Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Some Quality Traits of Different Oat (Avena sativa L.) Genotypes under Supplemented Irrigation and Without Irrigation

Yıl 2021, Cilt: 36 Sayı: 2, 234 - 243, 15.06.2021
https://doi.org/10.7161/omuanajas.845337

Öz

Oat is use as an important source of essential nutrients for both humans and animals because of it is rich in nutrition composition like starch, protein, dietary fiber, fatty acid and β-glucan etc. This study was conducted to determine some quality traits of 22 oat genotypes in Turkey in rainfall and supplemented irrigation conditions during 2016-2017 growing season at Yerköy/Yozgat. Experiments were carried out in randomized complete block design with three replications. In the trials, starch, protein, β-glucan, fat, fatty acid ratios, acid detergent fiber (ADF) and neutral detergent fiber (NDF) values were investigated. In experiment without irrigation, among the genotypes, starch ratio varied from 37.1 to 47.6%, protein ratio from 12.7 to 15.2%, β-glucan content from 3.53 to 4.58%, fat ratio from 4.64 to 7.89%, linoleic acid content from 28.8 to 37.2%, olaic acid content from 37.1 to 47.1%, palmitic acid content from 21.7 to 23.5%, stearic acid content from 1.74 to 2.05%, ADF content from 11.9 to 16.9% and NDF content from 30.1 to 37.1%,. in the trial irrigated with supplemented irrigation, among the genotypes, starch ratio varied from 39.4 to 49.0%, protein ratio 12.3 to 14.6%, β-glucan content from 3.44 to 4.06%, fat ratio from 4.87 to 8.27%, linoleic acid content from 29.0 to 37.1%, oleic acid content from 36.3 to 46.5%, palmitic acid content from 22.7 to 24.8%, stearic acid content from 1.86 to 2.05%, ADF content from 12.0 to 16.3% and NDF content from 30.3 to 37.5%,. Genotypes G3, G6, G8, G9 and G15 under rainfall conditions, genotypes G3, G8, G9, G11, G13 and G15 under supplemented irrigation had higher than average values in terms of starch, protein and β-glucan values while they had below average values in terms of ADF and NDF.

