Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi

Yıl 2025, Cilt: 31 Sayı: 7, 1225 - 1234, 15.12.2025
https://doi.org/10.5505/pajes.2025.05673

Öz

Endüksiyon ile ısıtma (EI) teknolojisi, özellikle son yıllarda, yüksek verimlilik, hız, güvenli çalışma ve benzeri özellikleri nedeniyle ev tipi uygulamalarda geniş bir kullanım alanı bulmaktadır. EI sistemlerinde genellikle yüksek verimlilikleri ve yumuşak anahtarlama yetenekleri nedeniyle rezonanslı inverter devreleri kullanılmaktadır. EI sistemlerinde kullanılan çeşitli rezonanslı inverterler arasında, tek anahtarlı kısmi rezonanslı (SSQR) inverter topolojisi düşük maliyetli ve düşük güç gerektiren uygulamalar için tercih edilmektedir. Ancak, SSQR inverter, maliyet avantajına rağmen, yumuşak anahtarlama ile çalışabildiği güç aralığının dar oluşu, güç kontrolünün zorluğu ve yarı iletken anahtarlarda oluşan akım ve gerilim zorlanmalarının diğer inverter uygulamalarına kıyasla yüksek olması gibi dezavantajları barındırır. Güç elektroniği devrelerindeki güvenli çalışma koşullarını zorlayan en önemli unsurlar, yarı iletken anahtarların maruz kalacağı yüksek gerilim ve yüksek akımlardır. Bununla birlikte elektronik devrelerin tüm bileşenleri aşırı akım ve aşırı gerilim stresinden etkilense de, invertör uygulamalarında en savunmasız elemanlar yarı iletken anahtarlardır. Aşırı akımın ürettiği aşırı ısı, zorlamalı soğutma yöntemleriyle azaltılabilse bile, yüksek gerilimlere maruz kalan yarı iletken anahtarlar, muhtemelen kısa devre olacak ve devre çalışamaz hale gelecektir. Bu çalışmada EI'da kullanılan SSQR inverter için yarı iletken anahtarların maruz kaldığı aşırı gerilimleri engelleyecek bir yöntem önerilmektedir. Önerilen yöntemin avantajları teorik olarak incelenmiş ve simulasyonlar ve prototip devreler aracılığıyla doğrulanmıştır.

