applied to soil temperature, the solution expressing harmonic change of soil temperature has been shown.

Kaynakça

  • Andersland, O.B., Ladanyi, B. 1994. An Introduction to Frozen Ground Engineering. Chapman & Hall, New York, 352 pp.
  • Arkhangelskaya, T.A. 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling. Geoderma, 213: 608-616.
  • Arshad, M.A., Azooz, R.H. 1996. Tillage effects on soil thermal properties in a semiarid cold region. Soil Sci. Soc. Am. J., 60: 561-567.
  • Balland, V., Bhatti, J., Errington, R., Castonguay, M., Arp, P.A. 2006. Modeling snowpack and soil temperature and moisture conditions in a jack pine, black spruce and aspen forest stand in central Saskatchewan (BOREAS SSA). Can. J. Soil Sci. 86 (2): 203-217.
  • Beltrami, H., Chapman, D.S., Archambault, S., Bergeron, Y. 1995. Reconstruction of high resolution ground temperature histories combining dendrochronological and geothermal data. Earth Planet. Sci. Lett., 136 (3–4): 437–445.
  • Bodri, L., Cermak, V. 2007. Borehole Climatology: A New Method on How to Construct Climate. Elsevier, Amsterdam, 352 pp.
  • Bullard, E.C. 1939. Heat flow in South Africa. Proc. R. Soc. Lond. 173(955): 474–502.
  • Chung, S.O., Horton, R. 1987. Soil heat and water flow with a partia surface mulch. Water Resour. Res., 23(12): 2175-2186.
  • Cichota, R., Elias, E.A., de Jong van Lier, Q. 2004. Testing a finite-difference model for soil heat transfer by comparing numerical and analytical solutions. Environmental Modelling & Software, 19: 495-506.
  • Çanakci, H., Demirboğa, R., Karakoç, M.B., Şirin, O. 2007. Thermal conductivity of limestone from Gaziantep (Turkey). Building and Environment, 42: 1777-1782.
  • Çederberg, N.V. 1963. Teploprovodnost gazov i jidkostey. Gosenergoizdat Press, Moskova-Leningrad, 408 s.
  • Çirkin, B.S. 1959. Teplofiziçeskiye svoystva veşestv. Fizmatgiz Press, Moskova, 356 s.
  • de Vries, D.A. 1975. Heat Transfer in Soils. In de Vries, D. A. and Afgan, N. H. (eds.) Heat and Mass Transfer in the Biosphere. Scripta Book Co., Washington, DC., pp. 5-28.
  • de Vries, D.A. 1963. Thermal properties of soils. In van Wijk, W. R. (ed.) Physics of Plant Environment. North-Holland Publishing Co., Amsterdam, pp. 210-235.
  • Ekberli, I., Sarılar Y. 2014. Investigating soil temperature variability and thermal diffusivity in grass cowered and shaded areas by trees. Pocvovedeniye i Agrohimiya, Almatı, 4: 17-30.
  • Ekberli, İ., Sarılar, Y. 2015. Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 30(1): 74-85.
  • Ekberli, I. 2006a. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. J. of Applied Sci., 6(7): 1520-1526.
  • Ekberli, İ. 2006b. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. O.M.Ü. Zir. Fak. Dergisi, 21(2): 179-189.
  • Ekberli, İ., Gülser, C. 2014. Estımatıon of soil temperature by heat conductivity equation. Vestnik Bashkir State Agrarian University (Вестник Башкирского Государственного Аграрного Университета), 2(30):12-15.
  • Ekwue, E.I., Stone, R.J., Maharaj, V.V., Bhagwat, D. 2005. Thermal conductivity and diffusivity of four trinidadian soils as affected by peat content. Trans. of ASAE, 48: 1803-1815.
  • Evett, S.R., Agam, N., Kustas, W.P., Colaizzi, P.D., Schwartz,
  • R.C. 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Feddes, R.A. 1973. Some physical aspects of heat transfer in soil. Acta Hort. 27: 189-196.
  • Filippov, L.P. 1970. İssledovaniye teploprovodnosti jidkostey. İzd-vo MGU, Moskova, 240 s.
  • Fourier, J. 1822. Theorie analytique de la chaleur (The Analytic Theory of Heat). Firmin Didot Père et Fils, Paris.
  • Ghuman, B.S., Lal, R. 1985. Thermal conductivity, thermal diffusivity and thermal capacity of some Nigerian soils. Soil Sci., 139: 74-80.
  • Gülser, C., Ekberli, I. 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. J. of Applied Sci., 4(3): 418-423.
  • Hillel, D. 1982. Introduction to Soil Physics. Academic Press, San Diego, CA., 392 pp.
  • Hillel, D. 1998. Environmental Soil Physics. Academic Press, New York, 771 pp.
  • Hinkel, K.M. 1997. Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Reg. Sci. and Technol., 26: 1-15.
  • Hinkel, K.M., Paetzold, F., Nelson, F.E., Bockheim, J.G. 2001. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Global and Planetary Change, 29: 293-309.
  • Horton, R., Wierenga, P.J., Nielsen, D.R. 1983. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Soc. Am. J., 47: 25-32.
  • İsacenko, V.P., Osipova, V.A., Sukomel, A.S. 1981. Teploperedaça. Energoizdat Press, Moskova, 417s.