Kaynakça

  • AACC. 2005. American Association of Cereal Chemists. Approved Methods of the AACC (11th ed.). St. Paul, USA. https://methods.aaccnet.org/about.aspx.
  • Acar, Z., Özyazıcı, M.A., Korkmaz, A., Gülsar, C. 1995. Samsun Yöresinde Yalnız ve Adi Fiğ İle Karışık Yetiştirilen Bazı Yulaf Çeşitlerinden Elde Edilen Kuru Otun Mineral Madde Kompozisyonu, O.M.Ü. Ziraat Fakültesi Dergisi. 10 (3): 119-132.
  • AOAC. 2012. Official methods of analysis (19th ed.). Association of Official Chemists. Washington D.C., USA.
  • Bağcı, A., Geçgel, Ü., Özcan, M. M., Dumlupınar, Z., Uslu, N. 2019. Oil contents and fatty acid composition of oat (Avena sativa L.) seed and oils. Journal of Agroalimentary Processes and Technologies, 25 (4), 182-186.
  • Bityutskii, N. P., Loskutov, I., Yakkonen, K., Konarev, A., Shelenga, T., Khoreva, V., Blinova, E., Ryumin, A. 2020. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Research Communications, 48, 87-94. doi: 10.1007/s42976-019-00002-2
  • Brunava L., Alsina I., Zute S., Sterna V., Vicupe Z. 2014. Some chemical yield and quality properties of domestic oat cultivars. In 9th Baltic Conference on Food science and Technology “Food for Consumer Well-being” FOODBALT 2014, Jelgava, Latvia, p. 72-76.
  • Carlson, M. O., Montilla-Bascon, G., Hoekenga, O. A., Tinker, N. A., Poland, J., Baseggio, M., Yeats, T. H. 2019. Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat (Avena sativa L.). G3: Genes, Genomes, Genetics, 9(9), 2963-2975. doi: 10.1534/g3.119.400228
  • de Oliveira Maximino, J. V., Barros, L. M., Pereira, R. M., de Santi, I. I., Aranha, B. C., Busanello, C., Pegoraro, C. 2020. Mineral and fatty acid content variation in white oat genotypes grown in Brazil. Biological Trace Element Research, 1-13. doi:10.1007/s12011-020-02229-1
  • Doehlert, D. C., Mcmullen M. S., Hammond J. J. 2001. Genotyping and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci., 41, 1066-1072. doi: 10.2135/cropsci2001.4141066x.
  • FAO, 2018. Food and Agriculture Organization of the United Nations Statistics (FAOSTAT) Food and Agriculture Data. http://www.fao.org/faostat/en/?#home (erişim tarihi: 18.06.2020)
  • Grundy, M.M.L., Fardet, A., Tosh, S. M., Rich, G. T., Wilde, P. J. 2018. Processing of oat: the impact on oat’s cholesterol lowering effect. Food Funct. 9: 1328–1343. doi:10.1039/C7FO02006F.
  • Hawerroth, M.C., Carvalho, F.I.F., De Oliveira, A.C., De Silva, J.A.G., Da Gutkoski, L.C., Sartori, J.F., Woyann, L.G., Barbieri, R.L., Hawerroth, F.J. 2013. Adaptability and stability of white oat cultivars in relation to chemical composition of the caryopsis. Pesqui. Agropecuária Bras., 48, 42–50. doi:10.1590/S0100- 204X2013000100006.
  • Hoffmann L.A. 1995. World production and use of oats, In: Welch, R.W., (ed.), The Oat Crop-Production and Utilization. Chapman and Hall, London, pp. 34-61.
  • Li, X. P., Li, M. Y., Ling, A. J., Hu, X. Z., Ma, Z., Liu, L., Li, Y. X. 2017. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science, 73, 130-137.
  • Martinez, M. F., Arelovish, H. M., Wehrhahne, L. N. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Research, 116, 92-100.
  • Meydani, M. 2009. Potential health benefits of avenanthramides of oats. Nutr. Rev., 67, 731–735. doi: 10.1111/j.1753-4887.2009.00256.x
  • Michels, D. K., Chatham, L. A., Butts-Wilmsmeyer, C. J., Juvik, J. A., Kolb, F. L. 2020. Variation in avenanthramide content in spring oat over multiple environments. Journal of Cereal Science, 91, 102886.
  • Mut, Z., Erbaş Köse, Ö.D., Akay, H. 2016. Grain yield and some quality traits of different oat (Avena sativa L.) genotypes. International Journal of Environmental & Agriculture Research, 2 (12),83-88.
  • Mut, Z., Erbaş Köse, Ö.D., Akay, H. 2017. Chemical quality properties of different oat (Avena sativa L.) cultivars. Yuzuncu Yıl University Journal of Agricultural Sciences, 27 (3), 347-356. doi:10.29133/yyutbd.290920
  • Mut, Z., Akay, H., Erbaş Köse, Ö.D. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. Journal of Soil Science and Plant Nutrition, 18(1), 269-281. https://doi.org/10.4067/S0718-95162018005001001
  • National Research Council, 2001. Nutrient requirements of dairy cattle. 7th revised ed. National Academy Press, Washington, DC, USA.
  • O'fallon, J. V., Busboom J. R., Nelson, M. L., Gaskins, C. T. 2007. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. https://doi.org/10.2527/jas.2006-491
  • Peterson, D. M., Wesenberg, D. M., Burrup D. E., Erickson C.A. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sciences, 45, 1249-1255. https://doi.org/10.2135/cropsci2004.0063
  • Punia, S., Sandhu, K. S., Dhull, S. G., Siroha, A. K., Purewal, S. S., Kaur, M., Kidwai, M. K. 2020. Oat starch: Physico-chemical, morphological, rheological characteristics and its application-A review. International Journal of Biological Macromolecules. 154, 493-498
  • Rauf, M., Yoon, H., Lee, S., Shin, M. J., Ko, H. C., Lee, M. C., Choi, Y. M. 2019. Evaluation of major dietary ingredients in diverse oats (Avena sativa L.) germplasm. Journal of Crop Science and Biotechnology, 22(5), 495-507. https://doi.org/10.1007/s12892-019-0274-0
  • Silveira, S.F.S., Oliveira, D.C.S., Wolter, D.D., Luche, H.S., de Oliveira, V.F., Figueiredo, R. 2016. Performance of white oat cultivars for grain chemical content. Can. J. Plant Sci., 96, 530-538. doi: 10.1139/cjps-2015-0145.
  • Tamm, I. 2003. Genetic and environmental variation of grain yield of oat varietes. Agronomy Research, 1(1), 93-97. Tiwari, U., Cummins, E. 2009. Simulation of the factors affecting β-glucan levels during the cultivation of oats. Journal of Cereal Science, 50(2), 175-183.
  • Valentine, J., Cowan, A. A., Marshall, A. H. 2011. Oat Breeding, pp. 11–30 in Oats: Chemistry and Technology, edited by Webster, F. H., and P. J. Wood. AACC International, Inc., St. Paul, Minnesota. doi:/10.1094/9781891127649.002
  • Van Dyke, N.J., Anderson, P. M. 2000. Interpreting a forage analysis. Alabama cooperative extension. Circular ANR-890.
  • Van Soest, P. J., Robertson, J. B., Lewis, B. A. 1991. Methods for dietary Fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

