Araştırma Makalesi
BibTex RIS Kaynak Göster

Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization

Yıl 2026, Sayı: Advanced Online Publication
https://doi.org/10.65206/pajes.76350

Öz

Data clustering, as a cornerstone technique in machine learning and data mining, plays a pivotal role in partitioning unlabeled datasets into distinct clusters based on inherent similarities. This study proposes the Intuitionistic Fuzzy Any Relation Clustering Algorithm (IF-ARCA) algorithm, a novel hybrid method that integrates the intuitionistic fuzzy C-means (IFCM) algorithm with the Any Relation Clustering Algorithm (ARCA). The IF-ARCA algorithm employs intuitionistic fuzzy similarity matrices (IFSM) constructed using cosine similarity (COS) and fuzzy metrics (FM), alongside dissimilarity and hesitation matrices, to enhance clustering precision. To address the inherent challenges of computational complexity and manual parameter tuning in traditional methods, the algorithm incorporates Differential Evolution (DE) optimization for automatic parameter adjustment, significantly improving performance in high-dimensional datasets. Experimental validation on UCI benchmark datasets demonstrates the superior efficacy of IF-ARCA in terms of clustering accuracy and scalability. The effectiveness of the proposed algorithm is rigorously evaluated using metrics such as F1 score, accuracy, precision, and recall, highlighting its potential for handling complex and ambiguous data.

Kaynakça

  • [1] Jain AK. “Data clustering: 50 years beyond K-means”. Pattern Recognit Letters, 31, 651–666, 2010.
  • [2] Gan G, Ma C, Wu J. Data Clustering: Theory, Algorithms, and Applications. 2nd ed. Philadelphia, USA, SIAM, 2020.
  • [3] Bezdek JC, Ehrlich R, Full W. “FCM: The fuzzy c-means clustering algorithm”. Comput Geoscience, 10, 191–203, 1984.
  • [4] Ruspini EH, Bezdek JC, Keller JM. “Fuzzy clustering: A historical perspective”. IEEE Computational Intelligence Magazine, 14, 45–55, 2019.
  • [5] Alışkan İ, Ünsal S. “Farklı çıkarım yöntemlerine sahip bulanık mantık denetleyicileri kullanarak kalıcı mıknatıslı senkron motorun hız denetim”. Pamukkale University Journal of Engineering Sciences, 22(7), 551–559, 2016.
  • [6] Tongbram S., Shimray BA. Singh LS, Dhanachandra N. “A novel image segmentation approach using fcm and whale optimization algorithm”. Journal of Ambient Intelligence and Humanized Computing, 1, 1–15, 2021.
  • [7] Sharma R, Vashisht V, Singh U. “EEFCM-DE: energy-efficient clustering based on fuzzy C means and differential evolution algorithm in WSNs”. IET Communications. 13, 996–1007, 2019.
  • [8] Katarya R, Verma OP. “Recommender system with grey wolf optimizer and FCM”. Neural Computing and Appications, 30, 1679–1687, 2018.
  • [9] Corsini P, Lazzerini B, Marcelloni F. “A Fuzzy relational custering algorithm based on a dissimilarity measure extracted from data”. IEEE Transactions on systems, man, and cybernetics, part B (Cybernetics), 34, 775–782, 2004.
  • [10] Corsini P, Lazzerini B, Marcelloni F. “A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm”. Soft Computing, 9, 439–447, 2005.
  • [11] Atanassov KT. “Intuitionistic fuzzy sets”. Fuzzy Sets Systems, 20, 87–96, 1986.
  • [12] Xu Z, Wu J. “Intuitionistic fuzzy C-means clustering algorithms”. Journal of Systems Engineering and Electronics, 21, 580–590, 2010.
  • [13] Chaira T. “A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images”. Applied Soft Computing Journal, 11, 1711–1717, 2011.
  • [14] Kumar D, Verma H, Mehra A, Agrawal RK. “A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image”. Multimed Tools Application, 78, 12663–12687, 2019.
  • [15] Thao NX, Ali M, Smarandache F. “An intuitionistic fuzzy clustering algorithm based on a new correlation coefficient with application in medical diagnosis”. Journal of Intelligent & Fuzzy Systems, 36, 189–198, 2019.
  • [16] Hou WH, Wang YT, Wang, JG, Cheng PF, Li L. “Intuitionistic fuzzy c-means clustering algorithm based on a novel weighted proximity measure and genetic algorithm”. International Journal of Machine Learning and Cybernetics. 12, 859–875, 2021.
  • [17] Ren C, Song Z, Meng Z. “Differential Evolution with fitness-difference based parameter control and hypervolume diversity indicator for numerical optimization”. Engineering Applications of Artificial Intelligence, 133, 108081, 2024.
  • [18] Xia P, Zhang L, Li F. “Learning similarity with cosine similarity ensemble”. Information Science, 307, 39-52, 2015.
  • [19] Kramosil I, Michalek J. “Fuzzy Metrics and Statistical Metric Spaces”. Kybernetika. 11, 336–344, 1975.
  • [20] George A, Veeramani P. “On some results in fuzzy metric spaces”. Fuzzy Sets Systems. 64, 395–399, 1994.
  • [21] Gregori V, Morillas S, Sapena A. “Examples of fuzzy metrics and applications”. Fuzzy Sets Systems. 170, 95–111, 2011.
  • [22] Shankar B, Murugan K, Obulesu A, Shadrach FDS, Anitha R. MRI image segmentation using bat optimization algorithm with fuzzy C means clustering”. Journal of Medical Imaging Health information, 11, 661–666, 2020.
  • [23] Soppari K, Chandra NS. “Development of improved whale optimization based FCM clustering for image watermarking”. Computer Science Review, 37, 100287, 2020.
  • [24] Storn R, Price K. “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”. Journal of Global Optimization. 11, 341–359, 1997.
  • [25] University of California, Irvine. “UCI Machine Learning Repository”. https://archive.ics.uci.edu (15.05.2025).
  • [26] Saladi K, Rani BJ, Srinivasa RK. “A unique unsupervised enhanced intuitionistic fuzzy C-means for MR brain tissue segmentation”. Scientific Reports, 14, 14257, 2024.
  • [27] Kaur M, Bhatia S, Singh A. “Exploring meta-heuristics for partitional clustering: methods and trends”. Artificial Intelligence Review, 57(3), 1-35, 2024.
  • [28] Priya S, Vijayalakshmi A, Balasubramanian V. “Modified Intuitionistic Fuzzy Clustering Method (MIFCM) for microarray image segmentation”. Procedia Computer Science, 230, 759-769, 2024.
  • [29] Xie J, Liu W, Zhang F. “Constructing intuitionistic neighborhood based on three-way decision models”. Fuzzy Sets and Systems, 488, 108719, 2025.
  • [30] Alcantud JCR, González MA, Torra V. “Decision-making and clustering algorithms based on the scored-energy of hesitant fuzzy soft sets”. Soft Computing, 29(5), 10042-10058, 2025.
  • [31] Kutlu F, Ayaz İ, Garg H. “Integrating fuzzy metrics and negation operator in FCM algorithm via genetic algorithm for MRI image segmentation”. Neural Computing & Applications, 36, 17057-17077, 2024.
  • [32] Kutlu F, Göleli K, Castillo O. “Enhanced classification in IF-ARCA and IF-KNN with fuzzy metrics and cosine similarity through dual stage optimization using Harris Hawks algorithm”. Signal, Image & Video Processing, 19, 1162, 2025.
  • [33] Sethia R, Chauhan N, Sharma R. “An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms”. Discover Computing, 5(1), 96, 2025.
  • [34] Koçoğlu İ, Kızılkaya Aydoğan E, Ecer F. “Fuzzy clustering-based hybrid model proposal on location problems in post-disaster management”. Journal of Industrial & Management Optimization, 21(5), 4839-4861, 2025.
  • [35] Alharbe NR, Ahmed M, Abdullah R. “Fuzzy clustering-based scheduling algorithm for minimizing computational overhead in large-scale optimization”. Scientific Reports, 15, 2654, 2025.