  • Kahimba, F.C., Ranjan, R.S., Mann, D.D. 2009. Modeling soil temperature, frost depth, and soilmoisture redistribution in seasonally frozen agricultural soils. Appl. Eng. Agric. 25(6): 871-882.
  • Kane, D.L., Hinkel, K. M., Goering, D.J., Hinzman, L.D., Outcalt, S.İ. 2001. Non-conductive heat transfer associated with frozen soils. Global and Planetary Change, 29: 275-292.
  • Kelvin,W. 1861. On the reduction of observations of underground temperature. Trans. R. Soc. Edinb. 22: 405-427.
  • Kreith, F., Black, W.Z. 1983. Bazic Heat Transfer. Mir Press, Moscow, 512 pp.
  • Krzewinski, T.G., Tart, R.G. (Eds.), 1985. Technical council on cold regions engineering. Thermal Design Considerations in Frozen Ground Engineering: A State of the Practice Report ASCE, New York, N.Y., 277 pp.
  • Kurylyk, B.L., MacQuarrie, K.T.B., McKenzie, J.M. 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews, 138: 313-334.
  • Lesperance,M., Smerdon, J.E., Beltrami, H. 2010. Propagation of linear surface air temperature trends into the terrestrial subsurface. J. Geophys. Res. Atmos., 115(21): D21115.
  • Luikov, A.V. 1948. Teploprovodnost nestaçionarnıx proçessov. Gosudarstvennoye Energetiçeskoye İzdatelstvo, Moskova-Leningrad, 232 s.
  • Luikov, A.V. 1967. Teoriya teploprovodnosti. Vısşaya Şkola Press, Moskova, 599 s.
  • Luikov, A.V., Mikhailov, Y.A. 1965. Theory of energy and mass transfers. Oxford, UK: Pergamon Press.
  • Luikov, A.V., Mikhailov, Y.A. 1959. Teoriya perenosa energii i veşestva. İzdatelstvo Akademii Nauk BSSR, Minsk, 332 s.
  • Lunardini, V.J. 1981. Heat Transfer in Cold Climates. Van Nostrand Reinhold Co., New York, 731 pp.
  • Luo, L.F., Robock, A., Vinnikov, K.Y., Schlosser, C.A., Slater, A.G., Boone, A., Braden, H., Cox, P., de Rosnay, P., Dickinson, R.E., Dai, Y.J., Duan, Q.Y., Etchevers, P., Henderson-Sellers, A., Gedney, N., Gusev, Y.M., Habets, F., Kim, J.W., Kowalczyk, E.,Mitchell, K., Nasonova, O.N., Noilhan, J., Pitman, A.J., Schaake, J., Shmakin, A.B., Smirnova, T.G.,Wetzel, P., Xue, Y.K., Yang, Z.L., Zeng, Q.C. 2003. Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. Journal of Hydrometeorology, 4(2): 334-351.
  • Marshall, T.J., Holmes, J.W., Rose, C.W. 1996. Soil Physics. 3rd Edition. Cambridge Univ. Press, New York, 469 pp.
  • Mellander, P., Lofvenius, M.O., Laudon, H. 2007. Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim. Chang. 89(1–2): 179-193.
  • Misnar, A. 1968. Teploprovodnost tverdıx tel, jidkostey, gazov i ix kompoziçiy. Mir Press, Moskova, 460 s.
  • Monteith, J.L., Unsworth, M.H. 1990. Principles of Environmental Physics. Edward Arnold, London, 291 pp.
  • Nerpin, S.V., Chudnovskii, A.F. 1984. Heat and Mass Transfer in the Plant-Soil-Air System. Translated from Russian. Published for USDA and National Sci. Found., Washington. D.S., by Amerind Publishing Co. Pvt. Ltd., New Delhi, India, 355 pp.
  • Nikiforova, T., Savytskyi, M., Limam, K., Bosschaerts, W., Belarbi, R. 2013. Methods and results of experimental researches of thermal conductivity of soils. Energy Procedia 42: 775-783.
  • Petuhov, B.S. 1952. Opıtnoye izuçeniye proçessov teploperedaçi. Gosenergoizdat Press, Moskova, 344 s.
  • Rees, S.W., Adjali, M.H., Zhou, Z., Davies, M., Thomas, H.R. 2000. Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews, 4: 213-265.
  • Tikhonravova, P.I. 2007. Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the transvolga region. Eurasian Soil Sci., 40: 47–50.
  • Usowicz, B., Lipiec, J., Ferrero, A. 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49: 5010-5017.
  • Usowicz, B., Lipiec, J., Usowicz, J.B. 2008. Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planetary and Space Science, 56: 438-447.
  • Usowicz, B., Lipiec, J., Usowicz, J.B., Marczewski, W. 2013. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536-541.
  • Vargaftik, N.B. 1956. Teplofiziçeskiye svoystva veşestv (spravoçnik). Gosenergoizdat Press, Moskova-Leningrad, 368 s.
  • Williams, P.J., Smith, M.W. 1989. The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge; New York, 306 pp.
  • Woo, M. 2012. Permafrost Hydrology. Springer-Verlag, Berlin, 519 pp.
  • Wu, J., Nofziger, D.L. 1999. Incorporating temperature effects on pesticide degradation into a management model. J. Environ. Quality, 28: 92-100.
  • Zambra, C.E., Moraga, N.O. 2013. Heat and mass transfer in landfills: Simulation of the pile self-heating and of the soil contamination. International Journal of Heat and Mass Transfer, 66: 324-333.
  • Zhou, X., Persaud, N., Belesky, D.P., Clark, R.B. 2007. Significance of transients in soil temperature series. Pedosphere, 17(6): 766-775.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