Farklı yulaf (Avena sativa L.) genotiplerinin destek sulamalı ve sulamasız koşullarda bazı kalite özelliklerinin değerlendirilmesi

Yıl 2021, Cilt: 36 Sayı: 2, 234 - 243, 15.06.2021
https://doi.org/10.7161/omuanajas.845337

Öz

Yulaf nişasta, protein, diyet lif, yağ asitleri ve β-glukan gibi besin maddeleri açısından zengin olduğundan hem insanlar hem de hayvanlar için önemli bir temel besin kaynağı olarak kullanılmaktadır. Bu çalışma, 22 yulaf genotipinin bazı kalite özelliklerinin, yağışa dayalı ve destek sulamalı koşullarda incelenmesi amacıyla 2016-2017 yetiştirme sezonunda Yozgat’ın Yerköy ilçesinde yürütülmüştür. Denemeler üç tekrarlamalı olarak tesadüf blokları deneme desenine göre kurulmuştur. Araştırmada genotiplerin nişasta, protein, β-glukan, yağ ve yağ asitleri oranları ile asit deterjanda çözünmeyen lif (ADF) ve nötr deterjanda çözünmeyen lif (NDF) değerleri incelenmiştir. Yağışa dayalı koşullarda genotiplerin nişasta oranı %37.1-47.6, protein oranı % 12.7-15.2, β-glukan oranı % 3.53-4.58, yağ içeriğinin %4.64-7.89, linoleik asit içeriğinin % 28.8-37.2, oleik asit içeriğinin % 37.1-47.1, palmitik asit içeriğinin % 21.7-23.5, stearik asit içeriğinin % 1.74-2.05, ADF değerinin %11.9-16.9 ve NDF değerinin %30.1-37.1 arasında değiştiği belirlenmiştir. Destek sulamalı koşullarda ise genotiplerin nişasta oranı % 39.4-49.0, protein oranı %12.3-14.6, β-glukan oranı % 3.44-4.06, yağ içeriği % 4.87-8.27, linoleik asit içeriği % 29.0-37.1, oleik asit içeriği % 36.3-46.5, palmitik asit içeriği % 22.7-24.8, stearik asit içeriği % 1.86-2.05, ADF değeri % 12.0-16.3 ve NDF değeri % 30.3-37.5 arasında değişmiştir. Yağışa dayalı koşullarda G3, G6, G8, G9 ve G15 numaralı genotipler, destek sulamalı koşullarda G3, G8, G9, G11, G13 ve G15 numaralı genotipler nişasta, protein ve β-glukan içeriği bakımından ortalamanın üstünde değerlere sahip olurken, ADF ve NDF içeriği bakımından ortalamanın altında değerlere sahip olmuşlardır.

