Araştırma Makalesi
BibTex RIS Kaynak Göster

Sustainable textile based thermal insulation material development by lamination method: Adhesive influence

Yıl 2025, Sayı: Advanced Online Publication

Öz

This study aims to address the environmental and health issues posed by conventional thermal insulation materials. It focuses on developing sustainable interior thermal insulation materials through the lamination of nonwoven fabrics made from waste fibers with chenille upholstery fabric using various adhesives (Polyether Sulfone (PES), polyamide (PA), Ethylene Vinyl Acetate (EVA), Thermoplastic Polyurethane (PU), and copolyester (CoPES)) in three forms (web, film, and powder). The research evaluates the impact of the form, raw material, and quantity of adhesive on the thermal conductivity, thickness, air permeability, stiffness, and bending rigidity of the resulting laminates. Moreover, the use of chenille upholstery as the surface layer not only enhances the visual appeal of these insulation materials but also brings an aesthetic perspective to technical textiles. Adhesives in web form exhibited notable thermal insulation due to their porous structure, while powder adhesives affected the fabric density and thermal conductivity. Notably, an increase in the amount of adhesive reduced air permeability and increased thermal conductivity. These findings emphasize the significant influence of adhesive selection (raw material, form, and quantity) on the thermal and mechanical properties of textile-based insulation materials. In conclusion, the study suggests the potential for developing sustainable and efficient thermal insulation solutions using waste fibers and tailored adhesive selection for building applications, while also enhancing the aesthetic value of such materials.