Kaynakça

  • [1] Lucía O, Maussion P, Dede E, Burdío JM. “Induction heating technology and its applications: past developments, current technology, and future challenges”. IEEE Transactions on Industrial Electronics, 61(05), 2509–2520, 2014.
  • [2] Kazimierczuk MK, Wang S. “Frequency-domain analysis of series resonant converter for continuous conduction mode”. IEEE Transactions on Power Electronics, 7(2), 270–279, 1992.
  • [3] Ozturk M, Altintas N. “Multi-output AC–AC converter for domestic induction heating”. Electrical Engineering, 105(1), 297–316, 2023.
  • [4] Tanaka T. “A new induction cooking range for heating any kind of metal vessels”. IEEE Transactions on Consumer Electronics, 35(3), 635–641, 1989.
  • [5] Sarnago H, Lucia O, Mediano A, Burdio JM. “A class-e direct AC–AC converter with multicycle modulation for ınduction heating systems”. IEEE Transactions on Industrial Electronics, 61(5), 2521–2530, 2014.
  • [6] Vishnuram P, Ramachandiran G. “Capacitor-less induction heating system with self-resonant bifilar coil”. International Journal of Circuit Theory and Applications, 48(9), 1411–1425, 2020.
  • [7] Sarnago H, Lucia O, Mediano A, Burdio JM. “Direct AC-AC resonant boost converter for”. IEEE Transactions on Power Electronics, 29(3), 1128–1139, 2014.
  • [8] Park HP, Kim M, Jung JH, Kim HS. “Load adaptive modulation method for all-metal induction heating application”. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 04-08 March 2018.
  • [9] Sarnago H, Lucia O, Burdio JM. “Multiple-output ZCS resonant inverter for multi-coil induction heating appliances”. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26-30 March 2017.
  • [10] Çetin S, Sazak BS. “Mutfak tipi ısıtma uygulamaları için iki çıkışlı bir indüksiyon ısıtma inverteri tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 397–401, 2006.
  • [11] Huang MS, Liao CC, Li ZF, Shih ZR, Hsueh HW. “Quantitative design and ımplementation of an ınduction cooker for a copper pan”. IEEE Access, 9, 5105–5118, 2021.
  • [12] Jeong SH, Jin JI, Park HP, Jung JH. “Enhanced load adaptive modulation of induction heating series resonant inverters to heat various-material vessels”. Journal of Power Electronics, 22(6), 1020–1032, 2022.
  • [13] Jang E, Park SM, Joo D, Ahn HM, Lee BK. “Analysis and Comparison of Topological Configurations for All-Metal Induction Cookers”. Journal of Electrical Engineering & Technology, 14(6), 2399–2408, 2019.
  • [14] Han W, Chau KT, Liu W, Tian X, Wang H. “A dual-resonant topology-reconfigurable ınverter for all-metal induction heating”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 3818–3829, 2022.
  • [15] Sarnago H, Lucía Ó, Mediano A, Burdío JM. “Analytical model of the half-bridge series resonant ınverter for ımproved power conversion efficiency and performance”. IEEE Transactions on Power Electronics, 30(8), 4128–4143, 2015.
  • [16] Hsieh HI, Kuo CC, Chang WT. “Study of half-bridge series-resonant induction cooker powered by line rectified DC with less filtering”. IET Power Electronics, 16(11), 1929-1942 ,2023.
  • [17] Koertzen HW, Wyk JDV, Ferreira JA. “Design of the half-bridge, series resonant converter for induction cooking”. Proceedings of PESC '95-Power Electronics Specialist Conference, Atlanta, GA, USA, 18-22 June 1995.
  • [18] Zungor F, Bodur H, Ozturk M, Obdan H. “Design Methodology of Series Resonant Half Bridge Inverter for Induction Cooker”. IEEE Access, 11, 135476–135492, 2023.
  • [19] Koroglu S, Sazak BS.“Mutfak Uygulamaları İçin yarım köprü seri rezonans invertörlü indüksiyon ısıtma sistemi tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 167–172, 2002.
  • [20] Ozturk M. “A simplified design method for quasi-resonant ınverter used in ınduction hob”. Electronics, 12(19), 4145, 2023.
  • [21] Sheikhian I, Kaminski N, Voß S, Scholz W, Herweg E. “Optimisation of quasi-resonant ınduction cookers”. 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 02-06 September 2013.
  • [22] Ozturk M, Zungor F, Emre B, Oz B. “quasi resonant ınverter load recognition method”. IEEE Access, 10, 89376–89386, 2022.
  • [23] Villa J, Navarro D, Dominguez A, Artigas JI, Barragan LA. “Vessel recognition in ınduction heating appliances - a deep-learning approach”. IEEE Access, 9, 16053–16061, 2021.
  • [24] Li ZF, Hu JC, Huang MS, Lin YL, Lin CW, Meng YM. “Load estimation for ınduction heating cookers based on series RLC natural resonant current”. Energies, 15(4), 1294, 2022.
  • [25] Spateri E, Ruiz F, Gruosso G. “Modelling and simulation of quasi-resonant ınverter for ınduction heating under variable load”. Electronics, 12(3), 753, 2023.
  • [26] Acero J, Burdío JM, Barragán LA, Alonso R. “A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application”. IEEE International Symposium on Industrial Electronics (ISIE), Vigo, Spain, 04-07 June 2007.
  • [27] Okuno H, Yonemori H, Kobayashi M. “Relation of gap length and resonant frequency about a double-coil drive type IH cooker”. 15th IEEE International Conference on Electronics, Circuits and Systems, Saint Julian's, Malta, 31 August-03 September 2008.
  • [28] Jovančić N, Hadžimejlić N, Ćeklić P. “Efficient control of IGBT transistor as part of overvoltage protection”. International Journal of Electrical Engineering and Computing, 1(1), 46-52, 2017.
  • [29] Chen M, Xiong Z, Zhang Y, Zhu E, Zhao Y, Ma Z. “IGBT Overvoltage protection based on dynamic voltage feedback and active clamping”. Applied Sciences, 13(2), 795, 2023.
  • [30] Du L, Ma C, Zhang Y, Chen Y, Luo Y. “A new IGBT over-voltage and over-current protection method based on active clamp technology”. 22nd International Vacuum Electronics Conference, Rotterdam, Netherlands, 27-30 April 2021.
  • [31] Omori H, Yamashita H, Nakaoka M, Maruhashi T. “A novel type induction-heating single-ended resonant inverter using new bipolar Darlington-Transistor”. IEEE Power Electronics Specialists Conference, Toulouse, France, 24-28 June 1985.
  • [32] Komatsu WPW. “A simple and reliable class E inverter for induction heating applications”. International Journal of Electronics, 84(2), 157–165, 1998.
  • [33] Terai H, Hirota I, Miyauchi T, Omori H, Ogura K, Hirota Y. “Comparative performance evaluations of IGBTs and MCT in single-ended quasi-resonant zero voltage soft switching inverter”. IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, BC, Canada, 17-21 June 2001.
  • [34] Sazak BS. “Design of a 500W resonant inductıon heater”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 5(1), 871–878, 1999.
  • [35] Alexander CK, Sadiku MNO. Fundamentals of Electric Circuits. 6th ed. New York, USA, McGraw-Hill Education, 2017.

