Araştırma Makalesi
BibTex RIS Kaynak Göster

The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY)

Yıl 2025, Cilt: 31 Sayı: 6, 1073 - 1082, 13.11.2025
https://doi.org/10.5505/pajes.2025.57227

Öz

Distinguishing a volcaniclastic dyke from a sedimentary clastic dyke is one of the major tasks in volcanological field studies due to its different origins. As a volcaniclastic dyke, pyroclastic dykes have great importance in locating volcanic vent facies for ignimbrite-forming eruptions. Here, our purpose is to determine the origin of clastic dykes and find the vent facies for ignimbrites from the Mio-Pliocene Erenlerdağ-Alacadağ Volcanic Complex (ErAVC), Central Anatolia. The ErAVC covers a large area in the southwest of Konya (Central Anatolia,Türkiye) and shows unimodal character. The ErAVC consists of calc-alkaline basaltic-andesite (enclaves), andesite, dacite, and rarely rhyolite. It comprises mainly lava domes/lava flows and their volcaniclastic counterparts (block and ash flows, ignimbrites). The ignimbrites (Erenkaya-1, 2, and 3) compositionally range from andesite to dacite. Clastic dykes cut the Erenkaya ignimbrites in three different locations along the northeast of the ErAVC. The first group of these dykes consists of mainly very fine-grained ash-size material and lithic-rich wall side facies, exhibiting characteristics of a pyroclastic dyke emplaced by the fluidization of volcaniclastic materials. The other one,which is fine-grained material from the edges, while the middle part contains very coarse (block-sized) and dense pumice components. Field studies show that this dyke was emplaced by post-volcanic secondary processes (e.g. sedimentary clastic dyke) as a fissure fill. These clastic dykes indicate that a caldera collapse process in the north of the ErAVC may form the Erenkaya ignimbrites.

