Araştırma Makalesi
BibTex RIS Kaynak Göster

Turbidity and color removal from river water with tree xylem as a natural filter

Yıl 2025, Cilt: 31 Sayı: 5, 874 - 880, 19.10.2025

Öz

This study evaluates the efficiency of xylem-based filters derived from five tree species—Pinus pinea, Populus nigra, Pinus brutia, Tilia tomentosa, and Quercus petraea-in removing turbidity and color from Bartın River water samples. Filtration experiments were conducted under varying pressure conditions (5 psi, 10 psi, and 15 psi) to assess the performance of each xylem filter based on flow rate, turbidity removal, and color reduction. The results highlighted that gymnosperm species, particularly Pinus pinea, exhibited high turbidity (up to 99.36%) and color removal efficiency (up to 95.58%) at lower pressures. Conversely, angiosperm species demonstrated higher flow rates but lower filtration efficiencies. Durability analysis of pit membranes revealed that high pressure could compromise their integrity, slightly reducing efficiency. These findings indicate that xylem-based filtration is a promising, cost-effective, and eco-friendly water purification method suitable for areas lacking advanced water treatment systems. Further optimization of pressure conditions and enhanced pit membrane durability are recommended to maximize efficiency and longevity.

Kaynakça

  • [1] Wetzel RG. Limnology: Lake and River Ecosystems. 3rd ed. California, USA, Academic Press, Elsevier, 2001.
  • [2] Grzegorzek M, Wartalska K, Kaźmierczak B. “Review of water treatment methods with a focus on energy consumption”. International Communications in Heat and Mass Transfer, 143, 106022, 2023.
  • [3] Garg M, Rani R, Meena VK, Singh S. “Significance of 3D printing for a sustainable environment”. Materials Today Sustainability, 23, 100419, 2023.
  • [4] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM. “Science and technology for water purification in the coming decades”. Nature, 452, 301–310, 2008.
  • [5] Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W. “Decentralized systems for potable water and the potential of membrane technology”. Water Research, 43(2), 245–265, 2009.
  • [6] Delelegn A, Sahile S, Husen A. “Water purification and antibacterial efficacy of Moringa oleifera Lam”. Agriculture & Food Security, 7(1), 1-10, 2018.
  • [7] Ramchander K, Hegde M, Antony AP, Wang L, Leith K, Smith A, Karnik R. “Engineering and characterization of gymnosperm sapwood toward enabling the design of water filtration devices”. Nature Communications, 12, 4098, 2021.
  • [8] Hashim A, Hashim NA, Junaidi MUM, Kamarudin D, Hussain MA. “Exploration of cassava plant xylem for water treatment: preparation, characterization and filtration capability”. Water Science and Technology, 86(4), 1055–1065, 2022.
  • [9] Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA. “In vivo observation of cavitation and embolism repair using magnetic resonance imaging”. Plant Physiology, 126(1), 27–31, 2001.
  • [10] Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH. “Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem”. Plant, Cell & Environment, 29(8), 1618–1628, 2006.
  • [11] Sperry JS, Hacke UG, Pittermann J. “Size and function in conifer tracheids and angiosperm vessels”. American Journal of Botany, 93(10), 1490–1500, 2006.
  • [12] Hacke UG, Sperry JS, Pittermann J. “Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes”. American Journal of Botany, 91(3), 386–400, 2004.
  • [13] Boutilier, MSH, Lee, J, Chambers, V, Venkatesh, ., Karnik, R “Water filtration using plant xylem”. PLoS One, 9(2), 1–11 , 2014.
  • [14] Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap 2nd ed. Berlin, Germany, Springer, 2002.
  • [15] Domec JC, Gartner BL. “Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees”. Trees, 15, 204–214, 2001.
  • [16] Choat B, Sack L, Holbrook NM. “Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation”. New Phytologist, 175(4), 686–698, 2007.
  • [17] Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. “Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure”. Oecologia, 126(4), 457–461, 2001.
  • [18] Jansen S, Choat B, Pletsers A. “Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms”. American Journal of Botany, 96(2), 409–419, 2009.
  • [19] Tyree MT, Sperry JS. “Vulnerability of xylem to cavitation and embolism”. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19–36, 1989.
  • [20] Dashti H, Tarmian A, Faezipour M, Hedjazi S, Shahverdi M. “Effect of pre-steaming on mass transfer properties of Picea abies L.”. BioResources, 7(2), 1907–1918, 2012.