Safe operating area in single switch quasi resonant inverter

Yıl 2025, Cilt: 31 Sayı: 7, 1225 - 1234, 15.12.2025
https://doi.org/10.5505/pajes.2025.05673

Öz

Induction heating (IH) technology has found extensive use in residential applications in recent times, owing to its high efficiency, speed, and safe operation characteristics. Resonant inverter circuits are commonly employed in IH systems due to their high efficiency and soft-switching capabilities. Among various resonant inverters used in IH systems, the single-switch quasi-resonant (SSQR) inverter topology is preferred for low-cost and low-power applications. However, despite its cost advantages, the SSQR inverter has limitations, including a narrow operating range for soft-switching, challenges in power control, and higher stresses on semiconductor switches compared to other inverter applications. The most critical factors challenging the safe operation conditions of power electronic circuits are the high voltage and current stresses imposed on semiconductor switches. While all components of electronic circuits are affected by excessive current and voltage stresses, semiconductor switches, particularly in inverter applications, are the most vulnerable elements. Despite efforts to reduce excessive heat generated by overcurrent through forced cooling methods, semiconductor switches subjected to high voltages are prone to short-circuiting, rendering the circuit inoperable. This study proposes a method to mitigate the overvoltage stresses on semiconductor switches used in SSQR inverters for induction heating applications. The theoretical advantages of the proposed method have been investigated and verified through simulations and prototype circuits.