Kaynakça

  • [1] Park B, Srubar WV, Krarti M. “Energy performance analysis of variable thermal resistance envelopes in residential buildings”. Energy and Buildings, 103, 317-325, 2015.
  • [2] Kim DD, Suh HS. “Heating and cooling energy consumption prediction model for high-rise apartment buildings considering design parameters”. Energy for Sustainable Development, 61, 1-14, 2021.
  • [3] Asdrubali F, D’Alessandro F, Schiavoni S. “A review of unconventional sustainable building insulation materials”. Sustainable Materials and Technologies, 4, 1-17, 2015.
  • [4] Islam S, Bhat G. “Environmentally-friendly thermal and acoustic insulation materials from recycled textiles”. Journal of Environmental Management, 251, 109536, 2019.
  • [5] Abu-Jdayil B, Mourad A-H, Hittini W, Hassan M, Hameedi S. “Traditional, state-of-the-art and renewable thermal building insulation materials: An overview”. Construction and Building Materials, 214, 709-735, 2019.
  • [6] Karimi F, Soltani P, Zarrebini M, Hassanpour A. “Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings”. Journal of Building Engineering, 50, 104125, 2022.
  • [7] Gnanauthayan G, Rengasamy RS, Kothari VK. “Heat insulation characteristics of high bulk nonwovens”. The Journal of the Textile Institute, 108(12), 2173-2179, 2017.
  • [8] El Wazna M, Gounni A, El Bouari A, El Alami M, Cherkaoui O. “Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste”. Journal of Industrial Textiles, 48(7), 1167-1183, 2019.
  • [9] Raeisian L, Mansoori Z, Hosseini-Abardeh R, Bagherzadeh R. “An investigation in structural parameters of needle-punched nonwoven fabrics on their thermal insulation property”. Fibers and Polymers, 14(10), 1748-1753, 2013.
  • [10] Murmu SB. “Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation”. Cleaner Engineering and Technology, 8, 100513, 2022.
  • [11] Dissanayake G, Sinha P. “An examination of the product development process for fashion remanufacturing”. Resources, Conservation and Recycling, 104, 94-102, 2015.
  • [12] Riba J-R, Cantero R, Canals T, Puig R. “Circular economy of post-consumer textile waste: Classification through infrared spectroscopy”. Journal of Cleaner Production, 272, 123011, 2020.
  • [13] Stanescu MD. “State of the art of post-consumer textile waste upcycling to reach the zero waste milestone”. Environmental Science and Pollution Research, 28(12), 14253-14270, 2021.
  • [14] Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M. “Death by waste: Fashion and textile circular economy case”. Science of the Total Environment, 718, 137317, 2020.
  • [15] Mahmoud E. “Thermo-insulation properties of cross laid nonwoven fabrics made of PET and PP waste fibers”. International Journal of Advanced Research in Science and Engineering, 4(09), 211-226, 2015.
  • [16] Muthu Kumar N, Thilagavathi G, Karthikka M. “Development of Recycled PET/comber Noil Nonwovens for Thermal Insulation Application”. Journal of Natural Fibers, 19(9), 3233-3240, 2022.
  • [17] Cai Z, Al Faruque MA, Kiziltas A, Mielewski D, Naebe M. “Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry”. Materials, 14(5), 1241, 2021.
  • [18] El Wazna M, El Fatihi M, El Bouari A, Cherkaoui O. “Thermo physical characterization of sustainable insulation materials made from textile waste”. Journal of Building Engineering, 12, 196-201, 2017.
  • [19] Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD. “Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies”. Energy and Buildings, 92, 161-169, 2015.
  • [20] Rubino F, Nisticò A, Tucci F, Carlone P. “Marine application of fiber reinforced composites: A review”. Journal of Marine Science and Engineering, 8(1), 2020.
  • [21] Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F. “Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool”. Journal of Building Engineering, 35, 102060, 2021.
  • [22] Muthu Kumar N, Thilagavathi G, Periasamy S, Vinoth V. “Development of Needle Punched Nonwovens from Natural Fiber Waste for Thermal Insulation Application”. Journal of Natural Fibers, 19(14), 9580-9588, 2022.
  • [23] Sakthivel S, Senthil Kumar S, Mekonnen S, Solomon E. “Thermal and sound insulation properties of recycled cotton/polyester chemical bonded nonwovens”. Journal of Engineered Fibers and Fabrics, 15, 155892502096881, 2020.
  • [24] Bogale M, Sakthivel S, Senthil Kumar S, Senthil Kumar B. “Sound absorbing and thermal insulating properties of recycled cotton/polyester selvedge waste chemical bonded nonwovens”. The Journal of the Textile Institute, 114(1), 134-141, 2023.
  • [25] Florea I, Manea DL. “Analysis of Thermal Insulation Building Materials Based on Natural Fibers”. Procedia Manufacturing, 32, 230-235, 2019.
  • [26] Krarti, M. Advanced Building Energy Efficiency Systems. Editor: Krarti M. Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers, 45–115, Butterworth-Heinemann, 2018
  • [27] Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. “Textile fabrics as thermal insulators”. AUTEX Research Journal, 6(3), 148-161, 2006.
  • [28] Zheng Z, Wang H, Zhao X, Zhang N. “Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property”. Textile Research Journal, 88(17), 1954-1964, 2018.
  • [29] Vigneswaran C, Chandrasekaran K, Senthilkumar P. “Effect of Thermal Conductivity Behavior of Jute/Cotton Blended Knitted Fabrics”. Journal of Industrial Textiles, 38(4), 289-307, 2009.
  • [30] Banks-Lee P, Mohammadi M, Ghadimi P. “Utilization of Air Permeability in Predicting the Thermal Conductivity”. International Nonwovens Journal, os-13(2), 1558925004os-13, 2004.

Laminasyon yöntemi ile sürdürülebilir tekstil tabanlı ısı yalıtım malzemesi geliştirilmesi: Yapıştırıcının etkisi

Yıl 2025, Sayı: Advanced Online Publication

Öz

Bu çalışma, geleneksel ısı yalıtım malzemelerinin yol açtığı çevre ve sağlık sorunlarını ele almayı amaçlamaktadır. Atık elyaflardan üretilen nonwoven kumaşların şönil döşemelik kumaş ile üç farklı formda (web, film ve toz) çeşitli yapıştırıcılar (Polieter Sülfon (PES), poliamid (PA), Etilen Vinil Asetat (EVA), Termoplastik Poliüretan (PU) ve kopolyester (CoPES)) kullanılarak laminasyonu yoluyla sürdürülebilir iç mekân ısı yalıtım malzemeleri geliştirmeye odaklanmaktadır. Araştırma, yapıştırıcı formunun, ham maddesinin ve miktarının, ortaya çıkan laminatların termal iletkenliği, kalınlığı, hava geçirgenliği, sertliği ve bükülme rijitliği üzerindeki etkisini değerlendirmektedir. Üstelik şönil kumaşın yüzey katmanı olarak kullanılması, bu yalıtım malzemelerinin görsel çekiciliğini artırmanın yanı sıra teknik tekstillere estetik bir bakış açısı da kazandırıyor. Ağ formundaki yapıştırıcılar gözenekli yapılarından dolayı kayda değer bir ısı yalıtımı sergilerken, toz yapıştırıcılar kumaş yoğunluğunu ve ısıl iletkenliğini etkilemiştir. Özellikle yapıştırıcı miktarındaki artış hava geçirgenliğini azaltmış ve termal iletkenliği arttırmıştır. Bu bulgular, yapıştırıcı seçiminin (hammaddesi, formu ve miktarı) tekstil bazlı yalıtım malzemelerinin termal ve mekanik özellikleri üzerindeki önemli etkisini vurgulamaktadır. Sonuç olarak çalışma, atık elyaflar ve bina uygulamaları için özel yapıştırıcı seçimi kullanılarak sürdürülebilir ve verimli ısı yalıtım çözümleri geliştirmenin yanı sıra bu tür malzemelerin estetik değerini de artırma potansiyelini ortaya koymaktadır.

