Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıçan Kökenli Enteroglial Hücrelerde Rotenon ile İndüklenen İnflamatuvar Değişiklikler Üzerine Vortioksetinin Etkileri: TLR4/NFκB Sinyal Yolağının Rolü

Yıl 2025, Cilt: 47 Sayı: 5, 743 - 750, 04.09.2025
https://doi.org/10.20515/otd.1672924

Öz

Parkinson hastalığı (PH) progresif bir nörodejeneratif hastalık olup günümüzde hastalığı durdurmaya yönelik kesin bir tedavi seçeneği bulunmamaktadır. Gastrointestinal inflamasyon, PH ile ilişkili motor-olmayan bulgulardan biridir. Son yıllarda antidepresanların potansiyel antiinflamatuvar etkileri nedeniyle nörodejeneratif hastalıkların tedavisinde kullanılabileceğine dair ilgi artmıştır. Bu çalışmada, vortioksetinin enterik glia hücrelerinde rotenon ile indüklenen inflamatuvar yanıtlar üzerindeki etkisi ve bu etkisinde TLR4/NF-κB sinyal yolağının rolü araştırılmıştır. Rotenon (10 μM) ve vortioksetin (1 ve 5 μM) ile muamele edilmiş hücre örneklerinde TLR4 ve NF-κB mRNA ekspresyonları RT-qPCR ile, TNF-α, IL-1β ve IL-6 düzeyleri ise ELISA yöntemiyle değerlendirilmiştir. Bulgular, rotenonun glial hücrelerin immün yanıtlarını bozarak TLR4 ve NF-κB ekspresyonunu belirgin şekilde baskıladığını ve bu etkinin 5 μM vortioksetin uygulamasıyla daha da arttığını göstermiştir. Ayrıca rotenon gruplarında TNF-α ve IL-1β düzeylerinde gözlenen düşüş, vortioksetin uygulaması ile tersine dönmüştür. Sonuçlar, vortioksetinin enterik glia hücrelerinde TLR4/NF-κB yolakları üzerinden inflamatuvar yanıtı düzenleyebileceğini ve PH’nin bağırsak-beyin eksenine dayalı inflamasyon modelinde potansiyel bir terapötik madde olarak çalışılabileceğini göstermektedir.

