Araştırma Makalesi
BibTex RIS Kaynak Göster

The Determination of wetting depth of soil in irrigation

Yıl 2018, Cilt: 33 Sayı: 2, 142 - 148, 22.06.2018
https://doi.org/10.7161/omuanajas.325973

Öz

Knowing wetting depth of soil is an important
factor to determine the irrigation water amount depends on the development of
plant root system in vegetation period. In this study, wetting depth of soil in
corn grown area was estimated according to active soil layer, irrigation water
amount, soil moisture change and field capacity using mathematical approach. In
40, 50, 60, 70, 80 and 90 cm soil layers, “wetting coefficients” and wetting
depths for irrigation water amount of 900
m3
ha-1
were determined as 1.62, 1.43, 1.26, 1.13, 1.02,
and 109, 116, 109, 95, 84 cm, respectively. In the same soil layers, “wetting
coefficients” and wetting depths for irrigation water amount of 950
m3 ha-1were determined as
1.71, 1.51, 1.33, 1.19, 1.07 and 119, 128, 122, 106, 94 cm, respectively. As a
result, it was determined that basic factors effecting on wetting depth in
irrigation were irrigation water amount and depth of active root zone.

Kaynakça

  • Abduyev, M.R., 1960. Azerbaycanın düzenlik hissesinin delüvial formada şorlaşmış torpagları. Azerbaycan SSR Elmler Akademiyası Neşriyyatı. Bakı, 100 s.
  • Abduyev, M.P., 1968. Pocvı s delyuvialnoy formoy zasoleniya i voprosı ix melioraçii. İzdatelstvo Akademii Nauk Azerbaydjanskoy SSR. Baku, 270 s.
  • Ali,S., Ghosh, N.C., Mishra, P.K., Singh, R.K., 2015. A holistic water depth simulation model for small ponds. Journal of Hydrology, 529: 1464–1477.
  • Averianov, A.,P., 1968. K voprosu opredeleniya polivnoy normı. Pocvovedeniye, No: 9.
  • Averianov, A.,P., 1971. Qualiity and dept opf soil moistening during grop irrigation. Pocvovedeniye, 2: 60-65.
  • Aydarov, İ., P., 1985. Regulirovaniye vodno-solevoy i pitatelnogo rejimov oroşayemıh zemel. Moskova, Press BO ’’Agropromizdat’’, 304s.
  • Chu, S.T., 1994. Green-Ampt analysis of wetting pattern for surface emitters. Journal of Irrigation and Drainage Engineering, 120. 414–421.
  • Cook, F.J., Fitch, P., Thorburn, P.J., Charlesworth, P.B., Bristow, K.L., 2006. Modelling trickle irrigation: Comparison of analytical and numerical models for estimation of wettingfront position with time. Environmental Modelling & Software, 21: 1353-1359.
  • Dogan, E., Kirnak, H., Dogan, Z., 2008. Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosystems Engineering, 99: 190-195.
  • Ekberli, İ. (Akperov, İ.A.), 1989. Optimizaçiya vodno-solevogo rejima oroşayemıh pocv Siazan-Sumgaitskogo massiva (Dissertaçiya na soiskaniye uçenoy stepeni kandidata selskohozyaystvennıh nauk). Akademiya Nauk Azerbaydyanskoy SSR, İnstitut Pocvovedeniya i Agrohimii, Baku, 173 s.
  • Ekberli, İ., 2008. Sistemli yaklaşımla ekosistemin analizinde matematiksel modelleme yöntemi. Ondokuz Mayıs Üniversitesi Ziraat fakültesinin Dergisi, 23(3):170-182.
  • Elmaloglou, S., Diamantopoulos, E., 2007. Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation. Agricultural Water Management, 90: 160-163.