Kaynakça

  • [1] Vezzoli L, Corazzato C. “Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)”. Journal of Volcanology and Geothermal Research, 318, 55-72, 2016.
  • [2] Aguirre-Diaz GJ, Labarthe-Hernadez G. “Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting”. Geology, 31, 773-776, 2003.
  • [3] Motoki A, Geraldes MC, Iwanuch W, Vargas T, Motoki KF, Balmant A, Ramos MN. “The pyroclastic dyke and welded crystal tuff of the Morro dos Gatos alkaline complex, State of Rio de Janeiro, Brazil”. REM: Revista Escola de Minas, Ouro Preto, 65, 35-45, 2012.
  • [4] Torres-Hernández JR, Labarthe-Hernández G, Aguillón-Robles A, Gómez-Anguiano M, Mata-Segura JL. “The Pyroclastic Dikes of the Tertiary San Luis Potosí-Volcanic Field: Implications on the Emplacement of Panalillo Ignimbrite”. Geofísica Internacional, 45, 243-253, 2006.
  • [5] Winter C, Breitkreuz C, Lapp M. Textural analysis of a Late Palaeozoic coherent-pyroclastic rhyolitic dyke system near Bunkersdorf (Erzgebirge, Saxony, Germany). Editors: Thomson K, Petford N. Structure and emplacement of high-level magmatic systems, 199-221, London, Geological Society, Special Publications, 2008.
  • [6] Xu S-S, Nieto-Samaniego AF, Alaniz-Álvarez SA. “Emplacement of pyroclastic dykes in Riedel shear fractures: An example from the Sierra de San Miguelito, central Mexico”. Journal of Volcanology and Geothermal Research, 250, 1-8, 2013.
  • [7] Doğan U, Koçyiğit A. “Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey”. Geomorphology, 306, 13-27, 2018.
  • [8] Koç A, Kaymakçı N, van Hinsbergen DJJ, Kuiper KF. “Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau”. Global and Planetary Change, 158, 83-102, 2017.
  • [9] Koç A, van Hinsbergen DJJ, Langereis CG. “Rotations of normal fault blocks quantify extension in the Central Tauride intramontane basins, SW Turkey”. Tectonics, 37, 2307-2327, 2018.
  • [10] Dean WT, Monod O. “The Lower Paleozoic stratigraphy and faunas of the Taurus Mountains near Beyşehir, Turkey”. I. Stratigraphy. Bulletin of the British Museum (Natural History) Geology, 19, 411-426, 1970.
  • [11] Göncüoğlu MC, Çapkınoğlu Ş, Gürsu S, Noble P, Turhan N, Tekin UK, Okuyucu C, Göncüoğlu Y. “The Mississippian in the Central and Eastern Taurides (Turkey): constraints on the tectonic setting of the Tauride-Anatolide Platform”. Geologica Carpathica, 58, 427-442, 2007.
  • [12] Göncüoğlu MC, Kozlu H. “Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions”. Gondwana Research, 3, 315-323, 2000.
  • [13] Gürsu S, Kozlu H, Göncüoğlu MC, Turhan N. “Orta Torosların Batı Kesimindeki Temel Kayaları ve Alt Paleozoyik Örtülerinin Korelasyonu”. TPJD Bülteni, C.15, 129-153, 2003.
  • [14] Karadağ MM. “Geochemistry, provenance and tectonic setting of the Late Cambrian-Early Ordovician Seydişehir Formation in the Çaltepe and Fele areas, SE Turkey”. Geochemistry, 74, 205-224, 2014.
  • [15] Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM. “A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region”. Tectonophysics, 451, 7-39, 2008.
  • [16] Özgül N. “Torosların Bazı Temel Jeoloji Özellikleri”. Türkiye Jeol. Kur. Bült., 19, 65-78, 1976.
  • [17] Robertson AHF, Parlak O, Ustaömer T. Late Palaeozoic-early Cenozoic tectonic development of southern Turkey and easternmost Mediterranean region: evidence from the interrelations of continental and oceanic units. Editors: Parlak O, Ünlügenç UC. Geological Development of Anatolia and the Easternmost Mediterranean Region, 9-48, London, Geological Society, Special Publications, 2013.
  • [18] Şengör AMC, Nalan L, Gürsel S, Cengiz Z, Taylan S. “The phanerozoic palaeotectonics of Turkey. Part I: an inventory”. Mediterranean Geoscience Reviews, 1, 91-161, 2019.
  • [19] Turan A. “Akören (Konya, Orta Toroslar) Çevresinin Jeolojik Özellikleri”. S.Ü. Müh.‐Mim. Fak. Derg., 25, 17-36, 2010.
  • [20] Coşkuner B. Beyşehir Hüyük Derbent (Konya) Çevresindeki Temel Kayalarının Stratigrafisi ve Yapısal Özellikleri. Doktora Tezi, Konya Teknik Üniversitesi, Konya, 2022.
  • [21] Coşkuner B, Eren Y. “Tectonic transport direction of allochthonous units in the northwest of the Central Taurides (Türkiye)”. Journal of African Earth Sciences, 214, 105245, 2024.
  • [22] Eren Y. “Sille-Tatköy (Bozdağlar masifi-Konya) kuzeyinde Alpin öncesi bindirmeler”. Türkiye Jeoloji Kurultayı Bülteni, 11, 163-169, 1996.
  • [23] Eren Y, Kurt H, Rosselet F, Stampfli GM. “Paleozoic deformation and magmatism in the northern area of the Anatolide block (Konya), witness of the Palaeotethys active margin”. Eclogae geol. Helv., 97, 293-306, 2004.
  • [24] Hakyemez Y, Elibol E, Umut M, Bakırhan B, Kara İ, Dağıstan H, Metin T, Erdoğan N. “Konya‐Çumra‐Akören dolayının jeolojisi”. MTA, Ankara, 73, 1992.
  • [25] Koç A, Kaymakci N, van Hinsbergen DJJ, Kuiper KF, Vissers RLM. “Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey”. Tectonophysics, 532-535, 134-155, 2012.
  • [26] Özkan AM, Söğüt AR. “Dilekçi (Konya Batısı) Çevresindeki Neojen Çökellerinin stratigrafisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15, 1131-1138, 1998.
  • [27] Turan A. “Akkise-Yalıhüyük (Konya) Arasının Stratigrafisi-Stratigraphy of Between Akkise and Yalıhüyük (Konya)”. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22, 369-382, 2020.
  • [28] Asa K. “Çarpışma Sonrası Ortamda Ultra-potasikten Kalkalkalen Volkanizmaya Geçişin Jeokimyasal ve Sr-Nd-Pb Izotopik Özellikleri, Konya-Türkiye”. TÜBİTAK, Konya, 106, 2017.
  • [29] Asan K, Kurt H, Gündüz M, Gençoğlu Korkmaz G, Ganerød M. “Geology, Geochronology and Geochemistry of the Miocene Sulutas Volcanic Complex, Konya-Central Anatolia: Genesis of orogenic and anorogenic rock associations in an extensional geodynamic setting”. International Geology Review, 63, 161-192, 2021.