Kaynakça

  • AACC. 2005. American Association of Cereal Chemists. Approved Methods of the AACC (11th ed.). St. Paul, USA. https://methods.aaccnet.org/about.aspx.
  • Acar, Z., Özyazıcı, M.A., Korkmaz, A., Gülsar, C. 1995. Samsun Yöresinde Yalnız ve Adi Fiğ İle Karışık Yetiştirilen Bazı Yulaf Çeşitlerinden Elde Edilen Kuru Otun Mineral Madde Kompozisyonu, O.M.Ü. Ziraat Fakültesi Dergisi. 10 (3): 119-132.
  • AOAC. 2012. Official methods of analysis (19th ed.). Association of Official Chemists. Washington D.C., USA.
  • Bağcı, A., Geçgel, Ü., Özcan, M. M., Dumlupınar, Z., Uslu, N. 2019. Oil contents and fatty acid composition of oat (Avena sativa L.) seed and oils. Journal of Agroalimentary Processes and Technologies, 25 (4), 182-186.
  • Bityutskii, N. P., Loskutov, I., Yakkonen, K., Konarev, A., Shelenga, T., Khoreva, V., Blinova, E., Ryumin, A. 2020. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Research Communications, 48, 87-94. doi: 10.1007/s42976-019-00002-2
  • Brunava L., Alsina I., Zute S., Sterna V., Vicupe Z. 2014. Some chemical yield and quality properties of domestic oat cultivars. In 9th Baltic Conference on Food science and Technology “Food for Consumer Well-being” FOODBALT 2014, Jelgava, Latvia, p. 72-76.
  • Carlson, M. O., Montilla-Bascon, G., Hoekenga, O. A., Tinker, N. A., Poland, J., Baseggio, M., Yeats, T. H. 2019. Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat (Avena sativa L.). G3: Genes, Genomes, Genetics, 9(9), 2963-2975. doi: 10.1534/g3.119.400228
  • de Oliveira Maximino, J. V., Barros, L. M., Pereira, R. M., de Santi, I. I., Aranha, B. C., Busanello, C., Pegoraro, C. 2020. Mineral and fatty acid content variation in white oat genotypes grown in Brazil. Biological Trace Element Research, 1-13. doi:10.1007/s12011-020-02229-1
  • Doehlert, D. C., Mcmullen M. S., Hammond J. J. 2001. Genotyping and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci., 41, 1066-1072. doi: 10.2135/cropsci2001.4141066x.
  • FAO, 2018. Food and Agriculture Organization of the United Nations Statistics (FAOSTAT) Food and Agriculture Data. http://www.fao.org/faostat/en/?#home (erişim tarihi: 18.06.2020)
  • Grundy, M.M.L., Fardet, A., Tosh, S. M., Rich, G. T., Wilde, P. J. 2018. Processing of oat: the impact on oat’s cholesterol lowering effect. Food Funct. 9: 1328–1343. doi:10.1039/C7FO02006F.
  • Hawerroth, M.C., Carvalho, F.I.F., De Oliveira, A.C., De Silva, J.A.G., Da Gutkoski, L.C., Sartori, J.F., Woyann, L.G., Barbieri, R.L., Hawerroth, F.J. 2013. Adaptability and stability of white oat cultivars in relation to chemical composition of the caryopsis. Pesqui. Agropecuária Bras., 48, 42–50. doi:10.1590/S0100- 204X2013000100006.
  • Hoffmann L.A. 1995. World production and use of oats, In: Welch, R.W., (ed.), The Oat Crop-Production and Utilization. Chapman and Hall, London, pp. 34-61.
  • Li, X. P., Li, M. Y., Ling, A. J., Hu, X. Z., Ma, Z., Liu, L., Li, Y. X. 2017. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science, 73, 130-137.
  • Martinez, M. F., Arelovish, H. M., Wehrhahne, L. N. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Research, 116, 92-100.
  • Meydani, M. 2009. Potential health benefits of avenanthramides of oats. Nutr. Rev., 67, 731–735. doi: 10.1111/j.1753-4887.2009.00256.x