Proje Numarası

1919B012209240

Kaynakça

  • 1.Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P. Enteric glial cells: new players in Parkinson's disease? Mov Disord. 2015;30(4):494-8.
  • 2.Chalazonitis A, Rao M. Enteric nervous system manifestations of neurodegenerative disease. Brain Res. 2018;1693(Pt B):207-13.
  • 3.Grundmann D, Loris E, Maas-Omlor S, Huang W, Scheller A, Kirchhoff F, et al. Enteric Glia: S100, GFAP, and Beyond. Anat Rec (Hoboken). 2019;302(8):1333-44.
  • 4.Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011;17(10):1261-6.
  • 5.Costa DVS, Bon-Frauches AC, Silva A, Lima-Junior RCP, Martins CS, Leitao RFC, et al. 5-Fluorouracil Induces Enteric Neuron Death and Glial Activation During Intestinal Mucositis via a S100B-RAGE-NFkappaB-Dependent Pathway. Sci Rep. 2019;9(1):665.
  • 6.Drolet RE, Cannon JR, Montero L, Greenamyre JT. Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiol Dis. 2009;36(1):96-102.
  • 7.Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. 1988;76(3):217-21.
  • 8.Benvenuti L, D'Antongiovanni V, Pellegrini C, Antonioli L, Bernardini N, Blandizzi C, et al. Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease. Int J Mol Sci. 2020;21(23).
  • 9.Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener. 2021;10(1):47.
  • 10.Conte C, Ingrassia A, Breve J, Bol JJ, Timmermans-Huisman E, van Dam AM, et al. Toll-like Receptor 4 Is Upregulated in Parkinson's Disease Patients and Co-Localizes with pSer129αSyn: A Possible Link with the Pathology. Cells. 2023;12(10).
  • 11.Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;3(12):1301-6.
  • 12.Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci. 2003;23(34):10756-64.
  • 13.Miyazaki I, Isooka N, Imafuku F, Sun J, Kikuoka R, Furukawa C, et al. Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson's Disease. Int J Mol Sci. 2020;21(9).
  • 14.Elmazoglu Z, Seda YSA, Can S, and Karasu C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug and Chemical Toxicology. 2020;43(1):96-103.
  • 15.Ishola IO, Awogbindin IO, Olubodun-Obadun TG, Oluwafemi OA, Onuelu JE, Adeyemi OO. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain Research. 2022;1789:147958.
  • 16.Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O'Sullivan GA, Pal A, et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports. 2012;2(1):898.
  • 17.Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut. 2019;68(5):829-43.
  • 18.Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollón F, et al. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation. PLOS ONE. 2016;11(12):e0169303.
  • 19.Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43-57.
  • 20.Nemutlu Samur D, Akcay G, Yildirim S, Ozkan A, Ceker T, Derin N, et al. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology. 2022;208:108977.
  • 21.Samur DN, Yıldırım S, Maytalman E, Kalay M, Tanrıöver G, Özbey G. Vortioxetine attenuates rotenone-induced enteric neuroinflammation via modulation of the TLR2/S100B/RAGE signaling pathway in a rat model of Parkinson's disease. Neuropharmacology. 2025;271:110385.
  • 22.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3(6):1101-8.
  • 23.Miyazaki I, Asanuma M. The Rotenone Models Reproducing Central and Peripheral Features of Parkinson’s Disease. NeuroSci. 2020;1(1):1-14.
  • 24.Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79(6):940-9.
  • 25.Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions. NeuroToxicology. 2015;46:101-16.
  • 26.Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010;5(1):e8762.
  • 27.Van Den Berge N, Ferreira N, Gram H, Mikkelsen TW, Alstrup AKO, Casadei N, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 2019;138(4):535-50.
  • 28.Miyazaki I, Isooka N, Wada K, Kikuoka R, Kitamura Y, Asanuma M. Effects of Enteric Environmental Modification by Coffee Components on Neurodegeneration in Rotenone-Treated Mice. Cells. 2019;8(3).
  • 29.Virga DM, Capps J, Vohra BPS. Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity. Neurochem Res. 2018;43(12):2288-303.
  • 30.Thomasi BBdM, Valdetaro L, Ricciardi MCG, Hayashide L, Fernandes ACMN, Mussauer A, et al. Enteric glial cell reactivity in colonic layers and mucosal modulation in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Brain Research Bulletin. 2022;187:111-21.
  • 31.Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, et al. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 2011;7(3):e1001315.
  • 32.Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain, Behavior, and Immunity. 2019;76:236-47.
  • 33.Zhang FX, Xu RS. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother. 2018;97:1011-9.
  • 34.Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated Alpha-Synuclein Activates Pro-Inflammatory NFKB Signaling Pathways Through TLR-Dependent and Independent Mechanisms in Peripheral Monocytic Cells. The FASEB Journal. 2022;36(S1).
  • 35.Rabaneda-Lombarte N, Blasco-Agell L, Serratosa J, Ferigle L, Saura J, Solà C. Parkinsonian neurotoxicants impair the anti-inflammatory response induced by IL4 in glial cells: involvement of the CD200-CD200R1 ligand-receptor pair. Scientific Reports. 2020;10(1):10650.
  • 36.Rabaneda-Lombarte N, Xicoy-Espaulella E, Serratosa J, Saura J, Solà C. Parkinsonian Neurotoxins Impair the Pro-inflammatory Response of Glial Cells. Frontiers in Molecular Neuroscience. 2019;11.
  • 37.Sales MC, Kasahara TM, Sacramento PM, Rossi Á D, Cafasso M, Oyamada HAA, et al. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2(+) and TLR4(+) Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology. 2021;162(3):290-305.
  • 38.de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, et al. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine. 2020;136:155273.
  • 39.Ye X, Wang D, Zhu H, Wang D, Li J, Tang Y, et al. Gut Microbiota Changes in Patients With Major Depressive Disorder Treated With Vortioxetine. Front Psychiatry. 2021;12:641491.
  • 40.Chen H, O'Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral Inflammatory Biomarkers and Risk of Parkinson's Disease. American Journal of Epidemiology. 2007;167(1):90-5.
  • 41.Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer's Disease, Parkinson's Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front Immunol. 2018;9:2122.
  • 42.Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl. 2000(60):277-90.
  • 43.Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis. 2013;50:42-8.
  • 44.Gao HM, Hong JS, Zhang W, Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci. 2002;22(3):782-90.