  • [30] Asan K, Gündüz M, Gençoğlu Korkmaz G, Kurt H. “The role of magma recharge and mixing in producing compositional modality in post-collisional volcanic rocks, Konya Volcanic Field, Central Anatolia (Türkiye)”. Journal of Asian Earth Sciences, 276, 106364, 2024.
  • [31] Keller J, Jung D, Burgath K, Wolff F. “Geologie und Petrologie des neogenen Kalkalkali Vulkanismus von Konya (Erenler Dağ-Alaca Dağ-Massiv, Zentral-Anatolien)”. Geologisches Jahrbuch, B25, 37-117, 1977.
  • [32] Temel A, Gündoğdu MN, Gourgaud A. “Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey”. Journal of Volcanology and Geothermal Research, 85, 327-354, 1998.
  • [33] Besang C, Eckhardt FJ, Harre W, Kreuzer H, Müller P. “Radiometrische Altersbestimmungen an neogenen Eruptivgesteinen der Turkei”. Geologisches Jahrbuch, B25, 3-36, 1977.
  • [34] Aksoy R. “Extensional neotectonic regime in west-southwest Konya, Central Anatolia, Turkey”. International Geology Review, 61, 1803-1821, 2019.
  • [35] Eren Y. “Konya’nın jeolojisi, Neo-tektonik yapısı ve depremselliği”. I. Konya Kent Sempozyumu, Konya, 111-120, 2011.
  • [36] Göğer E, Kıral K. “Kızılören dolayının jeolojisi”. MTA, Ankara, 1969.
  • [37] Branney MJ, Kokelaar BP. Pyroclastic density currents and the sedimentation of ignimbrites. London, 27. Geological Society Memoirs, 2002.
  • [38] Gündüz, M. The origin and eruption mechanism of the Kilistra ignimbrites deduced from chemostratigraphic, geochronologic, remote sensing, and GIS methods, Erenlerdağ-Alacadağ volcanic complex SW Konya-Central Anatolia. PhD Thesis, Muğla Sıtkı Koçman University, Muğla, 2023.
  • [39] Gündüz, M. “Kilistra ignimbiritlerinin uzaktan algılama yöntemleriyle yeniden haritalanması ve Beyşehir Havzası’nın (GB Konya/Türkiye) CBS tabanlı çizgisellik analizi”. Geomatik, 10, 75-90, 2025.
  • [40] Okay AI, Tüysüz O. Tethyan sutures of northern Turkey. Editors: Durand B, Jolivet L, Hovarth F, Séranne M. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen, 475-515, London, Geological Society, 1999.
  • [41] MTA. “Magmatic Rocks Map of Turkey. General Directorate of Mineral Research and Explorations”. MTA, Ankara, 2013.
  • [42] Platzman ES, Tapırdamaz C, Şanver M. “Neogene anticlockwise rotation of central Anatolia (Turkey): preliminary palaeomagnetic and geochronological results”. Tectonophysics, 299, 175-189, 1998.
  • [43] Rabayrol F, Hart CJR, Creaser RA. “Tectonic Triggers for Postsubduction Magmatic-Hydrothermal Gold Metallogeny in the Late Cenozoic Anatolian Metallogenic Trend, Turkey”. Economic Geology, 114, 1339-1363, 2019.
  • [44] Koralay T, Kadıoğlu YK. “İgnimbiritlerin tavan ve taban ilişkilerini belirleyen petrografik veriler: İncesu (Kayseri) ignimbiriti”. S.Ü. Müh.‐Mim. Fak. Derg., 18, 43-54, 2003.
  • [45] Koralay T, Zoroğlu O, Kadıoğlu YK. “İncesu İgnimbiritindeki (İncesu‐Kayseri) Fiamme Tiplerinin Kökeni: Petrografik Ve Jeokimyasal Özellikleri”. S.Ü. Müh.‐Mim. Fak. Derg., 24, 45-68, 2009.
  • [46] Bozdağ A, Bayram AF, İnce İ, Asan K. “The relationship between weathering and welding degree of pyroclastic rocks in the Kilistra ancient city, Konya (Central Anatolia, Turkey)”. Journal of African Earth Sciences, 123, 1-9, 2016.
  • [47] Ross P-S, White JDL. “Unusually large clastic dykes formed by elutriation of a poorly sorted, coarser-grained source”. Journal of the Geological Society, 162, 579-582, 2005.
  • [48] Almond DC. “Ignimbrite vents in the Sabaloka cauldron, Sudan”. Geological Magazine, 108, 159-176, 1971.
  • [49] Díaz-Bravo BA, Morán-Zenteno DJ. “The exhumed Eocene Sultepec-Goleta Volcanic Center of southern Mexico: record of partial collapse and ignimbritic volcanism fed by wide pyroclastic dike complexes”. Bulletin of Volcanology, 73, 917-932, 2011.
  • [50] González SN, Greco GA. “Diques piroclásticos en el complejo volcánico Marifil”. XIII Congreso de Mineralogía, Petrología Ígnea y Metamórfica, y Metalogénesis (XIII MINMET y IV PIMMA), Córdoba, 79-86, 2019.
  • [51] Hernando IR, Petrinovic IA, Guzmán SR, Calvo L, Bucher J, Balbis C. “Emplacement and eruptive style of high-grade ignimbrites from fissure vents: The Las Mellizas Ignimbrite, Caviahue-Copahue volcanic complex, southern Andes”. Journal of Volcanology and Geothermal Research, 427, 107571, 2022.
  • [52] Miura D. “Arcuate pyroclastic conduits, ring faults, and coherent floor at Kumano caldera, southwest Honshu, Japan”. Journal of Volcanology and Geothermal Research, 92, 271-294, 1999.
  • [53] Giordano G, Cas RAF. “Classification of ignimbrites and their eruptions”. Earth-Science Reviews, 220, 103697, 2021.
  • [54] Henry CD, Castor SB, Starkel WA, Ellis BS, Wolff JA, Laravie JA, McIntosh WC, Heizler MT. “Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA”. Geosphere, 13, 1066-1112, 2017.
  • [55] Umezawa M, Mikami T, Satoguchi Y, Nakano S. “Pyroclastic dyke intruded into the Jurassic accretionary complex along the Sagami River, east of Mt. Otowa, Otsu City, Shiga Prefecture, Central Japan”. Earth Science (Chikyu Kagaku), 76, 237-242, 2022.
  • [56] Wada Y, Okuda A. “Field Occurrence and Inferred Emplacement Process of the Ebisu-Jima Pyroclastic”. Bull. Nara Univ. Educ., 70, 11-21, 2021.
  • [57] Wada Y, Furuta E. "Field Occurrence and Inferred Emplacement Process of the Kuchiwabuka Pyroclastic Dike in Susami, Wakayama Prefecture". Bull. Nara Univ. Educ., 73, 1-12, 2024.
  • [58] Kitajima A, Wada Y. “Nakaoku tuffite dike at the Hiboradani section, central Kii Peninsula: Implications for magma emplacement in a conduit associated with caldera formation”. The Journal of the Geological Society of Japan, 116, 510-521, 2010.
  • [59] Wada Y, Aoki M. "A Pyroclastic Dike, Mikoshi Pass, Wakayama Prefecture: Formation Process Inferred from Field and Laboratory Observations”. Bull. Nara Univ. Educ., 51, 25-35, 2002.