  • Elmaloglou, S., Diamantopoulos, E., 2009. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation. Agricultural Water Management, 96: 533-538.
  • Elmaloglou, S.T., Malamos, N., 2007. Estimation of width and depth of the wetted soil volume under a surface emitter, considering root water-uptake and evaporation. Water Resour Manage, 21: 1325–1340.
  • Ertek, A., Kanber, R., 2000. Damla sisteminde farklı sulama programlarının pamuk bitkisinin değişik toprak katmanlardaki su tüketimine ve kök gelişimine etkilerinin belirlenmesi. Turkısh Journal of Agrıculture and Forestry, 24: 283–291.
  • Jiang, Y., Zhang, L., Zhang, B., He, C., Jin,X., Bai, X., 2016. Modeling irrigation management for water conservation byDSSAT-maize model in arid northwestern China. Agricultural Water Management, 177. 37–45.
  • Karahan, G., Erşahin, S., Öztürk,H.S., 2014. Toprak koşullarına bağlı olarak tarla kapasitesi dinamiği. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 1-11.
  • Kostyakov, A.N., 1960. Osnovı melioraçiy. Press ’’Selhozgiz’’, 662 s.
  • Kuklik, V., Hoang, T. D., 2014. Soil moisture regimes under point irrigation. Agricultural Water Management, 134: 42–49.
  • Li, P., Li, T., Vanapalli, S., 2016. Influence of environmental factors on the wetting front depth: A case study in the Loess Plateau. Engineering Geology, 214: 1–10.
  • Li, X., Jin, M., Zhou, N., Huang, J., Jiang, S., Telesphore, H., 2016. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China. Journal of Hydrology, 538: 677–688.
  • Lubana, P.P.S., Narda, N.K., 1998. Soil water dynamics model for trickle irrigated tomatoes. Agricultural Water Management, 37: 145-161.
  • Schwartzman, M., Zur, B., 1986. Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering, 112: 242–253.
  • Sepaskhah, A.R., Chitsaz, H., 2004. Validating the Green-Ampt Analysis of Wetted Radius and Depth in Trickle Irrigation. Biosystems Engineering, 89 (2): 231–236.
  • Singh, D.K., Rajput, T.B.S., Singh, D.K., Sikarwar, H.S., Sahoo, R.N., Ahmad, T., 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural Water Management, 83: 130-134.
  • Soulis, K.X., Elmaloglou, S., Dercas,N., 2015. Investigating the effects of soil moisture sensors positioning andaccuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, 148: 258–268.
  • Stirzaker, R.J., Maeko, T.C., Annandale, J.G., Steyn, J.M., Adhanom, G.T., Mpuisang, T., 2017. Scheduling irrigation from wetting front depth. Agricultural Water Management, 179: 306–313.
  • Şimşek, M., Şilbir, Y., Gerçek, S., Boydak, E., Kasap, Y., 2005. Mısır-soya birlikte ekim stsieminde su-verim ve alan eşdeğer oranı ilişkisinin belirlenmesi. Tarım Bilimleri Dergisi, 11 (2): 147-153.
  • Şumakov, B.B., 1990. Meliorasiya i vodnoye hozyaystvo. 6. Oroşeniye: Spravoçnik. VO ’’Agropromizdat’’. Moskva, 415 s.
  • Zhang, R., Cheng, Z., Zhang, J., Ji, X., 2012. Sandy loam soil wetting patterns of drip irrigation: a comparison of point and line sources. Procedia Engineering, 28: 506 – 511.
  • Zhang, Y.Y., Zhao, X.N., Wu, P.T., 2015. Soil wetting patterns and water distribution as affected by irrigation for uncropped ridges and furrows. Pedosphere, 25(3): 468–477.

