Araştırma Makalesi
BibTex RIS Kaynak Göster

Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi

Yıl 2025, Cilt: 31 Sayı: 5, 881 - 898, 19.10.2025

Öz

Bu çalışmanın amacı, Sıfır Atık Yönetmeliği (SAY) minimum kriteri olan kaynakta ikili ayırma durumu için evsel katı atık yönetim seçeneklerine karar vermektir. Bu amaca ulaşmak için çok kriterli karar verme aracı olarak analitik hiyerarşi prosesi (AHP) kullanılmıştır. Karar noktaları olarak beş farklı evsel katı atık yönetim seçeneği seçilmiştir. Karar noktalarını etkileyen ana kriter olarak SAY minimum zorunlu kriteri olan evsel katı atıkların kaynakta ikili ayrılması, alt kriterler olarak ise beş çevresel, dört ekonomik, üç sosyal ve üç teknik parametre seçilmiştir. Hem alt kriterlerin kendi içinde hem de evsel katı atık yönetim seçeneklerinin her bir kritere göre ikili karşılaştırma verisi temini için uzman görüşlerine başvurulmuştur. Uzman görüşlerinin alınması, Google Formlar kullanılarak hazırlanan anket çalışmasıyla sağlanmıştır. Uzman görüşlerinden elde edilen sayısal verilerin geometrik ortalamaları kullanılarak, her bir alt kriter grubu (çevresel, ekonomik, sosyal ve teknik) için kendi içinde SAY minimum kriteri kapsamında ikili karşılaştırma matrisleri oluşturulmuş ve gerekli AHP analiz süreçleri uygulanmıştır. Elde edilen sonuçlara göre; evsel katı atık yönetim seçenek tercihleri, çevresel kriterler açısından maddesel geri dönüşüm(0.381)> ısıl işlem(0.193)> biyometanizasyon(0.187)> kompostlaştırma(0.125)> düzenli depolama(0.112), ekonomik kriterler açısından düzenli depolama(0.357)> materyal geri dönüşüm(0.247)> kompostlaştırma(0.193)> biyometanizasyon(0.097)> ısıl işlem(0.054), sosyal kriterler acısından maddesel geri dönüşüm(0.393)> kompostlaştırma(0.233) =biyometanizasyon(0.233)> ısıl işlem(0.086)> düzenli depolama(0.055), teknik kriterler açısından maddesel geri dönüşüm(0.381)> düzenli depolama(0.315)> kompostlaştırma(0.143)> biyometanizasyon(0.114)> ısıl işlem (0.047) olarak hesaplanmıştır. Sonuç olarak; kaynakta ikili ayırma durumunda katı atık yönetim seçenek önceliğinin çevresel, sosyal ve teknik kriterler açısından maddesel geri dönüşüm, ekonomik kriterler açısından ise düzenli depolama olduğu belirlenmiştir.