The Effects of Vortioxetine on Rotenone-Induced Inflammatory Changes in Rat-Derived Enteroglial Cells: The Role of the TLR4/NFκB Signaling Pathway

Yıl 2025, Cilt: 47 Sayı: 5, 743 - 750, 04.09.2025
https://doi.org/10.20515/otd.1672924

Öz

Parkinson’s disease (PD) is a progressive neurodegenerative disorder with both motor and non-motor symptoms, and currently, there is currently no disease-modifying therapy. Due to their potential anti-inflammatory effects, antidepressants have gained attention as therapeutic agents in inflammation-related neurological conditions. In this study, we aimed to investigate the effects of vortioxetine on rotenone-induced enteric inflammation in an in vitro model using enteric glial cells and whether these effects involve modulation of the TLR4/NF-κB signaling pathway. Cells were treated with rotenone (10 μM) and vortioxetine (1 and 5 μM). TLR4 and NF-κB mRNA expression levels were analyzed by RT-qPCR, and the levels of TNF-α, IL-1β, and IL-6 were measured via ELISA. The findings showed that rotenone significantly suppressed TLR4 and NF-κB expression by impairing the immune responses of glial cells, and the administration of 5 μM vortioxetine further enhanced this effect. Additionally, the decrease observed in TNF-α and IL-1β levels in the rotenone groups was reversed by vortioxetine administration. The results suggest that vortioxetine may regulate inflammatory responses in enteric glial cells through the TLR4/NF-κB pathways and could be investigated as a potential therapeutic compound in inflammation-based models of the gut-brain axis in PD.

Etik Beyan

None

Destekleyen Kurum

TÜBİTAK (The Scientific and Technological Research Council of Turkey)

Proje Numarası

1919B012209240

Teşekkür

This work was supported by grants from the Scientific and Technological Research Council of Turkey, TÜBİTAK (2209-A - Research Project Support Programme for Undergraduate Students, Application number: 1919B012209240). The authors would like to express their appreciation to Lundbeck A/S for supplying vortioxetine for research purposes. We also extend our thanks to Dr. Luca Antonioli for providing the enteroglial cell line that was used in this study.