Sulamada toprağın ıslanma derinliğinin belirlenmesi

Yıl 2018, Cilt: 33 Sayı: 2, 142 - 148, 22.06.2018
https://doi.org/10.7161/omuanajas.325973

Öz

Sulama suyu miktarının belirlenmesi
için vejetasyon dönemindeki bitki kök sisteminin gelişimine bağlı olarak
toprakta ıslanma derinliğinin bilinmesi önemli bir faktördür. Bu çalışmada,
mısır yetiştirilen alandaki toprağın ıslanma derinliği, aktif topak katmanı,
sulama suyu miktarı, topraktaki nem değişimi ve tarla kapasitesi değerlerine
göre matematiksel yaklaşım kullanılarak hesaplanmıştır. Toprağın 40, 50, 60, 70
ve 80 cm’lik aktif toprak katmanlarında, 900 m3 ha-1
sulama suyu miktarı için sırasıyla “ıslanma katsayıları’’ 1.62, 1.43, 1.26,
1.13 ve 1.02, ıslanma derinlikleri ise 109, 116, 109, 95 ve 84 cm olarak
hesaplanmıştır. Aynı toprak katmanlarında, 950 m3 ha-1 sulama
suyu miktarında ise, sırasıyla “ıslanma katsayıları’’  1.71, 1.51, 1.33, 1.19, 1.07, ıslanma
derinlikleri (
) ise 119, 128, 122, 106 ve 94 cm
olarak belirlenmiştir. Sonuç olarak, sulamada ıslanma derinliğine etki eden
temel faktörlerin sulama suyu miktarı ve aktif kök bölgesi derinliğinin olduğu
belirlenmiştir.

