Araştırma Makalesi
BibTex RIS Kaynak Göster

Non-Fermenting Gram-Negative Isolates as Infecting Agents and Antibiotic Resistance: Three-Year Data

Yıl 2022, , 538 - 545, 10.12.2022
https://doi.org/10.26453/otjhs.1058819

Öz

Objective: This study aimed to investigate clinical non-fermenting gram-negative isolates and antibiotic resistance profiles for three years in a tertiary hospital.
Materials and Methods: A total of 3817 non-fermenting gram-negative strains isolated from various cultures between January 2017 and December 2019 in Balıkesir Atatürk City Hospital were investigated retrospectively. Identification and antibiotic susceptibilities were performed using conventional methods and PhoenixTM 100 system (Becton Dickinson, MA, USA).
Results: A total of 2201 (57.7%) P. aeruginosa, 1283 (33.6%) A. baumannii-calcoaceticus complex, 202 (5.3%) S. maltophilia and 131 (3.4%) B. cepacia complex strains were identified. The majority of strains were isolated from intensive care units (54.5%), followed by internal medicine (33.4%) and surgical services (12.1%). All A. baumannii-calcoaceticus complex species showed over 70% resistance to most antibiotics. In addition to β-lactam antibiotic resistance (generally over 30%), resistance to fluoroquinolones (30.4%) seemed to have particular importance. Co-trimoxazole showed below 10% resistance in S. maltophilia isolates. In B. cepacia complex, ceftazidime resistance increased in years (2018, 22.2%; 2019, 67.0%). Conclusion: The issue of antibiotic resistance cannot be won by just developing novel antimicrobials, but also by increasing the efficiency of current ones. The first step is to “diagnose” the current condition, like local surveillance studies. 

Teşekkür

The authors wish to declare special thanks to Muradiye YARAR, M.D., İlkay BOZDAĞ, M.D. and Osman KILINÇ, M.D. (Balıkesir Atatürk City Hospital, Department of Medical Microbiology, Balıkesir, Turkey) for their precious support.