Volkanik sahalarda yer alan volkaniklastik ve sedimanter klastik daykların kökeni ve yerleşim dinamikleri: Erenlerdağ-Alacadağ Volkanik kompleksinden (Konya-Türkiye) bir durum çalışması

Yıl 2025, Cilt: 31 Sayı: 6, 1073 - 1082, 13.11.2025
https://doi.org/10.5505/pajes.2025.57227

Öz

Volkaniklastik bir daykın sedimanter klastik bir dayktan ayırt edilmesi,farklı köken ve yerleşimleri nedeniyle volkanik saha araştırmalarının ana konularından biridir. Volkaniklastik bir dayk olan piroklastik dayklar, ignimbirit oluşturan patlamalar için volkanizmanın merkezi fasiyesinin belirlenmesinde büyük öneme sahiptir. Bu çalışmadaki amaç, Orta Anadolu'daki Miyo-Pliyosen Erenlerdağ-Alacadağ Volkanik Kompleksi'ndeki (ErAVK) kırıntılı daykların kökenini belirlemek ve ignimbiritlerin çıkış (merkezi) fasiyesini tespit etmektir. ErAVK,Konya'nın güneybatısında (Orta Anadolu, Türkiye) geniş bir alanı kaplar ve unimodal bir jeokimyasal karakter gösterir. ErAVK kalk-alkali bazaltik-andezit (anklavlar), andezit, dasit ve nadiren riyolitten oluşur. ErAVK, domlar/lav akıntıları ve bunların volkaniklastik eşleniklerinden (blok ve kül akıntıları ve ignimbiritler) meydana gelir. İgnimbritler (Erenkaya) bileşim olarak andezitten dasite kadar değişmekte olup kırıntılı dayklar, ErAVK'nin kuzeydoğusunda Erenkaya ignimbiritlerini (Erenkaya-1, 2 ve 3) üç farklı noktada kesmektedir. Bu kırıntılı dayklardan ilk ikisi çoğunlukla ince taneli kül boyutunda malzemeden oluşmakta olup kenar fasiyeslere doğru litikçe zengindir ve volkaniklastik malzemelerin akışkanlaşmasıyla yerleşen piroklastik dayk özelliği göstermektedir. Diğer dayk ise kenarlarından itibaren ince taneli ve kül boyutundaki malzemeden oluşurken, orta kısmı oldukça iri (blok boyutunda) ve yoğun pomza bileşenleri içermektedir. Saha çalışmaları, bu ikinci daykın volkanizma sonrası ikincil süreçler (örneğin sedimanter klastik dayk) ile ilişkili çatlak dolgusu şeklinde olduğunu göstermektedir. Bu kırıntılı dayklar, Erenkaya ignimbiritlerini oluşturan volkanik faaliyetin ErAVK'nin kuzeyinde meydana gelen bir kaldera çökme süreci ile ilişkilendirilebileceğini ortaya koymaktadır.