Kaynakça

  • [1] Zaman A, Ahsan T. Zero-Waste: Reconsidering Waste Management for the Future, 1st ed. New York, USA, Routledge, 2020.
  • [2] Tchobanoglous G, Theisen H, Vigil SA. Integrated Solid Waste Management: Engineering Principles and Management Issues, 1st ed. New York, USA, McGraw Hill Inc. 1993.
  • [3] Apaydin Ö, Akçay Han GS. “Analysis of municipal solid waste collection methods focusing on zero-waste management using an analytical hierarchy process”. Sustainability, 15, 13184, 2023.
  • [4] TC Cumhurbaşkanlığı, Resmi Gazete, “Sıfır Atık Yönetmeliği”. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=32659&MevzuatTur=7&MevzuatTertip=5 (28.09.2024).
  • [5] Anagnostopoulos T, Zaslavsky A, Kolomvatsos K, Medvedev A, Amirian P, Morley J, Hadjieftymiades S. “Challenges and opportunities of waste management in IoT-Enabled smart cities: a survey”. IEEE Transactions on Sustainable Computing, 2 (3), 275-289, 2017.
  • [6] Esmaeilian B, Wang B, Lewis K, Duarte F, Ratti C, Behdad S. “The future of waste management in smart and sustainable cities: A review and concept paper”. Waste Management, 81, 177-195, 2018.
  • [7] Saaty RW. “The analytic hierarchy process-what it is and how it is used”. Mathematical Modelling, 9, 161-176, 1987.
  • [8] Saaty TL. “That is not the analytical hierarchical process: What the AHP is and what it is not”. Journal of Multi-Criteria Decision Analysis, 6, 320-329, 1998.
  • [9] Saaty TL. “Rank from comparisons and from ratings in the analytic hierarchy/network processes”. European Journal of Operational Research, 168, 557-570, 2006.
  • [10] Demircan BG, Yetilmezsoy K. “Ahybrid fuzzy AHP-TOPSIS approach for implementation of smart sustainable waste management strategies”. Sustainability, 15, 6256, 2023.
  • [11] Tamasila M, Prostean G, Ivascu L, Cioca LI, Draghici A, Diaconescu A. “Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS”. Journal of Intelligent & Fuzzy Systems, 38 (5), 6111-6127, 2020.
  • [12] Shahnazari A, Pourdej H, Kharage MD. “Ranking of organic fertilizer production from solid municipal waste systems using analytic hierarchy process (AHP) and VIKOR models”. Biocatalysis and Agricultural Biotechnology, 32, 101946, 2021.
  • [13] Xi H, Li Z, Han J, Shen D, Li N, Long Y, Chen Z, Xu L, Zhang X, Niu D, Liu H. “Evaluating the capability of municipal solid waste separation in China based on AHP-EWM and BP neural network”. Waste Management, 139, 208-216, 2022
  • [14] AlHumid HA, Haider H, AlSaleem SS, Shafiquzamman M, Sadiq R. “Performance indicators for municipal solid waste management systems in Saudi Arabia: selection and ranking using fuzzy AHP and PROMETHEE II”. Arabian Journal of Geosciences, 12(15), 491, 2019.
  • [15] Zhou J, Wang C, Zhou X, Peng D, Deng Z, Li Y, Xianan X. “Study on evaluation method for the rural solid waste fixed bed gasification using the AHP-FCE based on exergy analysis”. International Journal of Exergy, 40(4), 365-391, 2023.
  • [16] Ampofo S, Issifu JS, Kusibu MM, Mohammed AS, Adiali F. “Selection of the final solid waste disposal site in the Bolgatanga municipality of Ghana using analytical hierarchy process (AHP) and multi-criteria evaluation (MCE)”. Heliyon, 9(8),18558, 2023.
  • [17] Karimzadeh K, Tehrani GM, Khaloo SS, Vaziri MH, Ardeh SA, Saeedi R. “Quantitative assessment of health, safety, and environment (HSE) resilience based on the Delphi method and analytic hierarchy process (AHP) in municipal solid waste management system: A case study in Tehran”. Environmental Health Engineering and Management Journal, 10(3), 237-247, 2023.
  • [18] Torkayesh AE, Rajaeifar MA, Rostom M, Malmir B, Yazdani M, Suh S, Heidrich O. “Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies”. Renewable and Sustainable Energy Reviews,1 68, 112819, 2022.
  • [19] Kumar A, Dixit G. “A novel hybrid MCDM framework for WEEE recycling partner evaluation on the basis of green competencies”. Journal of Cleaner Production, 241, 118017, 2019.
  • [20] Çoban A, Firtina Ertiş I, Ayvaz Cavdaroglu N. “Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Türkiye”. Journal of Cleaner Production, 180, 159-167, 2018.
  • [21] Khan I, Kabir Z. “Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment”. Renewable Energy, 150, 320-333, 2020.
  • [22] Topaloglu M, Yarkin F, Kaya T. “Solid waste collection system selection for smart cities based on a type-2 fuzzy multi-criteria decision technique”. Soft Computing, 22,4879-4890, 2018.
  • [23] Singh A. “Solid waste management through the applications of mathematical models”. Resources Conservation and Recycling 151, 104503, 2019.
  • [24] Al-Harbi KMAS. “Application of the AHP in project management”. International Journal of Project Management, 19, 19-27, 2001.
  • [25] Thomas L. Saaty TL, Vargas LG. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, 2nd ed. New York, USA, Springer, 2012.
  • [26] Bozorg-Haddad O, Zolghadr-Asli B, Loáiciga HA. A Handbook on Multi-Attribute Decision-Making Methods, 1st ed. John Wiley and Sons, Inc. Hoboken NJ, USA. 2021.
  • [27] Apaydın Ö. “Analysis of Sustainable Municipal Solid Waste Management Alternatives Based on Source Separation Using the Analytic Hierarchy Process”. Sustainability, 17(9), 3868, 2025.
  • [28] Apaydın Ö. “Deciding on the priority of process parameters using the analytical hierarchy process in electrochemical wastewater treatment and investigation of paint wastewater treatability”, Desalination and Water Treatment, 320, 100587, 2024.
  • [29] Syed AS, Sierra-Sosa D, Kumar A, Elmaghraby A. “IoT in smart cities: A survey of technologies, practices and challenges”. Smart Cities, 4, 429–475, 2021.
  • [30] Gopikumar S, Raja S, Robinson YH, Shanmuganathan V, Rho S. “A method of landfill leachate management using internet of things for sustainable smart city development”. Sustainable Cities and Society, 66, 102521, 2020.
  • [31] Sheng TJ, Islam MS, Misran N, Baharuddin MH, Arshad H, Islam MR, Chowdhury MEH, Rmili H, Islam MT. “An internet of things based smart waste management system using lora and tensorflow deep learning model”. IEEE Access, 8, 148793-148811, 2020
  • [32] Gupta YS, Mukherjee S, Dutta R, Bhattacharya S. “A blockchain-based approach using smart contracts to develop a smart waste management system”. International Journal of Environmental Science and Technology, 19, 7833-7856, 2022.
  • [33] Chauhan A, Jakhar SK, Chauhan C. “The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal”. Journal of Cleaner Production, 279, 123854, 2021.
  • [34] Seker S. “IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment”. Technology in Society, 71, 102100, 2022.
  • [35] Apaydin Ö, Gönüllü MT. “Emission control with route optimization in solid waste collection process: A case study”. Sadhana - Academy Proceedings in Engineering Sciences, 33, 71-82, 2008.
  • [36] TC Cumhurbaşkanlığı. Strateji ve Bütçe Başkanlığı. “Onikinci Kalkınma Planı”. https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_2024-2028_11122023.pdf (22.01.2025).
  • [37] Rhvner CR, Schwartz LJ, Wenger RB, Kohrell MG. Waste Management and Resource Recovery, 1st ed. Boca Raton, USA, CRC Press, 1995.
  • [38] Tanner R. “Die Entwicklung der Von Roll Müllverbrennungsanlagen”. Schweizerische Bauzeitung, 16, 251-260, 1965.
  • [39] Özdemir A, Özkan A, Günkaya Z, Banar M. “Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 920-928, 2022.
  • [40] Öztürk İ. Katı Atık Yönetimi ve AB Uygulamaları. 1 Baskı, İstanbul, Türkiye, Teknik Kitaplar Serisi 2, İSTAÇ AŞ, 2010.