  • [21] Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. “The role of membrane transporters in plant growth and development, and abiotic stress tolerance”. International Journal of Molecular Sciences, 22(3), 12792, 2021.
  • [22] Jiao M, Yao Y, Chen C, Jiang B, Pastel G, Lin Z, Wu Q, Cui M, He S, Hu L. “Highly efficient water treatment via a wood-based and reusable filter”. ACS Materials Letters, 2(4), 430–437, 2020.
  • [23] Ooeda H, Terashima I, Taneda H. “Structures of bordered pits potentially contributing to isolation of a refilled vessel from negative xylem pressure in stems of Morus australis Poir.: Testing of the pit membrane osmosis and pit valve hypotheses”. Plant and Cell Physiology, 58(2), 354–364, 2017.
  • [24] Jansen S, Choat B, Pletsers A. “Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms”. American Journal of Botany, 96(2), 409–419, 2009.
  • [25] Liu J, Wang Y, Wang T, Zhang X, Du D, Zhu X, Guo W, Zhang Y. “The xylem functional traits of eight subtropical tree species is closely related to the intervessel pits ultrastructure”. Trees-Structure and Function, 38(1), 13–26, 2024.
  • [26] Robert EMR, Mencuccini M, Martínez-Vilalta J. The Anatomy and Functioning of the Xylem in Oaks. Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (Eds). Oaks Physiological Ecology, 261-302, Gewerbestrasse, Switzerland, Springer, 2017.
  • [27] Cochard H, Bréda N, Granier A, Aussenac G. “Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.)”. Annales des Sciences Forestières, 49(3), 225–233, 1992.
  • [28] Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B. “Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus”. Tree Physiology, 34(7), 744–756, 2014.
  • [29] Marron N, Ceulemans R. “Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family”. Canadian Journal of Forest Research, 36(2), 390–400, 2006.
  • [30] Schulte PJ, Hacke UG. “Solid mechanics of the torus–margo in conifer intertracheid bordered pits”. New Phytologist, 229(3), 1431–1439, 2021.
  • [31] Held M, Ganthaler A, Lintunen A, Oberhuber W, Mayr S. “Tracheid and pit dimensions hardly vary in the xylem of Pinus sylvestris under contrasting growing conditions”. Frontiers in Plant Science, 12, 786593, 2021.
  • [32] Delikanlı NE, Harman BI, Yiğit NO, Sardohan Köseoğlu T, Kitiş M, Köseoğlu H. “Separation of Cu²⁺ from membrane concentrate by SiO₂/3-Aminopropyltriethoxysilane-coated ceramic membrane”. International Journal of Environmental Science and Technology, 19, 379-390, 2022.
  • [33] Parlar İ, Jarma YA, Pek TO, Kabay N, Kitiş M, Yiğit NO, Yüksel M. “Effect of antiscalant usage and air diffuser perforation diameter on filtration performance of submerged flat sheet MBR for treatment of high salinity and scaling propensity wastewater”. Water, 15(6), 1191, 2023.
  • [34] Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. “Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions-A case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem”. Plant Methods, 9(2), 231, 2020.
  • [35] Ma Q, Zhao Z, Xu M, Yi S, Wang T. “The pit membrane changes of micro-explosion-pretreated poplar”. Wood Science and Technology, 50, 1089–1099, 2016.
  • [36] Xia P, Gu J, Song W, Xie L, Wu Y, Zhang H, Li Q. “Contact mechanics between torus and pit border for developing air-seeding seal in aspirated bordered pits”. Forests, 14(2), 2023.
  • [37] Boutilier, MSH, Lee, J, Chambers, V, Venkatesh, ., Karnik, R “Water filtration using plant xylem”. PLoS One, 9(2), 1–11 , 2014.
  • [38] Delikanlı NE, Fil BA, Ucun Özel H, Gemici BT, Barış Özel H. “Biosorption of a crystal violet using Equisetum telmateia Ehrh.”. Iranian Journal of Chemistry and Chemical Engineering, 43(1), 659–669, 2024.
  • [39] Gemici BT, Özel HU, Özel HB. “Adsorption property and mechanism of forest wastes based natural adsorbent for removal of dye from aqueous media”. Biomass Conversion and Biorefinery, 13, 13653-13665, 2022.
  • [40] Delikanlı NE, Fil BA, Özel HU, Gemici BT, Özel HB. “Removal of crystal violet dye with an innovative biosorbent (Equisetum ramosissimum Desf.)”. Environmental Engineering and Management Journal, 23(4), 587–598, 2024.
  • [41] Acar FN, Malkoç E. “Sulu ortamdan odun tozları kullanılarak nitritin adsorpsiyonu”. Mühendislik Bilimleri Dergisi, 8(3), 381–385, 2002.
  • [42] Hrnjica B, Danandeh Mehr A, Behrem S, Ağıralioğlu N. “Genetic programming for turbidity prediction: hourly and monthly scenarios”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(8), 992–997, 2019.