Kaynakça

  • [1] Vezzoli L, Corazzato C. “Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)”. Journal of Volcanology and Geothermal Research, 318, 55-72, 2016.
  • [2] Aguirre-Diaz GJ, Labarthe-Hernadez G. “Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting”. Geology, 31, 773-776, 2003.
  • [3] Motoki A, Geraldes MC, Iwanuch W, Vargas T, Motoki KF, Balmant A, Ramos MN. “The pyroclastic dyke and welded crystal tuff of the Morro dos Gatos alkaline complex, State of Rio de Janeiro, Brazil”. REM: Revista Escola de Minas, Ouro Preto, 65, 35-45, 2012.
  • [4] Torres-Hernández JR, Labarthe-Hernández G, Aguillón-Robles A, Gómez-Anguiano M, Mata-Segura JL. “The Pyroclastic Dikes of the Tertiary San Luis Potosí-Volcanic Field: Implications on the Emplacement of Panalillo Ignimbrite”. Geofísica Internacional, 45, 243-253, 2006.
  • [5] Winter C, Breitkreuz C, Lapp M. Textural analysis of a Late Palaeozoic coherent-pyroclastic rhyolitic dyke system near Bunkersdorf (Erzgebirge, Saxony, Germany). Editors: Thomson K, Petford N. Structure and emplacement of high-level magmatic systems, 199-221, London, Geological Society, Special Publications, 2008.
  • [6] Xu S-S, Nieto-Samaniego AF, Alaniz-Álvarez SA. “Emplacement of pyroclastic dykes in Riedel shear fractures: An example from the Sierra de San Miguelito, central Mexico”. Journal of Volcanology and Geothermal Research, 250, 1-8, 2013.
  • [7] Doğan U, Koçyiğit A. “Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey”. Geomorphology, 306, 13-27, 2018.
  • [8] Koç A, Kaymakçı N, van Hinsbergen DJJ, Kuiper KF. “Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau”. Global and Planetary Change, 158, 83-102, 2017.
  • [9] Koç A, van Hinsbergen DJJ, Langereis CG. “Rotations of normal fault blocks quantify extension in the Central Tauride intramontane basins, SW Turkey”. Tectonics, 37, 2307-2327, 2018.
  • [10] Dean WT, Monod O. “The Lower Paleozoic stratigraphy and faunas of the Taurus Mountains near Beyşehir, Turkey”. I. Stratigraphy. Bulletin of the British Museum (Natural History) Geology, 19, 411-426, 1970.
  • [11] Göncüoğlu MC, Çapkınoğlu Ş, Gürsu S, Noble P, Turhan N, Tekin UK, Okuyucu C, Göncüoğlu Y. “The Mississippian in the Central and Eastern Taurides (Turkey): constraints on the tectonic setting of the Tauride-Anatolide Platform”. Geologica Carpathica, 58, 427-442, 2007.
  • [12] Göncüoğlu MC, Kozlu H. “Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions”. Gondwana Research, 3, 315-323, 2000.
  • [13] Gürsu S, Kozlu H, Göncüoğlu MC, Turhan N. “Orta Torosların Batı Kesimindeki Temel Kayaları ve Alt Paleozoyik Örtülerinin Korelasyonu”. TPJD Bülteni, C.15, 129-153, 2003.
  • [14] Karadağ MM. “Geochemistry, provenance and tectonic setting of the Late Cambrian-Early Ordovician Seydişehir Formation in the Çaltepe and Fele areas, SE Turkey”. Geochemistry, 74, 205-224, 2014.
  • [15] Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM. “A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region”. Tectonophysics, 451, 7-39, 2008.
  • [16] Özgül N. “Torosların Bazı Temel Jeoloji Özellikleri”. Türkiye Jeol. Kur. Bült., 19, 65-78, 1976.
  • [17] Robertson AHF, Parlak O, Ustaömer T. Late Palaeozoic-early Cenozoic tectonic development of southern Turkey and easternmost Mediterranean region: evidence from the interrelations of continental and oceanic units. Editors: Parlak O, Ünlügenç UC. Geological Development of Anatolia and the Easternmost Mediterranean Region, 9-48, London, Geological Society, Special Publications, 2013.
  • [18] Şengör AMC, Nalan L, Gürsel S, Cengiz Z, Taylan S. “The phanerozoic palaeotectonics of Turkey. Part I: an inventory”. Mediterranean Geoscience Reviews, 1, 91-161, 2019.
  • [19] Turan A. “Akören (Konya, Orta Toroslar) Çevresinin Jeolojik Özellikleri”. S.Ü. Müh.‐Mim. Fak. Derg., 25, 17-36, 2010.