Analysis of the special case of binary separation at source of municipal solid waste with the help of analytical hierarchy process in terms of environmental, economic, social and technical criteria

Yıl 2025, Cilt: 31 Sayı: 5, 881 - 898, 19.10.2025

Öz

The aim of this study is to decide on the municipal solid waste (MSW) management option for the minimum criterion of Zero Waste Regulation (ZWR) which is binary separation at source. To achieve this aim, analytical hierarchy process (AHP) was used as a multi-criteria decision-making tool. Five different waste management alternatives were selected as decision points. The main criterion affecting the decision points was binary separation of solid waste at source, and five environmental, four economic, three social and three technical criteria were selected as sub-criteria. Expert opinions were consulted to obtain binary comparison data both within the sub-criteria themselves and for each criterion of MSW management alternatives. The survey prepared using Google Forms. Using the geometric means of the numerical data obtained from expert opinions, binary comparison matrices were created for each sub-criteria group within the scope of the ZWR minimum criterion and the necessary AHP analysis processes were applied. According to the results obtained; MSW management alternative preferences were calculated as material recovery(0.381)> thermal process(0.193)> biomethanization(0.187)> composting(0.125)> sanitary landfill(0.112) for environmental; sanitary landfill(0.357)> material recovery(0.247)> composting(0.193)> biomethanization(0.097)> thermal process (0.054) for economic; material recovery(0.393)> composting(0.233)= biomethanization(0.233)> thermal process(0.086)> sanitary landfill(0.055) for social; material recovery (0.381)> sanitary landfill(0.315)> composting(0.143)> biomethanization (0.114)> thermal process (0.047) for technical criteria. As a result; in case of applying binary separation at source, it has been determined that the priority of domestic solid waste management alternative is material recovery in terms of environmental, social and technical criteria, and sanitary landfill in terms of economic criteria.