Doğal bir filtre olarak ağaç ksilemi ile nehir suyundan bulanıklık ve renk giderimi

Yıl 2025, Cilt: 31 Sayı: 5, 874 - 880, 19.10.2025

Öz

Bu çalışma, beş farklı ağaç türünden (Pinus pinea, Populus nigra, Pinus brutia, Tilia tomentosa ve Quercus petraea) elde edilen ksilem bazlı filtrelerin Bartın Nehri su örneklerinden bulanıklık ve renk giderimindeki etkinliğini değerlendirmektedir. Her bir ksilem filtresinin akış hızı, bulanıklık ve renk giderimi açısından performansını değerlendirmek için farklı basınç koşullarında (5 psi, 10 psi ve 15 psi) filtrasyon deneyleri gerçekleştirilmiştir. Sonuçlar, özellikle Pinus pinea olmak üzere gymnosperm türlerinin düşük basınçlarda bile yüksek bulanıklık (%99.36'ya kadar) ve renk giderim verimliliği (%95.58'e kadar) gösterdiğini ortaya koymuştur. Buna karşılık, angiosperm türleri daha yüksek akış hızları sergilemiş ancak daha düşük filtrasyon verimliliği göstermiştir. Pit membranlarının dayanıklılık analizi, yüksek basıncın zarların bütünlüğünü zayıflatabileceğini ve bunun da verimliliği bir miktar düşürebileceğini göstermiştir. Bu bulgular, ksilem bazlı filtrasyonun, gelişmiş su arıtma sistemlerine erişimi olmayan bölgeler için umut verici, düşük maliyetli ve çevre dostu bir su arıtma yöntemi olduğunu göstermektedir. Etkinliği ve dayanıklılığı en üst düzeye çıkarmak için basınç koşullarının daha fazla optimize edilmesi ve pit membran dayanıklılığının artırılması önerilmektedir.