İmanverdi Ekberli

Coşkun Gülser

Nutullah Özdemir

Yayımlanma Tarihi 8 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 3

Kaynak Göster

APA Ekberli, İ., Gülser, C., & Özdemir, N. (2015). Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi, 30(3), 300-306. https://doi.org/10.7161/anajas.2015.30.3.300-306
AMA Ekberli İ, Gülser C, Özdemir N. Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. ANAJAS. Ekim 2015;30(3):300-306. doi:10.7161/anajas.2015.30.3.300-306
Chicago Ekberli, İmanverdi, Coşkun Gülser, ve Nutullah Özdemir. “Toprakta ısı iletkenliğine Etki Yapan ısısal Parametrelerin Teorik Incelemesi”. Anadolu Tarım Bilimleri Dergisi 30, sy. 3 (Ekim 2015): 300-306. https://doi.org/10.7161/anajas.2015.30.3.300-306.
EndNote Ekberli İ, Gülser C, Özdemir N (01 Ekim 2015) Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi 30 3 300–306.
IEEE İ. Ekberli, C. Gülser, ve N. Özdemir, “Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi”, ANAJAS, c. 30, sy. 3, ss. 300–306, 2015, doi: 10.7161/anajas.2015.30.3.300-306.
ISNAD Ekberli, İmanverdi vd. “Toprakta ısı iletkenliğine Etki Yapan ısısal Parametrelerin Teorik Incelemesi”. Anadolu Tarım Bilimleri Dergisi 30/3 (Ekim 2015), 300-306. https://doi.org/10.7161/anajas.2015.30.3.300-306.
JAMA Ekberli İ, Gülser C, Özdemir N. Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. ANAJAS. 2015;30:300–306.
MLA Ekberli, İmanverdi vd. “Toprakta ısı iletkenliğine Etki Yapan ısısal Parametrelerin Teorik Incelemesi”. Anadolu Tarım Bilimleri Dergisi, c. 30, sy. 3, 2015, ss. 300-6, doi:10.7161/anajas.2015.30.3.300-306.
Vancouver Ekberli İ, Gülser C, Özdemir N. Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. ANAJAS. 2015;30(3):300-6.
Online ISSN: 1308-8769