Kaynakça

  • Fuhrmeister AS, Jones RN. The importance of antimicrobial resistance monitoring worldwide and the origins of SENTRY antimicrobial surveillance program. Open Forum Infect Dis. 2019;6(S1):S1–S4. doi:10.1093/ofid/ofy346
  • National Antimicrobial Surveillance System. https://hsgm.saglik.gov.tr/tr/uamdss. Accessed June 17, 2021.
  • World Health Organization (WHO). Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR), Annual 2020 Report, 2020. https://www.euro.who.int/__data/assets/pdf_file/0003/469200/Central-Asian-and-European-Surveillance-of-Antimicrobial-Resistance.-Annual-report-2020-eng.pdf. Accessed June 17, 2021.
  • Zhanel GG, Adam HJ, Baxter MR, et al. 42936 pathogens from Canadian hospitals: 10 years of results (2007–16) from the CANWARD surveillance study. J Antimicrob Chemother. 2019;74(Suppl 4):iv5–iv21. doi:10.1093/jac/dkz283
  • Lagacé-Wiens PR, Adam HJ, et al. Trends in antimicrobial resistance over 10 years among key bacterial pathogens from Canadian hospitals: results of the CANWARD study 2007–16. J Antimicrob Chemother. 2019;74(Suppl 4):iv22–iv31. doi:10.1093/jac/dkz284
  • European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019. Stockholm: ECDC; 2020. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019. Accessed June 17, 2021.
  • Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. doi:10.15620/cdc:82532. Accessed June 17, 2021.
  • WHO priority pathogens list for R&D of new antibiotics. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed June 17, 2021.
  • Sfeir MM. Burkholderia cepacia complex infections: more complex than the bacterium name suggest. J Infect. 2018;77(3):166-170. doi:10.1016/j.jinf.2018.07.006
  • Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol. 2017;8:2276. doi:10.3389/fmicb.2017.02276
  • European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, Basel, Switzerland. https://www.eucast.org. Accessed June 17, 2021.
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-seventh informational supplement, M100-S27, Wayne, Pennsylvania: CLSI; 2017.
  • Uskudar-Guclu A, Gozen AG. Genetic Diversity of OXA-like genes in multidrug resistant Acinetobacter baumannii strains from ICUs. Clin Lab. 2020;66:2015-2019. doi:10.7754/clin.lab.2020.200135
  • Uskudar-Guclu A, Guney M, Sig AK, Kilic S, Baysallar M. Arising Prevalence of OXA-48 producer Escherichia coli and OXA-48 with NDM co-producer Klebsiella pneumoniae Strains. Rev Rom Med Lab. 2019;27(3):319-326. doi:10.2478/rrlm-2019-0030
  • Mataj V, Guney M, Sig AK, et al. An Investigation into bacterial bloodstream infections and antibiotic resistance profiles in a tertiary hospital for a ten-year period. Clin Lab. 2020;66:1467-1477. doi:10.7754/Clin.Lab.2020.191033
  • Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agent Chemother. 2019;63(7):e00355-19. doi:10.1128/AAC.00355-19
  • Gales AC, Castanheira M, Seifert H, Gur D, Jones RN, Sader HS. The Worldwide Panorama of Acinetobacter baumannii Group and Stenotrophomonas maltophilia in the Last 20 Years: Results from the SENTRY Antimicrobial Surveillance Program (1997–2016). In: The 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2018. https://www.jmilabs.com/data/posters/ECCMID2018-SENTRY-Acinetobacter.pdf. Accessed June 17, 2021.
  • Uskudar-Guclu A, Altay-Kocak A, Akcil-Ok M, Tutluoglu B, Basustaoglu AC, Respiratory Study Group. Antibacterial Resistance in Lower Respiratory Tract Bacterial Pathogens: A Multicenter Analysis from Turkey. J Infect Dev Ctries. 2021;15(2):254-262. doi:10.3855/jidc.12599.
  • The European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption and resistance in bacteria from humans and animals: Inter-agency Report, 2016-2018. https://www.ecdc.europa.eu/sites/default/files/documents/JIACRA-III-Antimicrobial-Consumption-and-Resistance-in-Bacteria-from-Humans-and-Animals.pdf. Accessed June 17, 2021.
  • Wu H, Wang JT, Shiau YR, Wang HY, Lauderdale TLY, Chang SC. A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect. 2012;45(2):120-126. doi:10.1016/j.jmii.2011.09.028
  • Matson HH, Jones BM, Wagner JL, Motes MA, Bland CM. Growing resistance in Stenotrophomonas maltophilia?. Am J Health Syst Pharm. 2019;76(24):2004-2005. doi:10.1093/ajhp/zxz247
  • Cusack TP, Ashley EA, Ling CL, et al. Impact of CLSI and EUCAST breakpoint discrepancies on reporting of antimicrobial susceptibility and AMR surveillance. Clin Microb Infect. 2019;25(7):910-911. doi:10.1016/j.cmi.2019.03.007
  • Satlin MJ. The search for a practical method for colistin susceptibility testing: Have we found it by going back to the future?. J Clin Microb. 2019;57(2):e01608-18. doi:10.1128/JCM.01608-18

Enfeksiyon Etkeni Nonfermenter Gram Negatif İzolatlar ve Antibiyotik Dirençleri: Üç Yıllık Veri