Kaynakça

  • [1] Lucía O, Maussion P, Dede E, Burdío JM. “Induction heating technology and its applications: past developments, current technology, and future challenges”. IEEE Transactions on Industrial Electronics, 61(05), 2509–2520, 2014.
  • [2] Kazimierczuk MK, Wang S. “Frequency-domain analysis of series resonant converter for continuous conduction mode”. IEEE Transactions on Power Electronics, 7(2), 270–279, 1992.
  • [3] Ozturk M, Altintas N. “Multi-output AC–AC converter for domestic induction heating”. Electrical Engineering, 105(1), 297–316, 2023.
  • [4] Tanaka T. “A new induction cooking range for heating any kind of metal vessels”. IEEE Transactions on Consumer Electronics, 35(3), 635–641, 1989.
  • [5] Sarnago H, Lucia O, Mediano A, Burdio JM. “A class-e direct AC–AC converter with multicycle modulation for ınduction heating systems”. IEEE Transactions on Industrial Electronics, 61(5), 2521–2530, 2014.
  • [6] Vishnuram P, Ramachandiran G. “Capacitor-less induction heating system with self-resonant bifilar coil”. International Journal of Circuit Theory and Applications, 48(9), 1411–1425, 2020.
  • [7] Sarnago H, Lucia O, Mediano A, Burdio JM. “Direct AC-AC resonant boost converter for”. IEEE Transactions on Power Electronics, 29(3), 1128–1139, 2014.
  • [8] Park HP, Kim M, Jung JH, Kim HS. “Load adaptive modulation method for all-metal induction heating application”. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 04-08 March 2018.
  • [9] Sarnago H, Lucia O, Burdio JM. “Multiple-output ZCS resonant inverter for multi-coil induction heating appliances”. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26-30 March 2017.
  • [10] Çetin S, Sazak BS. “Mutfak tipi ısıtma uygulamaları için iki çıkışlı bir indüksiyon ısıtma inverteri tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 397–401, 2006.
  • [11] Huang MS, Liao CC, Li ZF, Shih ZR, Hsueh HW. “Quantitative design and ımplementation of an ınduction cooker for a copper pan”. IEEE Access, 9, 5105–5118, 2021.
  • [12] Jeong SH, Jin JI, Park HP, Jung JH. “Enhanced load adaptive modulation of induction heating series resonant inverters to heat various-material vessels”. Journal of Power Electronics, 22(6), 1020–1032, 2022.
  • [13] Jang E, Park SM, Joo D, Ahn HM, Lee BK. “Analysis and Comparison of Topological Configurations for All-Metal Induction Cookers”. Journal of Electrical Engineering & Technology, 14(6), 2399–2408, 2019.
  • [14] Han W, Chau KT, Liu W, Tian X, Wang H. “A dual-resonant topology-reconfigurable ınverter for all-metal induction heating”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 3818–3829, 2022.
  • [15] Sarnago H, Lucía Ó, Mediano A, Burdío JM. “Analytical model of the half-bridge series resonant ınverter for ımproved power conversion efficiency and performance”. IEEE Transactions on Power Electronics, 30(8), 4128–4143, 2015.
  • [16] Hsieh HI, Kuo CC, Chang WT. “Study of half-bridge series-resonant induction cooker powered by line rectified DC with less filtering”. IET Power Electronics, 16(11), 1929-1942 ,2023.
  • [17] Koertzen HW, Wyk JDV, Ferreira JA. “Design of the half-bridge, series resonant converter for induction cooking”. Proceedings of PESC '95-Power Electronics Specialist Conference, Atlanta, GA, USA, 18-22 June 1995.
  • [18] Zungor F, Bodur H, Ozturk M, Obdan H. “Design Methodology of Series Resonant Half Bridge Inverter for Induction Cooker”. IEEE Access, 11, 135476–135492, 2023.
  • [19] Koroglu S, Sazak BS.“Mutfak Uygulamaları İçin yarım köprü seri rezonans invertörlü indüksiyon ısıtma sistemi tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 167–172, 2002.
  • [20] Ozturk M. “A simplified design method for quasi-resonant ınverter used in ınduction hob”. Electronics, 12(19), 4145, 2023.
  • [21] Sheikhian I, Kaminski N, Voß S, Scholz W, Herweg E. “Optimisation of quasi-resonant ınduction cookers”. 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 02-06 September 2013.
