Araştırma Makalesi
BibTex RIS Kaynak Göster

2-Hidroksipropil Akrilat ve Poli (Etilen Glikol)’den Oluşan ABA Tipi Blok Kopolimerlerin Faz Davranışlarının İncelenmesi

Yıl 2024, Cilt: 14 Sayı: 2, 261 - 272, 31.12.2024
https://doi.org/10.54370/ordubtd.1505035

Öz

2-hidroksipropil akrilat (HPA) ve etilen glikol (EG) segmentlerinden oluşan ABA tipi blok kopolimerleri, 400 ve 1450 gmol-1 ortalama mol kütlesine sahip ticari poli(etilen glikol)’lerden (PEG400 ve PEG1450) elde edilen iki farklı uzunlukta makro-RAFT ajanı kullanılarak RAFT polimerizasyon yöntemiyle hazırlandı. PEG400 ve PEG1450 omurgalı makro-RAFT ajanlarının difonksiyonel uçları HPA birimleri ile uzatılarak her ajandan üçer tane farklı uzunlukta ABA tipi blok kopolimer sentezlenmesi hedeflendi. Kopolimerlerin yapısal karakterizasyonu FTIR ve 1H-NMR spektroskopisi kullanılarak yapıldı. Kimyasal yapıların doğrulanmasına ek olarak, 1H-NMR spektrumundaki sinyal entegrasyonları, her bir kopolimerdeki ayrı ayrı tekrar eden birimlerin göreceli oranları hakkında bilgi verdi. Blokların bağıl uzunluklarına ve PEG içeriklerine bağlı olarak altı blok kopolimer kritik çözünme sıcaklıkları açısından incelendi. İncelenen tüm blok kopolimer sistemlerinin 17.2-23.9 oC aralığında düşük kritik çözelti sıcaklığı (LCST) sergilediği ve kopolimerlerdeki EG birimlerinin oranı arttıkça kopolimerlerin CST'sinin arttığı belirlendi.