  • [20] Coşkuner B. Beyşehir Hüyük Derbent (Konya) Çevresindeki Temel Kayalarının Stratigrafisi ve Yapısal Özellikleri. Doktora Tezi, Konya Teknik Üniversitesi, Konya, 2022.
  • [21] Coşkuner B, Eren Y. “Tectonic transport direction of allochthonous units in the northwest of the Central Taurides (Türkiye)”. Journal of African Earth Sciences, 214, 105245, 2024.
  • [22] Eren Y. “Sille-Tatköy (Bozdağlar masifi-Konya) kuzeyinde Alpin öncesi bindirmeler”. Türkiye Jeoloji Kurultayı Bülteni, 11, 163-169, 1996.
  • [23] Eren Y, Kurt H, Rosselet F, Stampfli GM. “Paleozoic deformation and magmatism in the northern area of the Anatolide block (Konya), witness of the Palaeotethys active margin”. Eclogae geol. Helv., 97, 293-306, 2004.
  • [24] Hakyemez Y, Elibol E, Umut M, Bakırhan B, Kara İ, Dağıstan H, Metin T, Erdoğan N. “Konya‐Çumra‐Akören dolayının jeolojisi”. MTA, Ankara, 73, 1992.
  • [25] Koç A, Kaymakci N, van Hinsbergen DJJ, Kuiper KF, Vissers RLM. “Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey”. Tectonophysics, 532-535, 134-155, 2012.
  • [26] Özkan AM, Söğüt AR. “Dilekçi (Konya Batısı) Çevresindeki Neojen Çökellerinin stratigrafisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15, 1131-1138, 1998.
  • [27] Turan A. “Akkise-Yalıhüyük (Konya) Arasının Stratigrafisi-Stratigraphy of Between Akkise and Yalıhüyük (Konya)”. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22, 369-382, 2020.
  • [28] Asa K. “Çarpışma Sonrası Ortamda Ultra-potasikten Kalkalkalen Volkanizmaya Geçişin Jeokimyasal ve Sr-Nd-Pb Izotopik Özellikleri, Konya-Türkiye”. TÜBİTAK, Konya, 106, 2017.
  • [29] Asan K, Kurt H, Gündüz M, Gençoğlu Korkmaz G, Ganerød M. “Geology, Geochronology and Geochemistry of the Miocene Sulutas Volcanic Complex, Konya-Central Anatolia: Genesis of orogenic and anorogenic rock associations in an extensional geodynamic setting”. International Geology Review, 63, 161-192, 2021.
  • [30] Asan K, Gündüz M, Gençoğlu Korkmaz G, Kurt H. “The role of magma recharge and mixing in producing compositional modality in post-collisional volcanic rocks, Konya Volcanic Field, Central Anatolia (Türkiye)”. Journal of Asian Earth Sciences, 276, 106364, 2024.
  • [31] Keller J, Jung D, Burgath K, Wolff F. “Geologie und Petrologie des neogenen Kalkalkali Vulkanismus von Konya (Erenler Dağ-Alaca Dağ-Massiv, Zentral-Anatolien)”. Geologisches Jahrbuch, B25, 37-117, 1977.
  • [32] Temel A, Gündoğdu MN, Gourgaud A. “Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey”. Journal of Volcanology and Geothermal Research, 85, 327-354, 1998.
  • [33] Besang C, Eckhardt FJ, Harre W, Kreuzer H, Müller P. “Radiometrische Altersbestimmungen an neogenen Eruptivgesteinen der Turkei”. Geologisches Jahrbuch, B25, 3-36, 1977.
  • [34] Aksoy R. “Extensional neotectonic regime in west-southwest Konya, Central Anatolia, Turkey”. International Geology Review, 61, 1803-1821, 2019.
  • [35] Eren Y. “Konya’nın jeolojisi, Neo-tektonik yapısı ve depremselliği”. I. Konya Kent Sempozyumu, Konya, 111-120, 2011.
  • [36] Göğer E, Kıral K. “Kızılören dolayının jeolojisi”. MTA, Ankara, 1969.
  • [37] Branney MJ, Kokelaar BP. Pyroclastic density currents and the sedimentation of ignimbrites. London, 27. Geological Society Memoirs, 2002.
  • [38] Gündüz, M. The origin and eruption mechanism of the Kilistra ignimbrites deduced from chemostratigraphic, geochronologic, remote sensing, and GIS methods, Erenlerdağ-Alacadağ volcanic complex SW Konya-Central Anatolia. PhD Thesis, Muğla Sıtkı Koçman University, Muğla, 2023.
  • [39] Gündüz, M. “Kilistra ignimbiritlerinin uzaktan algılama yöntemleriyle yeniden haritalanması ve Beyşehir Havzası’nın (GB Konya/Türkiye) CBS tabanlı çizgisellik analizi”. Geomatik, 10, 75-90, 2025.
  • [40] Okay AI, Tüysüz O. Tethyan sutures of northern Turkey. Editors: Durand B, Jolivet L, Hovarth F, Séranne M. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen, 475-515, London, Geological Society, 1999.