Kaynakça

  • [1] Zaman A, Ahsan T. Zero-Waste: Reconsidering Waste Management for the Future, 1st ed. New York, USA, Routledge, 2020.
  • [2] Tchobanoglous G, Theisen H, Vigil SA. Integrated Solid Waste Management: Engineering Principles and Management Issues, 1st ed. New York, USA, McGraw Hill Inc. 1993.
  • [3] Apaydin Ö, Akçay Han GS. “Analysis of municipal solid waste collection methods focusing on zero-waste management using an analytical hierarchy process”. Sustainability, 15, 13184, 2023.
  • [4] TC Cumhurbaşkanlığı, Resmi Gazete, “Sıfır Atık Yönetmeliği”. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=32659&MevzuatTur=7&MevzuatTertip=5 (28.09.2024).
  • [5] Anagnostopoulos T, Zaslavsky A, Kolomvatsos K, Medvedev A, Amirian P, Morley J, Hadjieftymiades S. “Challenges and opportunities of waste management in IoT-Enabled smart cities: a survey”. IEEE Transactions on Sustainable Computing, 2 (3), 275-289, 2017.
  • [6] Esmaeilian B, Wang B, Lewis K, Duarte F, Ratti C, Behdad S. “The future of waste management in smart and sustainable cities: A review and concept paper”. Waste Management, 81, 177-195, 2018.
  • [7] Saaty RW. “The analytic hierarchy process-what it is and how it is used”. Mathematical Modelling, 9, 161-176, 1987.
  • [8] Saaty TL. “That is not the analytical hierarchical process: What the AHP is and what it is not”. Journal of Multi-Criteria Decision Analysis, 6, 320-329, 1998.
  • [9] Saaty TL. “Rank from comparisons and from ratings in the analytic hierarchy/network processes”. European Journal of Operational Research, 168, 557-570, 2006.
  • [10] Demircan BG, Yetilmezsoy K. “Ahybrid fuzzy AHP-TOPSIS approach for implementation of smart sustainable waste management strategies”. Sustainability, 15, 6256, 2023.
  • [11] Tamasila M, Prostean G, Ivascu L, Cioca LI, Draghici A, Diaconescu A. “Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS”. Journal of Intelligent & Fuzzy Systems, 38 (5), 6111-6127, 2020.
  • [12] Shahnazari A, Pourdej H, Kharage MD. “Ranking of organic fertilizer production from solid municipal waste systems using analytic hierarchy process (AHP) and VIKOR models”. Biocatalysis and Agricultural Biotechnology, 32, 101946, 2021.
  • [13] Xi H, Li Z, Han J, Shen D, Li N, Long Y, Chen Z, Xu L, Zhang X, Niu D, Liu H. “Evaluating the capability of municipal solid waste separation in China based on AHP-EWM and BP neural network”. Waste Management, 139, 208-216, 2022
  • [14] AlHumid HA, Haider H, AlSaleem SS, Shafiquzamman M, Sadiq R. “Performance indicators for municipal solid waste management systems in Saudi Arabia: selection and ranking using fuzzy AHP and PROMETHEE II”. Arabian Journal of Geosciences, 12(15), 491, 2019.
  • [15] Zhou J, Wang C, Zhou X, Peng D, Deng Z, Li Y, Xianan X. “Study on evaluation method for the rural solid waste fixed bed gasification using the AHP-FCE based on exergy analysis”. International Journal of Exergy, 40(4), 365-391, 2023.
  • [16] Ampofo S, Issifu JS, Kusibu MM, Mohammed AS, Adiali F. “Selection of the final solid waste disposal site in the Bolgatanga municipality of Ghana using analytical hierarchy process (AHP) and multi-criteria evaluation (MCE)”. Heliyon, 9(8),18558, 2023.
  • [17] Karimzadeh K, Tehrani GM, Khaloo SS, Vaziri MH, Ardeh SA, Saeedi R. “Quantitative assessment of health, safety, and environment (HSE) resilience based on the Delphi method and analytic hierarchy process (AHP) in municipal solid waste management system: A case study in Tehran”. Environmental Health Engineering and Management Journal, 10(3), 237-247, 2023.
  • [18] Torkayesh AE, Rajaeifar MA, Rostom M, Malmir B, Yazdani M, Suh S, Heidrich O. “Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies”. Renewable and Sustainable Energy Reviews,1 68, 112819, 2022.
  • [19] Kumar A, Dixit G. “A novel hybrid MCDM framework for WEEE recycling partner evaluation on the basis of green competencies”. Journal of Cleaner Production, 241, 118017, 2019.
  • [20] Çoban A, Firtina Ertiş I, Ayvaz Cavdaroglu N. “Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Türkiye”. Journal of Cleaner Production, 180, 159-167, 2018.
  • [21] Khan I, Kabir Z. “Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment”. Renewable Energy, 150, 320-333, 2020.
