Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

ORTAK MANNHEİM-D İSOGEODEZİK EĞRİYE SAHİP YÜZEYLER

Yıl 2020, Cilt 10, Sayı 2, 105 - 116, 31.12.2020

Öz

Bu çalışmada, verilen bir eğrinin Mannheim D- çiftini üzerinde jeodezik olarak kabul eden yüzeylerin parametrik formu inşa edildi. Yüzey, Darbaux çatısının lineer bir bileşimi olarak ifade edilerek, üzerinde bulundurduğu Mannheim D- eğri çiftinin izoparametrik ve jeodezik olması için gerekli ve yeterli şartlar tanımlandı. Mevcut tanımlamalar regle yüzeyler için ayrıca ele alındı. Son olaraksa ortak Mannheim D- izogeodezik eğrili yüzeylere bazı örnekler verildi.

Kaynakça

  • Referans1 Blum R (1966). A remarkable class of Mannheim-curves. Canadian Mathematical Bulletin 9: 223-228
  • Referans2 Guan, Z., Ling, J., Tao, N., Ping, X., & Rongxi, T. (1997). Study and application of physics-based deformable curves and surfaces. Computers & Graphics 21(3): 305-313
  • Referans3 Izumiya S & Takeuchi N (2003). Special Curves and Ruled surfaces, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 44(1): 203-212
  • Referans4 Kazaz M, Ugurlu H H, Önder M & Kahraman T (2015). Mannheim partner D-curves in the Euclidean 3-space E3. New Trends in Mathematical Sciences 3(2): 24-35
  • Referans5 Lee J W (2011). No Null-Helix Mannheim Curves in the Minkowski Space 𝔼𝟑𝟏. International Journal of Mathematics and Mathematical Sciences: 1-7
  • Referans6 Liu H & Wang F (2008). Mannheim partner curves in 3-space. Journal of Geometry 88(1-2): 120-126
  • Referans7 Lockwood E H (1967). A book of curves. Cambridge University Press
  • Referans8 O'neill B (2014). Elementary differential geometry. Academic press
  • Referans9 Petrovic, M., Verstraelen, J., & Verstraelen, L. (2000). Principal normal spectral variations of space curves. Proyecciones (Antofagasta), 19(2), 141-155
  • Referans10 Wang G J, Tang K & Tai C L (2004). Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5), 447-459

Yıl 2020, Cilt 10, Sayı 2, 105 - 116, 31.12.2020

Öz

In this paper, we construct the parameterization of surface family possessing a Mannheim D pair of a given curve as a geodesic. By using the Darboux frame, we present the surface as a linear combination of this frame and analyze the necessary and sufficient condition for a given curve such that its Mannheim D pair is both isoparametric and geodesic on a parametric surface. The extension to ruled surfaces is also outlined. Finally, examples are given to show the family of surfaces with common Mannheim D isogeodesic curve.

Kaynakça

  • Referans1 Blum R (1966). A remarkable class of Mannheim-curves. Canadian Mathematical Bulletin 9: 223-228
  • Referans2 Guan, Z., Ling, J., Tao, N., Ping, X., & Rongxi, T. (1997). Study and application of physics-based deformable curves and surfaces. Computers & Graphics 21(3): 305-313
  • Referans3 Izumiya S & Takeuchi N (2003). Special Curves and Ruled surfaces, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 44(1): 203-212
  • Referans4 Kazaz M, Ugurlu H H, Önder M & Kahraman T (2015). Mannheim partner D-curves in the Euclidean 3-space E3. New Trends in Mathematical Sciences 3(2): 24-35
  • Referans5 Lee J W (2011). No Null-Helix Mannheim Curves in the Minkowski Space 𝔼𝟑𝟏. International Journal of Mathematics and Mathematical Sciences: 1-7
  • Referans6 Liu H & Wang F (2008). Mannheim partner curves in 3-space. Journal of Geometry 88(1-2): 120-126
  • Referans7 Lockwood E H (1967). A book of curves. Cambridge University Press
  • Referans8 O'neill B (2014). Elementary differential geometry. Academic press
  • Referans9 Petrovic, M., Verstraelen, J., & Verstraelen, L. (2000). Principal normal spectral variations of space curves. Proyecciones (Antofagasta), 19(2), 141-155
  • Referans10 Wang G J, Tang K & Tai C L (2004). Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5), 447-459

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Süleyman ŞENYURT> (Sorumlu Yazar)
Ordu Üniversitesi
0000-0003-1097-5541
Türkiye


Kebire Hilal AYVACI>
ORDU ÜNİVERSİTESİ
0000-0002-5114-5475
Türkiye


Davut CANLI>
ORDU ÜNİVERSİTESİ
0000-0003-0405-9969
Türkiye

Yayımlanma Tarihi 31 Aralık 2020
Yayınlandığı Sayı Yıl 2020, Cilt 10, Sayı 2

Kaynak Göster

APA Şenyurt, S. , Ayvacı, K. H. & Canlı, D. (2020). ORTAK MANNHEİM-D İSOGEODEZİK EĞRİYE SAHİP YÜZEYLER . Ordu Üniversitesi Bilim ve Teknoloji Dergisi , 10 (2) , 105-116 . Retrieved from https://dergipark.org.tr/tr/pub/ordubtd/issue/58759/829031