  • Michels, D. K., Chatham, L. A., Butts-Wilmsmeyer, C. J., Juvik, J. A., Kolb, F. L. 2020. Variation in avenanthramide content in spring oat over multiple environments. Journal of Cereal Science, 91, 102886.
  • Mut, Z., Erbaş Köse, Ö.D., Akay, H. 2016. Grain yield and some quality traits of different oat (Avena sativa L.) genotypes. International Journal of Environmental & Agriculture Research, 2 (12),83-88.
  • Mut, Z., Erbaş Köse, Ö.D., Akay, H. 2017. Chemical quality properties of different oat (Avena sativa L.) cultivars. Yuzuncu Yıl University Journal of Agricultural Sciences, 27 (3), 347-356. doi:10.29133/yyutbd.290920
  • Mut, Z., Akay, H., Erbaş Köse, Ö.D. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. Journal of Soil Science and Plant Nutrition, 18(1), 269-281. https://doi.org/10.4067/S0718-95162018005001001
  • National Research Council, 2001. Nutrient requirements of dairy cattle. 7th revised ed. National Academy Press, Washington, DC, USA.
  • O'fallon, J. V., Busboom J. R., Nelson, M. L., Gaskins, C. T. 2007. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. https://doi.org/10.2527/jas.2006-491
  • Peterson, D. M., Wesenberg, D. M., Burrup D. E., Erickson C.A. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sciences, 45, 1249-1255. https://doi.org/10.2135/cropsci2004.0063
  • Punia, S., Sandhu, K. S., Dhull, S. G., Siroha, A. K., Purewal, S. S., Kaur, M., Kidwai, M. K. 2020. Oat starch: Physico-chemical, morphological, rheological characteristics and its application-A review. International Journal of Biological Macromolecules. 154, 493-498
  • Rauf, M., Yoon, H., Lee, S., Shin, M. J., Ko, H. C., Lee, M. C., Choi, Y. M. 2019. Evaluation of major dietary ingredients in diverse oats (Avena sativa L.) germplasm. Journal of Crop Science and Biotechnology, 22(5), 495-507. https://doi.org/10.1007/s12892-019-0274-0
  • Silveira, S.F.S., Oliveira, D.C.S., Wolter, D.D., Luche, H.S., de Oliveira, V.F., Figueiredo, R. 2016. Performance of white oat cultivars for grain chemical content. Can. J. Plant Sci., 96, 530-538. doi: 10.1139/cjps-2015-0145.
  • Tamm, I. 2003. Genetic and environmental variation of grain yield of oat varietes. Agronomy Research, 1(1), 93-97. Tiwari, U., Cummins, E. 2009. Simulation of the factors affecting β-glucan levels during the cultivation of oats. Journal of Cereal Science, 50(2), 175-183.
  • Valentine, J., Cowan, A. A., Marshall, A. H. 2011. Oat Breeding, pp. 11–30 in Oats: Chemistry and Technology, edited by Webster, F. H., and P. J. Wood. AACC International, Inc., St. Paul, Minnesota. doi:/10.1094/9781891127649.002
  • Van Dyke, N.J., Anderson, P. M. 2000. Interpreting a forage analysis. Alabama cooperative extension. Circular ANR-890.
  • Van Soest, P. J., Robertson, J. B., Lewis, B. A. 1991. Methods for dietary Fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Zeki Mut 0000-0002-1465-3630

Necibe Demirtaş 0000-0003-4233-0393

Özge Doğanay Erbaş Köse 0000-0003-0429-3325

Yayımlanma Tarihi 15 Haziran 2021
Kabul Tarihi 26 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 2

Kaynak Göster

APA Mut, Z., Demirtaş, N., & Erbaş Köse, Ö. D. (2021). Farklı yulaf (Avena sativa L.) genotiplerinin destek sulamalı ve sulamasız koşullarda bazı kalite özelliklerinin değerlendirilmesi. Anadolu Tarım Bilimleri Dergisi, 36(2), 234-243. https://doi.org/10.7161/omuanajas.845337
Online ISSN: 1308-8769