Yıl 2022, , 538 - 545, 10.12.2022
https://doi.org/10.26453/otjhs.1058819

Öz

Amaç: Bu çalışmanın amacı, üç yıllık dönemde bir üçüncü basamak hastanenin enfeksiyon etkeni nonfermenter gram negatif izolatlarını ve antibiyotik direnç profillerini belirlemektir.
Materyal ve Metot: Balıkesir Atatürk Şehir Hastanesi’ndeki çeşitli kültürlerden, Ocak 2017-Aralık 2019 arasında, toplamda 3817 nonfermenter gram negatif organizma izole edilmiştir ve retrospektif olarak incelenmiştir. Tanımlama ve antibiyotik duyarlılıkları konvansiyonel yöntemler ve PhoenixTM 100 sistemi (Becton Dickinson, MA, ABD) ile yapılmıştır
Bulgular: Toplamda; 2201 (%57,7) P. aeruginosa, 1283 (%33,6) A. baumannii-calcoaceticus kompleks, 202 (%5,3) S. maltophilia ve 131 (%3,4) B. cepacia kompleks suşu izole edildi. Suşların %54,5’i yoğun bakım ünitelerinden izole edildi ve bunu dahili branş (%33,4) ve cerrahi branş servisleri (%12,1) takip etti. Tüm A. baumannii-calcoaceticus kompleks suşlarında test edilen altı antibiyotiğin dördüne %70’in üzerinde direnç belirlendi. Beta-laktam antibiyotik direncinin yanında (genellikle %30’dan fazla gözlendi), florokinolon direnci de (%30,4) yüksekti. S. maltophilia izolatlarında, kotrimaksazol direnci %10’un altında kaldı. B. cepacia kompleks izolatlarında, seftazidim direnci yıllar içinde artış gösterdi (2018, %22,2; 2019, %67,0).
Sonuç: Antibiyotik direnci sorunu yalnız yeni antibiyotiklerin geliştirilmesi ile değil, ayrıca bilinen antibiyotiklerin etkinliğinin arttırılması ile kazanılabilir. Bu amaca yönelik işlemlerde ilk basamak, yerel sürveyans çalışmaları gibi güncel durumun tespitidir. 