Kaynakça

  • [1] Park B, Srubar WV, Krarti M. “Energy performance analysis of variable thermal resistance envelopes in residential buildings”. Energy and Buildings, 103, 317-325, 2015.
  • [2] Kim DD, Suh HS. “Heating and cooling energy consumption prediction model for high-rise apartment buildings considering design parameters”. Energy for Sustainable Development, 61, 1-14, 2021.
  • [3] Asdrubali F, D’Alessandro F, Schiavoni S. “A review of unconventional sustainable building insulation materials”. Sustainable Materials and Technologies, 4, 1-17, 2015.
  • [4] Islam S, Bhat G. “Environmentally-friendly thermal and acoustic insulation materials from recycled textiles”. Journal of Environmental Management, 251, 109536, 2019.
  • [5] Abu-Jdayil B, Mourad A-H, Hittini W, Hassan M, Hameedi S. “Traditional, state-of-the-art and renewable thermal building insulation materials: An overview”. Construction and Building Materials, 214, 709-735, 2019.
  • [6] Karimi F, Soltani P, Zarrebini M, Hassanpour A. “Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings”. Journal of Building Engineering, 50, 104125, 2022.
  • [7] Gnanauthayan G, Rengasamy RS, Kothari VK. “Heat insulation characteristics of high bulk nonwovens”. The Journal of the Textile Institute, 108(12), 2173-2179, 2017.
  • [8] El Wazna M, Gounni A, El Bouari A, El Alami M, Cherkaoui O. “Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste”. Journal of Industrial Textiles, 48(7), 1167-1183, 2019.
  • [9] Raeisian L, Mansoori Z, Hosseini-Abardeh R, Bagherzadeh R. “An investigation in structural parameters of needle-punched nonwoven fabrics on their thermal insulation property”. Fibers and Polymers, 14(10), 1748-1753, 2013.
  • [10] Murmu SB. “Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation”. Cleaner Engineering and Technology, 8, 100513, 2022.
  • [11] Dissanayake G, Sinha P. “An examination of the product development process for fashion remanufacturing”. Resources, Conservation and Recycling, 104, 94-102, 2015.
  • [12] Riba J-R, Cantero R, Canals T, Puig R. “Circular economy of post-consumer textile waste: Classification through infrared spectroscopy”. Journal of Cleaner Production, 272, 123011, 2020.
  • [13] Stanescu MD. “State of the art of post-consumer textile waste upcycling to reach the zero waste milestone”. Environmental Science and Pollution Research, 28(12), 14253-14270, 2021.
  • [14] Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M. “Death by waste: Fashion and textile circular economy case”. Science of the Total Environment, 718, 137317, 2020.
  • [15] Mahmoud E. “Thermo-insulation properties of cross laid nonwoven fabrics made of PET and PP waste fibers”. International Journal of Advanced Research in Science and Engineering, 4(09), 211-226, 2015.
  • [16] Muthu Kumar N, Thilagavathi G, Karthikka M. “Development of Recycled PET/comber Noil Nonwovens for Thermal Insulation Application”. Journal of Natural Fibers, 19(9), 3233-3240, 2022.
  • [17] Cai Z, Al Faruque MA, Kiziltas A, Mielewski D, Naebe M. “Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry”. Materials, 14(5), 1241, 2021.
  • [18] El Wazna M, El Fatihi M, El Bouari A, Cherkaoui O. “Thermo physical characterization of sustainable insulation materials made from textile waste”. Journal of Building Engineering, 12, 196-201, 2017.
  • [19] Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD. “Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies”. Energy and Buildings, 92, 161-169, 2015.
  • [20] Rubino F, Nisticò A, Tucci F, Carlone P. “Marine application of fiber reinforced composites: A review”. Journal of Marine Science and Engineering, 8(1), 2020.
  • [21] Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F. “Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool”. Journal of Building Engineering, 35, 102060, 2021.
  • [22] Muthu Kumar N, Thilagavathi G, Periasamy S, Vinoth V. “Development of Needle Punched Nonwovens from Natural Fiber Waste for Thermal Insulation Application”. Journal of Natural Fibers, 19(14), 9580-9588, 2022.
  • [23] Sakthivel S, Senthil Kumar S, Mekonnen S, Solomon E. “Thermal and sound insulation properties of recycled cotton/polyester chemical bonded nonwovens”. Journal of Engineered Fibers and Fabrics, 15, 155892502096881, 2020.
  • [24] Bogale M, Sakthivel S, Senthil Kumar S, Senthil Kumar B. “Sound absorbing and thermal insulating properties of recycled cotton/polyester selvedge waste chemical bonded nonwovens”. The Journal of the Textile Institute, 114(1), 134-141, 2023.
  • [25] Florea I, Manea DL. “Analysis of Thermal Insulation Building Materials Based on Natural Fibers”. Procedia Manufacturing, 32, 230-235, 2019.
  • [26] Krarti, M. Advanced Building Energy Efficiency Systems. Editor: Krarti M. Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers, 45–115, Butterworth-Heinemann, 2018
  • [27] Abdel-Rehim ZS, Saad MM, El-Shakankery M, Hanafy I. “Textile fabrics as thermal insulators”. AUTEX Research Journal, 6(3), 148-161, 2006.
  • [28] Zheng Z, Wang H, Zhao X, Zhang N. “Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property”. Textile Research Journal, 88(17), 1954-1964, 2018.
  • [29] Vigneswaran C, Chandrasekaran K, Senthilkumar P. “Effect of Thermal Conductivity Behavior of Jute/Cotton Blended Knitted Fabrics”. Journal of Industrial Textiles, 38(4), 289-307, 2009.
  • [30] Banks-Lee P, Mohammadi M, Ghadimi P. “Utilization of Air Permeability in Predicting the Thermal Conductivity”. International Nonwovens Journal, os-13(2), 1558925004os-13, 2004.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kumaş Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Cansu Var 0000-0003-4760-1068