Kaynakça

  • [1] Wetzel RG. Limnology: Lake and River Ecosystems. 3rd ed. California, USA, Academic Press, Elsevier, 2001.
  • [2] Grzegorzek M, Wartalska K, Kaźmierczak B. “Review of water treatment methods with a focus on energy consumption”. International Communications in Heat and Mass Transfer, 143, 106022, 2023.
  • [3] Garg M, Rani R, Meena VK, Singh S. “Significance of 3D printing for a sustainable environment”. Materials Today Sustainability, 23, 100419, 2023.
  • [4] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM. “Science and technology for water purification in the coming decades”. Nature, 452, 301–310, 2008.
  • [5] Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W. “Decentralized systems for potable water and the potential of membrane technology”. Water Research, 43(2), 245–265, 2009.
  • [6] Delelegn A, Sahile S, Husen A. “Water purification and antibacterial efficacy of Moringa oleifera Lam”. Agriculture & Food Security, 7(1), 1-10, 2018.
  • [7] Ramchander K, Hegde M, Antony AP, Wang L, Leith K, Smith A, Karnik R. “Engineering and characterization of gymnosperm sapwood toward enabling the design of water filtration devices”. Nature Communications, 12, 4098, 2021.
  • [8] Hashim A, Hashim NA, Junaidi MUM, Kamarudin D, Hussain MA. “Exploration of cassava plant xylem for water treatment: preparation, characterization and filtration capability”. Water Science and Technology, 86(4), 1055–1065, 2022.
  • [9] Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA. “In vivo observation of cavitation and embolism repair using magnetic resonance imaging”. Plant Physiology, 126(1), 27–31, 2001.
  • [10] Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH. “Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem”. Plant, Cell & Environment, 29(8), 1618–1628, 2006.
  • [11] Sperry JS, Hacke UG, Pittermann J. “Size and function in conifer tracheids and angiosperm vessels”. American Journal of Botany, 93(10), 1490–1500, 2006.
  • [12] Hacke UG, Sperry JS, Pittermann J. “Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes”. American Journal of Botany, 91(3), 386–400, 2004.
  • [13] Boutilier, MSH, Lee, J, Chambers, V, Venkatesh, ., Karnik, R “Water filtration using plant xylem”. PLoS One, 9(2), 1–11 , 2014.
  • [14] Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap 2nd ed. Berlin, Germany, Springer, 2002.
  • [15] Domec JC, Gartner BL. “Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees”. Trees, 15, 204–214, 2001.
  • [16] Choat B, Sack L, Holbrook NM. “Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation”. New Phytologist, 175(4), 686–698, 2007.
  • [17] Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. “Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure”. Oecologia, 126(4), 457–461, 2001.
  • [18] Jansen S, Choat B, Pletsers A. “Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms”. American Journal of Botany, 96(2), 409–419, 2009.
  • [19] Tyree MT, Sperry JS. “Vulnerability of xylem to cavitation and embolism”. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19–36, 1989.
  • [20] Dashti H, Tarmian A, Faezipour M, Hedjazi S, Shahverdi M. “Effect of pre-steaming on mass transfer properties of Picea abies L.”. BioResources, 7(2), 1907–1918, 2012.
  • [21] Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. “The role of membrane transporters in plant growth and development, and abiotic stress tolerance”. International Journal of Molecular Sciences, 22(3), 12792, 2021.
  • [22] Jiao M, Yao Y, Chen C, Jiang B, Pastel G, Lin Z, Wu Q, Cui M, He S, Hu L. “Highly efficient water treatment via a wood-based and reusable filter”. ACS Materials Letters, 2(4), 430–437, 2020.
  • [23] Ooeda H, Terashima I, Taneda H. “Structures of bordered pits potentially contributing to isolation of a refilled vessel from negative xylem pressure in stems of Morus australis Poir.: Testing of the pit membrane osmosis and pit valve hypotheses”. Plant and Cell Physiology, 58(2), 354–364, 2017.
  • [24] Jansen S, Choat B, Pletsers A. “Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms”. American Journal of Botany, 96(2), 409–419, 2009.
  • [25] Liu J, Wang Y, Wang T, Zhang X, Du D, Zhu X, Guo W, Zhang Y. “The xylem functional traits of eight subtropical tree species is closely related to the intervessel pits ultrastructure”. Trees-Structure and Function, 38(1), 13–26, 2024.
  • [26] Robert EMR, Mencuccini M, Martínez-Vilalta J. The Anatomy and Functioning of the Xylem in Oaks. Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (Eds). Oaks Physiological Ecology, 261-302, Gewerbestrasse, Switzerland, Springer, 2017.
  • [27] Cochard H, Bréda N, Granier A, Aussenac G. “Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.)”. Annales des Sciences Forestières, 49(3), 225–233, 1992.
  • [28] Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B. “Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus”. Tree Physiology, 34(7), 744–756, 2014.
  • [29] Marron N, Ceulemans R. “Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family”. Canadian Journal of Forest Research, 36(2), 390–400, 2006.
  • [30] Schulte PJ, Hacke UG. “Solid mechanics of the torus–margo in conifer intertracheid bordered pits”. New Phytologist, 229(3), 1431–1439, 2021.
  • [31] Held M, Ganthaler A, Lintunen A, Oberhuber W, Mayr S. “Tracheid and pit dimensions hardly vary in the xylem of Pinus sylvestris under contrasting growing conditions”. Frontiers in Plant Science, 12, 786593, 2021.
  • [32] Delikanlı NE, Harman BI, Yiğit NO, Sardohan Köseoğlu T, Kitiş M, Köseoğlu H. “Separation of Cu²⁺ from membrane concentrate by SiO₂/3-Aminopropyltriethoxysilane-coated ceramic membrane”. International Journal of Environmental Science and Technology, 19, 379-390, 2022.
  • [33] Parlar İ, Jarma YA, Pek TO, Kabay N, Kitiş M, Yiğit NO, Yüksel M. “Effect of antiscalant usage and air diffuser perforation diameter on filtration performance of submerged flat sheet MBR for treatment of high salinity and scaling propensity wastewater”. Water, 15(6), 1191, 2023.
  • [34] Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. “Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions-A case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem”. Plant Methods, 9(2), 231, 2020.
  • [35] Ma Q, Zhao Z, Xu M, Yi S, Wang T. “The pit membrane changes of micro-explosion-pretreated poplar”. Wood Science and Technology, 50, 1089–1099, 2016.
  • [36] Xia P, Gu J, Song W, Xie L, Wu Y, Zhang H, Li Q. “Contact mechanics between torus and pit border for developing air-seeding seal in aspirated bordered pits”. Forests, 14(2), 2023.
  • [37] Boutilier, MSH, Lee, J, Chambers, V, Venkatesh, ., Karnik, R “Water filtration using plant xylem”. PLoS One, 9(2), 1–11 , 2014.
  • [38] Delikanlı NE, Fil BA, Ucun Özel H, Gemici BT, Barış Özel H. “Biosorption of a crystal violet using Equisetum telmateia Ehrh.”. Iranian Journal of Chemistry and Chemical Engineering, 43(1), 659–669, 2024.
  • [39] Gemici BT, Özel HU, Özel HB. “Adsorption property and mechanism of forest wastes based natural adsorbent for removal of dye from aqueous media”. Biomass Conversion and Biorefinery, 13, 13653-13665, 2022.
  • [40] Delikanlı NE, Fil BA, Özel HU, Gemici BT, Özel HB. “Removal of crystal violet dye with an innovative biosorbent (Equisetum ramosissimum Desf.)”. Environmental Engineering and Management Journal, 23(4), 587–598, 2024.
  • [41] Acar FN, Malkoç E. “Sulu ortamdan odun tozları kullanılarak nitritin adsorpsiyonu”. Mühendislik Bilimleri Dergisi, 8(3), 381–385, 2002.
  • [42] Hrnjica B, Danandeh Mehr A, Behrem S, Ağıralioğlu N. “Genetic programming for turbidity prediction: hourly and monthly scenarios”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(8), 992–997, 2019.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Niyazi Erdem Delikanlı