  • [22] Topaloglu M, Yarkin F, Kaya T. “Solid waste collection system selection for smart cities based on a type-2 fuzzy multi-criteria decision technique”. Soft Computing, 22,4879-4890, 2018.
  • [23] Singh A. “Solid waste management through the applications of mathematical models”. Resources Conservation and Recycling 151, 104503, 2019.
  • [24] Al-Harbi KMAS. “Application of the AHP in project management”. International Journal of Project Management, 19, 19-27, 2001.
  • [25] Thomas L. Saaty TL, Vargas LG. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, 2nd ed. New York, USA, Springer, 2012.
  • [26] Bozorg-Haddad O, Zolghadr-Asli B, Loáiciga HA. A Handbook on Multi-Attribute Decision-Making Methods, 1st ed. John Wiley and Sons, Inc. Hoboken NJ, USA. 2021.
  • [27] Apaydın Ö. “Analysis of Sustainable Municipal Solid Waste Management Alternatives Based on Source Separation Using the Analytic Hierarchy Process”. Sustainability, 17(9), 3868, 2025.
  • [28] Apaydın Ö. “Deciding on the priority of process parameters using the analytical hierarchy process in electrochemical wastewater treatment and investigation of paint wastewater treatability”, Desalination and Water Treatment, 320, 100587, 2024.
  • [29] Syed AS, Sierra-Sosa D, Kumar A, Elmaghraby A. “IoT in smart cities: A survey of technologies, practices and challenges”. Smart Cities, 4, 429–475, 2021.
  • [30] Gopikumar S, Raja S, Robinson YH, Shanmuganathan V, Rho S. “A method of landfill leachate management using internet of things for sustainable smart city development”. Sustainable Cities and Society, 66, 102521, 2020.
  • [31] Sheng TJ, Islam MS, Misran N, Baharuddin MH, Arshad H, Islam MR, Chowdhury MEH, Rmili H, Islam MT. “An internet of things based smart waste management system using lora and tensorflow deep learning model”. IEEE Access, 8, 148793-148811, 2020
  • [32] Gupta YS, Mukherjee S, Dutta R, Bhattacharya S. “A blockchain-based approach using smart contracts to develop a smart waste management system”. International Journal of Environmental Science and Technology, 19, 7833-7856, 2022.
  • [33] Chauhan A, Jakhar SK, Chauhan C. “The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal”. Journal of Cleaner Production, 279, 123854, 2021.
  • [34] Seker S. “IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment”. Technology in Society, 71, 102100, 2022.
  • [35] Apaydin Ö, Gönüllü MT. “Emission control with route optimization in solid waste collection process: A case study”. Sadhana - Academy Proceedings in Engineering Sciences, 33, 71-82, 2008.
  • [36] TC Cumhurbaşkanlığı. Strateji ve Bütçe Başkanlığı. “Onikinci Kalkınma Planı”. https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_2024-2028_11122023.pdf (22.01.2025).
  • [37] Rhvner CR, Schwartz LJ, Wenger RB, Kohrell MG. Waste Management and Resource Recovery, 1st ed. Boca Raton, USA, CRC Press, 1995.
  • [38] Tanner R. “Die Entwicklung der Von Roll Müllverbrennungsanlagen”. Schweizerische Bauzeitung, 16, 251-260, 1965.
  • [39] Özdemir A, Özkan A, Günkaya Z, Banar M. “Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 920-928, 2022.
  • [40] Öztürk İ. Katı Atık Yönetimi ve AB Uygulamaları. 1 Baskı, İstanbul, Türkiye, Teknik Kitaplar Serisi 2, İSTAÇ AŞ, 2010.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ömer Apaydın

Gönderilme Tarihi 28 Eylül 2024
Kabul Tarihi 28 Ocak 2025
Yayımlanma Tarihi 19 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 5

Kaynak Göster

APA Apaydın, Ö. (2025). Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(5), 881-898.
AMA Apaydın Ö. Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2025;31(5):881-898.
Chicago Apaydın, Ömer. “Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 5 (Ekim 2025): 881-98.
EndNote Apaydın Ö (01 Ekim 2025) Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 5 881–898.
IEEE Ö. Apaydın, “Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, ss. 881–898, 2025.
ISNAD Apaydın, Ömer. “Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/5 (Ekim2025), 881-898.
JAMA Apaydın Ö. Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:881–898.
MLA Apaydın, Ömer. “Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, 2025, ss. 881-98.
Vancouver Apaydın Ö. Evsel katı atıkların kaynakta ikili ayrılması özel halinin çevresel, ekonomik, sosyal ve teknik kriterler açısından analitik hiyerarşi prosesi yardımıyla analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(5):881-98.