Kaynakça

  • 1.Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P. Enteric glial cells: new players in Parkinson's disease? Mov Disord. 2015;30(4):494-8.
  • 2.Chalazonitis A, Rao M. Enteric nervous system manifestations of neurodegenerative disease. Brain Res. 2018;1693(Pt B):207-13.
  • 3.Grundmann D, Loris E, Maas-Omlor S, Huang W, Scheller A, Kirchhoff F, et al. Enteric Glia: S100, GFAP, and Beyond. Anat Rec (Hoboken). 2019;302(8):1333-44.
  • 4.Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011;17(10):1261-6.
  • 5.Costa DVS, Bon-Frauches AC, Silva A, Lima-Junior RCP, Martins CS, Leitao RFC, et al. 5-Fluorouracil Induces Enteric Neuron Death and Glial Activation During Intestinal Mucositis via a S100B-RAGE-NFkappaB-Dependent Pathway. Sci Rep. 2019;9(1):665.
  • 6.Drolet RE, Cannon JR, Montero L, Greenamyre JT. Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiol Dis. 2009;36(1):96-102.
  • 7.Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. 1988;76(3):217-21.
  • 8.Benvenuti L, D'Antongiovanni V, Pellegrini C, Antonioli L, Bernardini N, Blandizzi C, et al. Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease. Int J Mol Sci. 2020;21(23).
  • 9.Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener. 2021;10(1):47.
  • 10.Conte C, Ingrassia A, Breve J, Bol JJ, Timmermans-Huisman E, van Dam AM, et al. Toll-like Receptor 4 Is Upregulated in Parkinson's Disease Patients and Co-Localizes with pSer129αSyn: A Possible Link with the Pathology. Cells. 2023;12(10).
  • 11.Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;3(12):1301-6.
  • 12.Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci. 2003;23(34):10756-64.
  • 13.Miyazaki I, Isooka N, Imafuku F, Sun J, Kikuoka R, Furukawa C, et al. Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson's Disease. Int J Mol Sci. 2020;21(9).
  • 14.Elmazoglu Z, Seda YSA, Can S, and Karasu C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug and Chemical Toxicology. 2020;43(1):96-103.
  • 15.Ishola IO, Awogbindin IO, Olubodun-Obadun TG, Oluwafemi OA, Onuelu JE, Adeyemi OO. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain Research. 2022;1789:147958.
  • 16.Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O'Sullivan GA, Pal A, et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports. 2012;2(1):898.
  • 17.Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut. 2019;68(5):829-43.
  • 18.Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollón F, et al. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation. PLOS ONE. 2016;11(12):e0169303.
  • 19.Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43-57.
  • 20.Nemutlu Samur D, Akcay G, Yildirim S, Ozkan A, Ceker T, Derin N, et al. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology. 2022;208:108977.
  • 21.Samur DN, Yıldırım S, Maytalman E, Kalay M, Tanrıöver G, Özbey G. Vortioxetine attenuates rotenone-induced enteric neuroinflammation via modulation of the TLR2/S100B/RAGE signaling pathway in a rat model of Parkinson's disease. Neuropharmacology. 2025;271:110385.
  • 22.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3(6):1101-8.
  • 23.Miyazaki I, Asanuma M. The Rotenone Models Reproducing Central and Peripheral Features of Parkinson’s Disease. NeuroSci. 2020;1(1):1-14.
  • 24.Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79(6):940-9.
  • 25.Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions. NeuroToxicology. 2015;46:101-16.
  • 26.Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010;5(1):e8762.
  • 27.Van Den Berge N, Ferreira N, Gram H, Mikkelsen TW, Alstrup AKO, Casadei N, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 2019;138(4):535-50.
  • 28.Miyazaki I, Isooka N, Wada K, Kikuoka R, Kitamura Y, Asanuma M. Effects of Enteric Environmental Modification by Coffee Components on Neurodegeneration in Rotenone-Treated Mice. Cells. 2019;8(3).
  • 29.Virga DM, Capps J, Vohra BPS. Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity. Neurochem Res. 2018;43(12):2288-303.
  • 30.Thomasi BBdM, Valdetaro L, Ricciardi MCG, Hayashide L, Fernandes ACMN, Mussauer A, et al. Enteric glial cell reactivity in colonic layers and mucosal modulation in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Brain Research Bulletin. 2022;187:111-21.
  • 31.Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, et al. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 2011;7(3):e1001315.
  • 32.Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain, Behavior, and Immunity. 2019;76:236-47.
  • 33.Zhang FX, Xu RS. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother. 2018;97:1011-9.
  • 34.Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated Alpha-Synuclein Activates Pro-Inflammatory NFKB Signaling Pathways Through TLR-Dependent and Independent Mechanisms in Peripheral Monocytic Cells. The FASEB Journal. 2022;36(S1).
  • 35.Rabaneda-Lombarte N, Blasco-Agell L, Serratosa J, Ferigle L, Saura J, Solà C. Parkinsonian neurotoxicants impair the anti-inflammatory response induced by IL4 in glial cells: involvement of the CD200-CD200R1 ligand-receptor pair. Scientific Reports. 2020;10(1):10650.
  • 36.Rabaneda-Lombarte N, Xicoy-Espaulella E, Serratosa J, Saura J, Solà C. Parkinsonian Neurotoxins Impair the Pro-inflammatory Response of Glial Cells. Frontiers in Molecular Neuroscience. 2019;11.
  • 37.Sales MC, Kasahara TM, Sacramento PM, Rossi Á D, Cafasso M, Oyamada HAA, et al. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2(+) and TLR4(+) Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology. 2021;162(3):290-305.
  • 38.de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, et al. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine. 2020;136:155273.
  • 39.Ye X, Wang D, Zhu H, Wang D, Li J, Tang Y, et al. Gut Microbiota Changes in Patients With Major Depressive Disorder Treated With Vortioxetine. Front Psychiatry. 2021;12:641491.
  • 40.Chen H, O'Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral Inflammatory Biomarkers and Risk of Parkinson's Disease. American Journal of Epidemiology. 2007;167(1):90-5.
  • 41.Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer's Disease, Parkinson's Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front Immunol. 2018;9:2122.
  • 42.Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl. 2000(60):277-90.
  • 43.Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis. 2013;50:42-8.
  • 44.Gao HM, Hong JS, Zhang W, Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci. 2002;22(3):782-90.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Farmakoloji
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Dilara Nemutlu Samur 0000-0003-2630-6182

Erkan Maytalman 0000-0001-5284-7439

Öykü Zorlu 0009-0004-9708-7524

Proje Numarası 1919B012209240
Yayımlanma Tarihi 4 Eylül 2025
Gönderilme Tarihi 9 Nisan 2025
Kabul Tarihi 16 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 47 Sayı: 5

Kaynak Göster

Vancouver Nemutlu Samur D, Maytalman E, Zorlu Ö. The Effects of Vortioxetine on Rotenone-Induced Inflammatory Changes in Rat-Derived Enteroglial Cells: The Role of the TLR4/NFκB Signaling Pathway. Osmangazi Tıp Dergisi. 2025;47(5):743-50.


13299        13308       13306       13305    13307  1330126978