Gönderilme Tarihi 13 Ekim 2024
Kabul Tarihi 5 Şubat 2025
Yayımlanma Tarihi 19 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 5

Kaynak Göster

APA Delikanlı, N. E. (2025). Turbidity and color removal from river water with tree xylem as a natural filter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(5), 874-880.
AMA Delikanlı NE. Turbidity and color removal from river water with tree xylem as a natural filter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2025;31(5):874-880.
Chicago Delikanlı, Niyazi Erdem. “Turbidity and color removal from river water with tree xylem as a natural filter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 5 (Ekim 2025): 874-80.
EndNote Delikanlı NE (01 Ekim 2025) Turbidity and color removal from river water with tree xylem as a natural filter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 5 874–880.
IEEE N. E. Delikanlı, “Turbidity and color removal from river water with tree xylem as a natural filter”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, ss. 874–880, 2025.
ISNAD Delikanlı, Niyazi Erdem. “Turbidity and color removal from river water with tree xylem as a natural filter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/5 (Ekim2025), 874-880.
JAMA Delikanlı NE. Turbidity and color removal from river water with tree xylem as a natural filter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:874–880.
MLA Delikanlı, Niyazi Erdem. “Turbidity and color removal from river water with tree xylem as a natural filter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, 2025, ss. 874-80.
Vancouver Delikanlı NE. Turbidity and color removal from river water with tree xylem as a natural filter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(5):874-80.