Ayşe Özkal 0000-0003-1294-7106

Gönderilme Tarihi 6 Mart 2025
Kabul Tarihi 10 Haziran 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Var, C., & Özkal, A. (2025). Sustainable textile based thermal insulation material development by lamination method: Adhesive influence. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi(Advanced Online Publication). https://doi.org/10.5505/pajes.2025.83461
AMA Var C, Özkal A. Sustainable textile based thermal insulation material development by lamination method: Adhesive influence. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;(Advanced Online Publication). doi:10.5505/pajes.2025.83461
Chicago Var, Cansu, ve Ayşe Özkal. “Sustainable textile based thermal insulation material development by lamination method: Adhesive influence”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication (Kasım 2025). https://doi.org/10.5505/pajes.2025.83461.
EndNote Var C, Özkal A (01 Kasım 2025) Sustainable textile based thermal insulation material development by lamination method: Adhesive influence. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication
IEEE C. Var ve A. Özkal, “Sustainable textile based thermal insulation material development by lamination method: Adhesive influence”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, Kasım2025, doi: 10.5505/pajes.2025.83461.
ISNAD Var, Cansu - Özkal, Ayşe. “Sustainable textile based thermal insulation material development by lamination method: Adhesive influence”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication (Kasım2025). https://doi.org/10.5505/pajes.2025.83461.
JAMA Var C, Özkal A. Sustainable textile based thermal insulation material development by lamination method: Adhesive influence. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.5505/pajes.2025.83461.
MLA Var, Cansu ve Ayşe Özkal. “Sustainable textile based thermal insulation material development by lamination method: Adhesive influence”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, 2025, doi:10.5505/pajes.2025.83461.
Vancouver Var C, Özkal A. Sustainable textile based thermal insulation material development by lamination method: Adhesive influence. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025(Advanced Online Publication).