Kaynakça

  • Abduyev, M.R., 1960. Azerbaycanın düzenlik hissesinin delüvial formada şorlaşmış torpagları. Azerbaycan SSR Elmler Akademiyası Neşriyyatı. Bakı, 100 s.
  • Abduyev, M.P., 1968. Pocvı s delyuvialnoy formoy zasoleniya i voprosı ix melioraçii. İzdatelstvo Akademii Nauk Azerbaydjanskoy SSR. Baku, 270 s.
  • Ali,S., Ghosh, N.C., Mishra, P.K., Singh, R.K., 2015. A holistic water depth simulation model for small ponds. Journal of Hydrology, 529: 1464–1477.
  • Averianov, A.,P., 1968. K voprosu opredeleniya polivnoy normı. Pocvovedeniye, No: 9.
  • Averianov, A.,P., 1971. Qualiity and dept opf soil moistening during grop irrigation. Pocvovedeniye, 2: 60-65.
  • Aydarov, İ., P., 1985. Regulirovaniye vodno-solevoy i pitatelnogo rejimov oroşayemıh zemel. Moskova, Press BO ’’Agropromizdat’’, 304s.
  • Chu, S.T., 1994. Green-Ampt analysis of wetting pattern for surface emitters. Journal of Irrigation and Drainage Engineering, 120. 414–421.
  • Cook, F.J., Fitch, P., Thorburn, P.J., Charlesworth, P.B., Bristow, K.L., 2006. Modelling trickle irrigation: Comparison of analytical and numerical models for estimation of wettingfront position with time. Environmental Modelling & Software, 21: 1353-1359.
  • Dogan, E., Kirnak, H., Dogan, Z., 2008. Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosystems Engineering, 99: 190-195.
  • Ekberli, İ. (Akperov, İ.A.), 1989. Optimizaçiya vodno-solevogo rejima oroşayemıh pocv Siazan-Sumgaitskogo massiva (Dissertaçiya na soiskaniye uçenoy stepeni kandidata selskohozyaystvennıh nauk). Akademiya Nauk Azerbaydyanskoy SSR, İnstitut Pocvovedeniya i Agrohimii, Baku, 173 s.
  • Ekberli, İ., 2008. Sistemli yaklaşımla ekosistemin analizinde matematiksel modelleme yöntemi. Ondokuz Mayıs Üniversitesi Ziraat fakültesinin Dergisi, 23(3):170-182.
  • Elmaloglou, S., Diamantopoulos, E., 2007. Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation. Agricultural Water Management, 90: 160-163.
  • Elmaloglou, S., Diamantopoulos, E., 2009. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation. Agricultural Water Management, 96: 533-538.
  • Elmaloglou, S.T., Malamos, N., 2007. Estimation of width and depth of the wetted soil volume under a surface emitter, considering root water-uptake and evaporation. Water Resour Manage, 21: 1325–1340.
  • Ertek, A., Kanber, R., 2000. Damla sisteminde farklı sulama programlarının pamuk bitkisinin değişik toprak katmanlardaki su tüketimine ve kök gelişimine etkilerinin belirlenmesi. Turkısh Journal of Agrıculture and Forestry, 24: 283–291.
  • Jiang, Y., Zhang, L., Zhang, B., He, C., Jin,X., Bai, X., 2016. Modeling irrigation management for water conservation byDSSAT-maize model in arid northwestern China. Agricultural Water Management, 177. 37–45.
  • Karahan, G., Erşahin, S., Öztürk,H.S., 2014. Toprak koşullarına bağlı olarak tarla kapasitesi dinamiği. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 1-11.
  • Kostyakov, A.N., 1960. Osnovı melioraçiy. Press ’’Selhozgiz’’, 662 s.
  • Kuklik, V., Hoang, T. D., 2014. Soil moisture regimes under point irrigation. Agricultural Water Management, 134: 42–49.
  • Li, P., Li, T., Vanapalli, S., 2016. Influence of environmental factors on the wetting front depth: A case study in the Loess Plateau. Engineering Geology, 214: 1–10.
  • Li, X., Jin, M., Zhou, N., Huang, J., Jiang, S., Telesphore, H., 2016. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China. Journal of Hydrology, 538: 677–688.
  • Lubana, P.P.S., Narda, N.K., 1998. Soil water dynamics model for trickle irrigated tomatoes. Agricultural Water Management, 37: 145-161.
  • Schwartzman, M., Zur, B., 1986. Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering, 112: 242–253.
  • Sepaskhah, A.R., Chitsaz, H., 2004. Validating the Green-Ampt Analysis of Wetted Radius and Depth in Trickle Irrigation. Biosystems Engineering, 89 (2): 231–236.
  • Singh, D.K., Rajput, T.B.S., Singh, D.K., Sikarwar, H.S., Sahoo, R.N., Ahmad, T., 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural Water Management, 83: 130-134.
  • Soulis, K.X., Elmaloglou, S., Dercas,N., 2015. Investigating the effects of soil moisture sensors positioning andaccuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, 148: 258–268.
  • Stirzaker, R.J., Maeko, T.C., Annandale, J.G., Steyn, J.M., Adhanom, G.T., Mpuisang, T., 2017. Scheduling irrigation from wetting front depth. Agricultural Water Management, 179: 306–313.
  • Şimşek, M., Şilbir, Y., Gerçek, S., Boydak, E., Kasap, Y., 2005. Mısır-soya birlikte ekim stsieminde su-verim ve alan eşdeğer oranı ilişkisinin belirlenmesi. Tarım Bilimleri Dergisi, 11 (2): 147-153.
  • Şumakov, B.B., 1990. Meliorasiya i vodnoye hozyaystvo. 6. Oroşeniye: Spravoçnik. VO ’’Agropromizdat’’. Moskva, 415 s.
  • Zhang, R., Cheng, Z., Zhang, J., Ji, X., 2012. Sandy loam soil wetting patterns of drip irrigation: a comparison of point and line sources. Procedia Engineering, 28: 506 – 511.
  • Zhang, Y.Y., Zhao, X.N., Wu, P.T., 2015. Soil wetting patterns and water distribution as affected by irrigation for uncropped ridges and furrows. Pedosphere, 25(3): 468–477.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

İmanverdi Ekberli

Coşkun Gülser

Yayımlanma Tarihi 22 Haziran 2018
Kabul Tarihi 25 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 2

Kaynak Göster

APA Ekberli, İ., & Gülser, C. (2018). Sulamada toprağın ıslanma derinliğinin belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 33(2), 142-148. https://doi.org/10.7161/omuanajas.325973
Online ISSN: 1308-8769