  • [41] MTA. “Magmatic Rocks Map of Turkey. General Directorate of Mineral Research and Explorations”. MTA, Ankara, 2013.
  • [42] Platzman ES, Tapırdamaz C, Şanver M. “Neogene anticlockwise rotation of central Anatolia (Turkey): preliminary palaeomagnetic and geochronological results”. Tectonophysics, 299, 175-189, 1998.
  • [43] Rabayrol F, Hart CJR, Creaser RA. “Tectonic Triggers for Postsubduction Magmatic-Hydrothermal Gold Metallogeny in the Late Cenozoic Anatolian Metallogenic Trend, Turkey”. Economic Geology, 114, 1339-1363, 2019.
  • [44] Koralay T, Kadıoğlu YK. “İgnimbiritlerin tavan ve taban ilişkilerini belirleyen petrografik veriler: İncesu (Kayseri) ignimbiriti”. S.Ü. Müh.‐Mim. Fak. Derg., 18, 43-54, 2003.
  • [45] Koralay T, Zoroğlu O, Kadıoğlu YK. “İncesu İgnimbiritindeki (İncesu‐Kayseri) Fiamme Tiplerinin Kökeni: Petrografik Ve Jeokimyasal Özellikleri”. S.Ü. Müh.‐Mim. Fak. Derg., 24, 45-68, 2009.
  • [46] Bozdağ A, Bayram AF, İnce İ, Asan K. “The relationship between weathering and welding degree of pyroclastic rocks in the Kilistra ancient city, Konya (Central Anatolia, Turkey)”. Journal of African Earth Sciences, 123, 1-9, 2016.
  • [47] Ross P-S, White JDL. “Unusually large clastic dykes formed by elutriation of a poorly sorted, coarser-grained source”. Journal of the Geological Society, 162, 579-582, 2005.
  • [48] Almond DC. “Ignimbrite vents in the Sabaloka cauldron, Sudan”. Geological Magazine, 108, 159-176, 1971.
  • [49] Díaz-Bravo BA, Morán-Zenteno DJ. “The exhumed Eocene Sultepec-Goleta Volcanic Center of southern Mexico: record of partial collapse and ignimbritic volcanism fed by wide pyroclastic dike complexes”. Bulletin of Volcanology, 73, 917-932, 2011.
  • [50] González SN, Greco GA. “Diques piroclásticos en el complejo volcánico Marifil”. XIII Congreso de Mineralogía, Petrología Ígnea y Metamórfica, y Metalogénesis (XIII MINMET y IV PIMMA), Córdoba, 79-86, 2019.
  • [51] Hernando IR, Petrinovic IA, Guzmán SR, Calvo L, Bucher J, Balbis C. “Emplacement and eruptive style of high-grade ignimbrites from fissure vents: The Las Mellizas Ignimbrite, Caviahue-Copahue volcanic complex, southern Andes”. Journal of Volcanology and Geothermal Research, 427, 107571, 2022.
  • [52] Miura D. “Arcuate pyroclastic conduits, ring faults, and coherent floor at Kumano caldera, southwest Honshu, Japan”. Journal of Volcanology and Geothermal Research, 92, 271-294, 1999.
  • [53] Giordano G, Cas RAF. “Classification of ignimbrites and their eruptions”. Earth-Science Reviews, 220, 103697, 2021.
  • [54] Henry CD, Castor SB, Starkel WA, Ellis BS, Wolff JA, Laravie JA, McIntosh WC, Heizler MT. “Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA”. Geosphere, 13, 1066-1112, 2017.
  • [55] Umezawa M, Mikami T, Satoguchi Y, Nakano S. “Pyroclastic dyke intruded into the Jurassic accretionary complex along the Sagami River, east of Mt. Otowa, Otsu City, Shiga Prefecture, Central Japan”. Earth Science (Chikyu Kagaku), 76, 237-242, 2022.
  • [56] Wada Y, Okuda A. “Field Occurrence and Inferred Emplacement Process of the Ebisu-Jima Pyroclastic”. Bull. Nara Univ. Educ., 70, 11-21, 2021.
  • [57] Wada Y, Furuta E. "Field Occurrence and Inferred Emplacement Process of the Kuchiwabuka Pyroclastic Dike in Susami, Wakayama Prefecture". Bull. Nara Univ. Educ., 73, 1-12, 2024.
  • [58] Kitajima A, Wada Y. “Nakaoku tuffite dike at the Hiboradani section, central Kii Peninsula: Implications for magma emplacement in a conduit associated with caldera formation”. The Journal of the Geological Society of Japan, 116, 510-521, 2010.
  • [59] Wada Y, Aoki M. "A Pyroclastic Dike, Mikoshi Pass, Wakayama Prefecture: Formation Process Inferred from Field and Laboratory Observations”. Bull. Nara Univ. Educ., 51, 25-35, 2002.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mesut Gündüz