Kaynakça

  • Babić, M. M., Božić, B., Antić, K. M., Jovašević Vuković, J. S., Perišić, M. D., Filipović, J. M., & Tomić, S. L. (2015). Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels. Materials Letters, 147, 64–68. https://doi.org/10.1016/j.matlet.2015.02.035
  • Babić, M. M., Božić, B. D., Božić, B. D., Filipović, J. M., Ušćumlić, G. S., & Tomić, S. L. (2016). Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin. Materials Letters, 163, 214–217. https://doi.org/10.1016/j.matlet.2015.10.078
  • Chen, F., Lu, G., Yuan, H., Li, R., Nie, J., Zhao, Y., Shu, X., & Zhu, X. (2022). Mechanism and regulation of LCST behavior in poly(hydroxypropyl acrylate)-based temperature-sensitive hydrogels. J. Mater. Chem. A, 10(35), 18235–18247. https://doi.org/10.1039/D2TA04271A
  • Christova, D., Velichkova, R., Loos, W., Goethals, E. J., & Prez, F. Du. (2003). New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer, 44(8), 2255–2261. https://doi.org/10.1016/S0032-3861(03)00139-3
  • Doberenz, F., Zeng, K., Willems, C., Zhang, K., & Groth, T. (2020). Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J. Mater. Chem. B, 8(4), 607–628. https://doi.org/10.1039/C9TB02052G
  • Eggenhuisen, T. M., Becer, C. R., Fijten, M. W. M., Eckardt, R., Hoogenboom, R., & Schubert, U. S. (2008). Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP. Macromolecules, 41(14), 5132–5140. https://doi.org/10.1021/ma800469p
  • Fergie, K. J., Wilson, D. R., Kracíková, L., Androvič, L., Yamagata, H., Wang, E. B., Yoon, H., Lynn, G. M., & Laga, R. (2024). Structural optimization of diblock polymers that undergo thermo-responsive nanoparticle self-assembly for intravitreal drug delivery. European Polymer Journal, 212, 113054. https://doi.org/10.1016/j.eurpolymj.2024.113054
  • Fournier, D., Hoogenboom, R., Thijs, H. M. L., Paulus, R. M., & Schubert, U. S. (2007). Tunable pH- and temperature-sensitive copolymer libraries by reversible addition−gragmentation Chain transfer copolymerizations of methacrylates. Macromolecules, 40(4), 915–920. https://doi.org/10.1021/ma062199r
  • González, N., Elvira, C., & Román, J. S. (2005). Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine. Macromolecules, 38(22), 9298–9303. https://doi.org/10.1021/ma050939a
  • Güner, A., & Ataman, M. (1994). Effects of inorganic salts on the properties of aqueous poly(vinylpyrrolidone) solutions. Colloid and Polymer Science, 272(2), 175–180. https://doi.org/10.1007/BF00658844
  • Hoogenboom, R., Popescu, D., Steinhauer, W., Keul, H., & Möller, M. (2009). Nitroxide-mediated copolymerization of 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate: Copolymerization kinetics and thermoresponsive properties. Macromolecular Rapid Communications, 30(23), 2042–2048. https://doi.org/10.1002/marc.200900507
  • Huang, M., Zhao, K., Wang, L., Lin, S., Li, J., Chen, J., Zhao, C., & Ge, Z. (2016). Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release. ACS Applied Materials & Interfaces, 8(18), 11226–11236. https://doi.org/10.1021/acsami.5b12227
  • Kanazawa, H., & Okano, T. (2011). Temperature-responsive chromatography for the separation of biomolecules. Journal of Chromatography A, 1218(49), 8738–8747. https://doi.org/10.1016/j.chroma.2011.04.015
  • Kim, Y.-J., & Matsunaga, Y. T. (2017). Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B, 5(23), 4307–4321. https://doi.org/10.1039/C7TB00157F
  • Kocak, G., Tuncer, C., & Bütün, V. (2017). pH-Responsive polymers. Polym. Chem., 8(1), 144–176. https://doi.org/10.1039/C6PY01872F
  • Lam, K. Y., Lee, C. S., Pichika, M. R., Cheng, S. F., & Hang Tan, R. Y. (2022). Light-responsive polyurethanes: classification of light-responsive moieties{,} light-responsive reactions{,} and their applications. RSC Adv., 12(24), 15261–15283. https://doi.org/10.1039/D2RA01506D
  • Levit, M., Zashikhina, N., Vdovchenko, A., Dobrodumov, A., Zakharova, N., Kashina, A., Rühl, E., Lavrentieva, A., Scheper, T., Tennikova, T., & Korzhikova-Vlakh, E. (2020). Bio-Inspired Amphiphilic Block-Copolymers Based on Synthetic Glycopolymer and Poly(Amino Acid) as Potential Drug Delivery Systems. Polymers, 12(1), 183. https://doi.org/10.3390/polym12010183
  • Lutz, J.-F. (2008). Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 46(11), 3459–3470. https://doi.org/10.1002/pola.22706
  • Perera, D. I., & Shanks, R. A. (1995). Network characteristics of homopolymer and some copolymers of poly(2-hydroxyethyl methacrylate). Polymer International, 37(2), 133–139. https://doi.org/10.1002/pi.1995.210370208
  • Raposo, C. D., Conceição, C. A., & Barros, M. T. (2020). Nanoparticles based on novel carbohydrate-functionalized polymers. In Molecules (Vol. 25, Issue 7). https://doi.org/10.3390/molecules25071744
  • Stoychev, G., Kirillova, A., & Ionov, L. (2019). Light-responsive shape-changing polymers. Advanced Optical Materials, 7(16), 1900067. https://doi.org/10.1002/adom.201900067
  • Taylor, L. D., & Cerankowski, L. D. (1975). Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions—a study of lower consolute behavior. Journal of Polymer Science: Polymer Chemistry Edition, 13(11), 2551–2570. https://doi.org/10.1002/pol.1975.170131113
  • Topham, P. D., Sandon, N., Read, E. S., Madsen, J., Ryan, A. J., & Armes, S. P. (2008). Facile synthesis of well-defined hydrophilic methacrylic macromonomers using ATRP and click chemistry. Macromolecules, 41(24), 9542–9547. https://doi.org/10.1021/ma8019656
  • Twal, S., Jaber, N., Al-Remawi, M., Hamad, I., Al-Akayleh, F., & Alshaer, W. (2024). Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv., 14(5), 3070–3084. https://doi.org/10.1039/D3RA08074A
  • Vancoillie, G., Frank, D., & Hoogenboom, R. (2014). Thermoresponsive poly(oligo ethylene glycol acrylates). Progress in Polymer Science, 39(6), 1074–1095. https://doi.org/10.1016/j.progpolymsci.2014.02.005
  • Vancoillie, G., Van Guyse, J. F. R., Voorhaar, L., Maji, S., Frank, D., Holder, E., & Hoogenboom, R. (2019). Understanding the effect of monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of polymeric sensors. Polym. Chem., 10(42), 5778–5789. https://doi.org/10.1039/C9PY01326A
  • Vo, C.-D., Rosselgong, J., Armes, S. P., & Tirelli, N. (2010). Stimulus-responsive polymers based on 2-hydroxypropyl acrylate prepared by RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48(9), 2032–2043. https://doi.org/10.1002/pola.23973
  • Vorobyev, S. A., Saikova, S. V, Novikova, S. A., Fetisova, O. Y., Zharkov, S. M., Krylov, A. S., Likhatski, M. N., & Mikhlin, Y. L. (2019). Colloidal and immobilized nanoparticles of lead xanthates. ACS Omega, 4(7), 11472–11480. https://doi.org/10.1021/acsomega.9b00841
  • Yadav, H. K. S., Dibi, M., Mohammed, A., & Emad, A. (2019). Chapter 13 - Thermoresponsive drug delivery systems, characterization, and applications. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Characterization and Biology of Nanomaterials for Drug Delivery (pp. 351–373). Elsevier. https://doi.org/10.1016/B978-0-12-814031-4.00013-1
  • Zalıpsky, S., Albericio, F., Slomczynska, U., & Barany, G. (1987). A convenient general method for synthesis of Nα- or Nω-dithiasuccinoyl (Dts) amino acids and dipeptides: Application of polyethylene glycol as a carrier for functional purification. International Journal of Peptide and Protein Research, 30(6), 740–783. https://doi.org/10.1111/j.1399-3011.1987.tb03386.x
  • Zhang, Q., Weber, C., Schubert, U. S., & Hoogenboom, R. (2017). Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz., 4(2), 109–116. https://doi.org/10.1039/C7MH00016B
  • Zhao, Z., Yin, L., Yuan, G., & Wang, L. (2012). Layer-by-layer assembly of two temperature-responsive homopolymers at neutral ph and the temperature-dependent solubility of the multilayer film. Langmuir, 28(5), 2704–2709. https://doi.org/10.1021/la2045042