Kaynakça

  • Fuhrmeister AS, Jones RN. The importance of antimicrobial resistance monitoring worldwide and the origins of SENTRY antimicrobial surveillance program. Open Forum Infect Dis. 2019;6(S1):S1–S4. doi:10.1093/ofid/ofy346
  • National Antimicrobial Surveillance System. https://hsgm.saglik.gov.tr/tr/uamdss. Accessed June 17, 2021.
  • World Health Organization (WHO). Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR), Annual 2020 Report, 2020. https://www.euro.who.int/__data/assets/pdf_file/0003/469200/Central-Asian-and-European-Surveillance-of-Antimicrobial-Resistance.-Annual-report-2020-eng.pdf. Accessed June 17, 2021.
  • Zhanel GG, Adam HJ, Baxter MR, et al. 42936 pathogens from Canadian hospitals: 10 years of results (2007–16) from the CANWARD surveillance study. J Antimicrob Chemother. 2019;74(Suppl 4):iv5–iv21. doi:10.1093/jac/dkz283
  • Lagacé-Wiens PR, Adam HJ, et al. Trends in antimicrobial resistance over 10 years among key bacterial pathogens from Canadian hospitals: results of the CANWARD study 2007–16. J Antimicrob Chemother. 2019;74(Suppl 4):iv22–iv31. doi:10.1093/jac/dkz284
  • European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019. Stockholm: ECDC; 2020. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019. Accessed June 17, 2021.
  • Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. doi:10.15620/cdc:82532. Accessed June 17, 2021.
  • WHO priority pathogens list for R&D of new antibiotics. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed June 17, 2021.
  • Sfeir MM. Burkholderia cepacia complex infections: more complex than the bacterium name suggest. J Infect. 2018;77(3):166-170. doi:10.1016/j.jinf.2018.07.006
  • Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol. 2017;8:2276. doi:10.3389/fmicb.2017.02276
  • European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, Basel, Switzerland. https://www.eucast.org. Accessed June 17, 2021.
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-seventh informational supplement, M100-S27, Wayne, Pennsylvania: CLSI; 2017.
  • Uskudar-Guclu A, Gozen AG. Genetic Diversity of OXA-like genes in multidrug resistant Acinetobacter baumannii strains from ICUs. Clin Lab. 2020;66:2015-2019. doi:10.7754/clin.lab.2020.200135
  • Uskudar-Guclu A, Guney M, Sig AK, Kilic S, Baysallar M. Arising Prevalence of OXA-48 producer Escherichia coli and OXA-48 with NDM co-producer Klebsiella pneumoniae Strains. Rev Rom Med Lab. 2019;27(3):319-326. doi:10.2478/rrlm-2019-0030
  • Mataj V, Guney M, Sig AK, et al. An Investigation into bacterial bloodstream infections and antibiotic resistance profiles in a tertiary hospital for a ten-year period. Clin Lab. 2020;66:1467-1477. doi:10.7754/Clin.Lab.2020.191033
  • Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agent Chemother. 2019;63(7):e00355-19. doi:10.1128/AAC.00355-19
  • Gales AC, Castanheira M, Seifert H, Gur D, Jones RN, Sader HS. The Worldwide Panorama of Acinetobacter baumannii Group and Stenotrophomonas maltophilia in the Last 20 Years: Results from the SENTRY Antimicrobial Surveillance Program (1997–2016). In: The 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2018. https://www.jmilabs.com/data/posters/ECCMID2018-SENTRY-Acinetobacter.pdf. Accessed June 17, 2021.
  • Uskudar-Guclu A, Altay-Kocak A, Akcil-Ok M, Tutluoglu B, Basustaoglu AC, Respiratory Study Group. Antibacterial Resistance in Lower Respiratory Tract Bacterial Pathogens: A Multicenter Analysis from Turkey. J Infect Dev Ctries. 2021;15(2):254-262. doi:10.3855/jidc.12599.
  • The European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption and resistance in bacteria from humans and animals: Inter-agency Report, 2016-2018. https://www.ecdc.europa.eu/sites/default/files/documents/JIACRA-III-Antimicrobial-Consumption-and-Resistance-in-Bacteria-from-Humans-and-Animals.pdf. Accessed June 17, 2021.
  • Wu H, Wang JT, Shiau YR, Wang HY, Lauderdale TLY, Chang SC. A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect. 2012;45(2):120-126. doi:10.1016/j.jmii.2011.09.028
  • Matson HH, Jones BM, Wagner JL, Motes MA, Bland CM. Growing resistance in Stenotrophomonas maltophilia?. Am J Health Syst Pharm. 2019;76(24):2004-2005. doi:10.1093/ajhp/zxz247
  • Cusack TP, Ashley EA, Ling CL, et al. Impact of CLSI and EUCAST breakpoint discrepancies on reporting of antimicrobial susceptibility and AMR surveillance. Clin Microb Infect. 2019;25(7):910-911. doi:10.1016/j.cmi.2019.03.007
  • Satlin MJ. The search for a practical method for colistin susceptibility testing: Have we found it by going back to the future?. J Clin Microb. 2019;57(2):e01608-18. doi:10.1128/JCM.01608-18
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Ali Korhan Sığ 0000-0003-2907-257X

Alev Çetin Duran 0000-0002-1681-8240

Tuğba Kula Atik 0000-0002-2433-1977

Nermin Özen 0000-0002-4876-3555

Onur Irmak 0000-0002-1433-1519

Yayımlanma Tarihi 10 Aralık 2022
Gönderilme Tarihi 17 Ocak 2022
Kabul Tarihi 1 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

AMA Sığ AK, Çetin Duran A, Kula Atik T, Özen N, Irmak O. Non-Fermenting Gram-Negative Isolates as Infecting Agents and Antibiotic Resistance: Three-Year Data. OTSBD. Aralık 2022;7(4):538-545. doi:10.26453/otjhs.1058819

Creative Commons Lisansı

Online Türk Sağlık Bilimleri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Bu, Creative Commons Atıf Lisansı (CC BY-NC 4.0) şartları altında dağıtılan açık erişimli bir dergidir. Orijinal yazar(lar) veya lisans verenin adı ve bu dergideki orijinal yayının kabul görmüş akademik uygulamaya uygun olarak atıfta bulunulması koşuluyla, diğer forumlarda kullanılması, dağıtılması veya çoğaltılmasına izin verilir. Bu şartlara uymayan hiçbir kullanım, dağıtım veya çoğaltmaya izin verilmez.

Makale gönderme süreçleri ve "Telif Hakkı Devir Formu" hakkında yardım almak için tıklayınız.