  • [22] Ozturk M, Zungor F, Emre B, Oz B. “quasi resonant ınverter load recognition method”. IEEE Access, 10, 89376–89386, 2022.
  • [23] Villa J, Navarro D, Dominguez A, Artigas JI, Barragan LA. “Vessel recognition in ınduction heating appliances - a deep-learning approach”. IEEE Access, 9, 16053–16061, 2021.
  • [24] Li ZF, Hu JC, Huang MS, Lin YL, Lin CW, Meng YM. “Load estimation for ınduction heating cookers based on series RLC natural resonant current”. Energies, 15(4), 1294, 2022.
  • [25] Spateri E, Ruiz F, Gruosso G. “Modelling and simulation of quasi-resonant ınverter for ınduction heating under variable load”. Electronics, 12(3), 753, 2023.
  • [26] Acero J, Burdío JM, Barragán LA, Alonso R. “A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application”. IEEE International Symposium on Industrial Electronics (ISIE), Vigo, Spain, 04-07 June 2007.
  • [27] Okuno H, Yonemori H, Kobayashi M. “Relation of gap length and resonant frequency about a double-coil drive type IH cooker”. 15th IEEE International Conference on Electronics, Circuits and Systems, Saint Julian's, Malta, 31 August-03 September 2008.
  • [28] Jovančić N, Hadžimejlić N, Ćeklić P. “Efficient control of IGBT transistor as part of overvoltage protection”. International Journal of Electrical Engineering and Computing, 1(1), 46-52, 2017.
  • [29] Chen M, Xiong Z, Zhang Y, Zhu E, Zhao Y, Ma Z. “IGBT Overvoltage protection based on dynamic voltage feedback and active clamping”. Applied Sciences, 13(2), 795, 2023.
  • [30] Du L, Ma C, Zhang Y, Chen Y, Luo Y. “A new IGBT over-voltage and over-current protection method based on active clamp technology”. 22nd International Vacuum Electronics Conference, Rotterdam, Netherlands, 27-30 April 2021.
  • [31] Omori H, Yamashita H, Nakaoka M, Maruhashi T. “A novel type induction-heating single-ended resonant inverter using new bipolar Darlington-Transistor”. IEEE Power Electronics Specialists Conference, Toulouse, France, 24-28 June 1985.
  • [32] Komatsu WPW. “A simple and reliable class E inverter for induction heating applications”. International Journal of Electronics, 84(2), 157–165, 1998.
  • [33] Terai H, Hirota I, Miyauchi T, Omori H, Ogura K, Hirota Y. “Comparative performance evaluations of IGBTs and MCT in single-ended quasi-resonant zero voltage soft switching inverter”. IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, BC, Canada, 17-21 June 2001.
  • [34] Sazak BS. “Design of a 500W resonant inductıon heater”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 5(1), 871–878, 1999.
  • [35] Alexander CK, Sadiku MNO. Fundamentals of Electric Circuits. 6th ed. New York, USA, McGraw-Hill Education, 2017.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Metin Öztürk 0000-0001-9369-8206

Gönderilme Tarihi 25 Şubat 2024
Kabul Tarihi 13 Mayıs 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Öztürk, M. (2025). Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7), 1225-1234. https://doi.org/10.5505/pajes.2025.05673
AMA Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;31(7):1225-1234. doi:10.5505/pajes.2025.05673
Chicago Öztürk, Metin. “Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Aralık 2025): 1225-34. https://doi.org/10.5505/pajes.2025.05673.
EndNote Öztürk M (01 Aralık 2025) Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7 1225–1234.
IEEE M. Öztürk, “Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, ss. 1225–1234, 2025, doi: 10.5505/pajes.2025.05673.
ISNAD Öztürk, Metin. “Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Aralık2025), 1225-1234. https://doi.org/10.5505/pajes.2025.05673.
JAMA Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1225–1234.
MLA Öztürk, Metin. “Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, ss. 1225-34, doi:10.5505/pajes.2025.05673.
Vancouver Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7):1225-34.