An Investigation on Phase Behavior of ABA-type Block Copolymers Comprising of 2-Hydroxypropyl Acrylate and Poly (Ethylene Glycol)

Yıl 2024, Cilt: 14 Sayı: 2, 261 - 272, 31.12.2024
https://doi.org/10.54370/ordubtd.1505035

Öz

ABA-type block copolymers consisting of 2-hydroxypropyl acrylate (HPA) and ethylene glycol (EG) segments were prepared by the RAFT polymerization method using two different lengths of macro-RAFT agents based on commercial poly(ethylene glycol)s with average molar masses of 400 and 1450 gmol-1 (PEG400 and PEG1450). By extending the difunctional ends of PEG400 and PEG1450 vertebrate macro-RAFT agents with HPA units, it was aimed to synthesize three ABA type block copolymers of different lengths from each agent. Structural characterization of the copolymers was performed using FTIR and 1H-NMR spectroscopy. In addition to confirming the chemical structures, signal integrations in the 1H-NMR spectrum provided information about the relative proportions of individual repeating units in each copolymer. Six block copolymers were examined for critical dissolution temperatures based on the relative lengths of the blocks and their PEG content. It was determined that all block copolymer systems examined exhibited lower critical solution temperature (LCST) in the range of 17.2-23.9 oC, and as the ratio of EG units in the copolymers increased, the CST of the copolymers increased.

Etik Beyan

There are no ethical issues with the publication of this article. Conflict of Interest The authors state that there is no conflict of interest.