Ali Müjdat Özkan

Kürşad Asan

Gönderilme Tarihi 23 Kasım 2024
Kabul Tarihi 16 Şubat 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA Gündüz, M., Özkan, A. M., & Asan, K. (2025). The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 1073-1082. https://doi.org/10.5505/pajes.2025.57227
AMA Gündüz M, Özkan AM, Asan K. The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):1073-1082. doi:10.5505/pajes.2025.57227
Chicago Gündüz, Mesut, Ali Müjdat Özkan, ve Kürşad Asan. “The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY)”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 1073-82. https://doi.org/10.5505/pajes.2025.57227.
EndNote Gündüz M, Özkan AM, Asan K (01 Kasım 2025) The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 1073–1082.
IEEE M. Gündüz, A. M. Özkan, ve K. Asan, “The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY)”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 1073–1082, 2025, doi: 10.5505/pajes.2025.57227.
ISNAD Gündüz, Mesut vd. “The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY)”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 1073-1082. https://doi.org/10.5505/pajes.2025.57227.
JAMA Gündüz M, Özkan AM, Asan K. The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1073–1082.
MLA Gündüz, Mesut vd. “The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY)”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 1073-82, doi:10.5505/pajes.2025.57227.
Vancouver Gündüz M, Özkan AM, Asan K. The origin and emplacement dynamics of the volcaniclastic and sedimentary clastic dykes in volcanic fields: A case study from the Erenlerdağ-Alacadağ Volcanic Complex (Konya-TURKEY). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):1073-82.