Kaynakça

  • Babić, M. M., Božić, B., Antić, K. M., Jovašević Vuković, J. S., Perišić, M. D., Filipović, J. M., & Tomić, S. L. (2015). Design of novel multifunctional Oxaprozin delivery system based on dual-sensitive poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels. Materials Letters, 147, 64–68. https://doi.org/10.1016/j.matlet.2015.02.035
  • Babić, M. M., Božić, B. D., Božić, B. D., Filipović, J. M., Ušćumlić, G. S., & Tomić, S. L. (2016). Evaluation of novel antiproliferative controlled drug delivery system based on poly(2-hydroxypropyl acrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin. Materials Letters, 163, 214–217. https://doi.org/10.1016/j.matlet.2015.10.078
  • Chen, F., Lu, G., Yuan, H., Li, R., Nie, J., Zhao, Y., Shu, X., & Zhu, X. (2022). Mechanism and regulation of LCST behavior in poly(hydroxypropyl acrylate)-based temperature-sensitive hydrogels. J. Mater. Chem. A, 10(35), 18235–18247. https://doi.org/10.1039/D2TA04271A
  • Christova, D., Velichkova, R., Loos, W., Goethals, E. J., & Prez, F. Du. (2003). New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer, 44(8), 2255–2261. https://doi.org/10.1016/S0032-3861(03)00139-3
  • Doberenz, F., Zeng, K., Willems, C., Zhang, K., & Groth, T. (2020). Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J. Mater. Chem. B, 8(4), 607–628. https://doi.org/10.1039/C9TB02052G
  • Eggenhuisen, T. M., Becer, C. R., Fijten, M. W. M., Eckardt, R., Hoogenboom, R., & Schubert, U. S. (2008). Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP. Macromolecules, 41(14), 5132–5140. https://doi.org/10.1021/ma800469p
  • Fergie, K. J., Wilson, D. R., Kracíková, L., Androvič, L., Yamagata, H., Wang, E. B., Yoon, H., Lynn, G. M., & Laga, R. (2024). Structural optimization of diblock polymers that undergo thermo-responsive nanoparticle self-assembly for intravitreal drug delivery. European Polymer Journal, 212, 113054. https://doi.org/10.1016/j.eurpolymj.2024.113054
  • Fournier, D., Hoogenboom, R., Thijs, H. M. L., Paulus, R. M., & Schubert, U. S. (2007). Tunable pH- and temperature-sensitive copolymer libraries by reversible addition−gragmentation Chain transfer copolymerizations of methacrylates. Macromolecules, 40(4), 915–920. https://doi.org/10.1021/ma062199r
  • González, N., Elvira, C., & Román, J. S. (2005). Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine. Macromolecules, 38(22), 9298–9303. https://doi.org/10.1021/ma050939a
  • Güner, A., & Ataman, M. (1994). Effects of inorganic salts on the properties of aqueous poly(vinylpyrrolidone) solutions. Colloid and Polymer Science, 272(2), 175–180. https://doi.org/10.1007/BF00658844
  • Hoogenboom, R., Popescu, D., Steinhauer, W., Keul, H., & Möller, M. (2009). Nitroxide-mediated copolymerization of 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate: Copolymerization kinetics and thermoresponsive properties. Macromolecular Rapid Communications, 30(23), 2042–2048. https://doi.org/10.1002/marc.200900507
  • Huang, M., Zhao, K., Wang, L., Lin, S., Li, J., Chen, J., Zhao, C., & Ge, Z. (2016). Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release. ACS Applied Materials & Interfaces, 8(18), 11226–11236. https://doi.org/10.1021/acsami.5b12227
  • Kanazawa, H., & Okano, T. (2011). Temperature-responsive chromatography for the separation of biomolecules. Journal of Chromatography A, 1218(49), 8738–8747. https://doi.org/10.1016/j.chroma.2011.04.015
  • Kim, Y.-J., & Matsunaga, Y. T. (2017). Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B, 5(23), 4307–4321. https://doi.org/10.1039/C7TB00157F
  • Kocak, G., Tuncer, C., & Bütün, V. (2017). pH-Responsive polymers. Polym. Chem., 8(1), 144–176. https://doi.org/10.1039/C6PY01872F
  • Lam, K. Y., Lee, C. S., Pichika, M. R., Cheng, S. F., & Hang Tan, R. Y. (2022). Light-responsive polyurethanes: classification of light-responsive moieties{,} light-responsive reactions{,} and their applications. RSC Adv., 12(24), 15261–15283. https://doi.org/10.1039/D2RA01506D
  • Levit, M., Zashikhina, N., Vdovchenko, A., Dobrodumov, A., Zakharova, N., Kashina, A., Rühl, E., Lavrentieva, A., Scheper, T., Tennikova, T., & Korzhikova-Vlakh, E. (2020). Bio-Inspired Amphiphilic Block-Copolymers Based on Synthetic Glycopolymer and Poly(Amino Acid) as Potential Drug Delivery Systems. Polymers, 12(1), 183. https://doi.org/10.3390/polym12010183
  • Lutz, J.-F. (2008). Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 46(11), 3459–3470. https://doi.org/10.1002/pola.22706
  • Perera, D. I., & Shanks, R. A. (1995). Network characteristics of homopolymer and some copolymers of poly(2-hydroxyethyl methacrylate). Polymer International, 37(2), 133–139. https://doi.org/10.1002/pi.1995.210370208
  • Raposo, C. D., Conceição, C. A., & Barros, M. T. (2020). Nanoparticles based on novel carbohydrate-functionalized polymers. In Molecules (Vol. 25, Issue 7). https://doi.org/10.3390/molecules25071744
  • Stoychev, G., Kirillova, A., & Ionov, L. (2019). Light-responsive shape-changing polymers. Advanced Optical Materials, 7(16), 1900067. https://doi.org/10.1002/adom.201900067
  • Taylor, L. D., & Cerankowski, L. D. (1975). Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions—a study of lower consolute behavior. Journal of Polymer Science: Polymer Chemistry Edition, 13(11), 2551–2570. https://doi.org/10.1002/pol.1975.170131113
  • Topham, P. D., Sandon, N., Read, E. S., Madsen, J., Ryan, A. J., & Armes, S. P. (2008). Facile synthesis of well-defined hydrophilic methacrylic macromonomers using ATRP and click chemistry. Macromolecules, 41(24), 9542–9547. https://doi.org/10.1021/ma8019656
  • Twal, S., Jaber, N., Al-Remawi, M., Hamad, I., Al-Akayleh, F., & Alshaer, W. (2024). Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv., 14(5), 3070–3084. https://doi.org/10.1039/D3RA08074A
  • Vancoillie, G., Frank, D., & Hoogenboom, R. (2014). Thermoresponsive poly(oligo ethylene glycol acrylates). Progress in Polymer Science, 39(6), 1074–1095. https://doi.org/10.1016/j.progpolymsci.2014.02.005
  • Vancoillie, G., Van Guyse, J. F. R., Voorhaar, L., Maji, S., Frank, D., Holder, E., & Hoogenboom, R. (2019). Understanding the effect of monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of polymeric sensors. Polym. Chem., 10(42), 5778–5789. https://doi.org/10.1039/C9PY01326A
  • Vo, C.-D., Rosselgong, J., Armes, S. P., & Tirelli, N. (2010). Stimulus-responsive polymers based on 2-hydroxypropyl acrylate prepared by RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48(9), 2032–2043. https://doi.org/10.1002/pola.23973
  • Vorobyev, S. A., Saikova, S. V, Novikova, S. A., Fetisova, O. Y., Zharkov, S. M., Krylov, A. S., Likhatski, M. N., & Mikhlin, Y. L. (2019). Colloidal and immobilized nanoparticles of lead xanthates. ACS Omega, 4(7), 11472–11480. https://doi.org/10.1021/acsomega.9b00841
  • Yadav, H. K. S., Dibi, M., Mohammed, A., & Emad, A. (2019). Chapter 13 - Thermoresponsive drug delivery systems, characterization, and applications. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Characterization and Biology of Nanomaterials for Drug Delivery (pp. 351–373). Elsevier. https://doi.org/10.1016/B978-0-12-814031-4.00013-1
  • Zalıpsky, S., Albericio, F., Slomczynska, U., & Barany, G. (1987). A convenient general method for synthesis of Nα- or Nω-dithiasuccinoyl (Dts) amino acids and dipeptides: Application of polyethylene glycol as a carrier for functional purification. International Journal of Peptide and Protein Research, 30(6), 740–783. https://doi.org/10.1111/j.1399-3011.1987.tb03386.x
  • Zhang, Q., Weber, C., Schubert, U. S., & Hoogenboom, R. (2017). Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz., 4(2), 109–116. https://doi.org/10.1039/C7MH00016B
  • Zhao, Z., Yin, L., Yuan, G., & Wang, L. (2012). Layer-by-layer assembly of two temperature-responsive homopolymers at neutral ph and the temperature-dependent solubility of the multilayer film. Langmuir, 28(5), 2704–2709. https://doi.org/10.1021/la2045042
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makromoleküler ve Malzeme Kimyası (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Efkan Çatıker 0000-0003-2493-7570

Abdullah Karanfil 0000-0003-2948-4216

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Ağustos 2024
Kabul Tarihi 9 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Çatıker, E., & Karanfil, A. (2024). An Investigation on Phase Behavior of ABA-type Block Copolymers Comprising of 2-Hydroxypropyl Acrylate and Poly (Ethylene Glycol). Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 14(2), 261-272. https://doi.org/10.54370/ordubtd.1505035