Benzerlik matrisi entegrasyonu ile sezgisel bulanık C-ortalamalar ve diferansiyel evrim optimizasyonu tabanlı sezgisel bulanık herhangi ilişki kümeleme algoritması

Yıl 2026, Sayı: Advanced Online Publication
https://doi.org/10.65206/pajes.76350

Öz

Veri kümeleme, makine öğrenimi ve veri madenciliğinin temel tekniklerinden biri olarak, etiketlenmemiş veri kümelerini içsel benzerliklerine göre farklı kümelere ayırmada kritik bir rol oynar. Bu çalışma, sezgisel bulanık C-means (IFCM) algoritması ile Any Relation Clustering Algorithm (ARCA) yönteminin entegrasyonunu içeren yeni bir melez yöntem olan Sezgisel Bulanık Herhangi-İlişki Kümeleme Algoritması’nı (IF-ARCA) önermektedir. IF-ARCA, kosinüs benzerliği ve bulanık ölçütlerle oluşturulan sezgisel bulanık benzerlik matrislerinin (IFSM) yanı sıra ayrışma ve tereddüt matrislerini kullanarak kümeleme hassasiyetini artırır. Geleneksel yöntemlerdeki yüksek hesaplama karmaşıklığı ve manuel parametre ayarlama zorluklarını gidermek amacıyla algoritma, parametreleri otomatik olarak ayarlayan Diferansiyel Evrim (DE) optimizasyonunu içerir; bu sayede yüksek boyutlu veri kümelerinde performansı önemli ölçüde iyileştirir. UCI benchmark veri kümeleri üzerindeki deneysel doğrulamalar, IF-ARCA’nın kümeleme doğruluğu ve ölçeklenebilirlik açısından üstün etkinliğini göstermektedir. Önerilen algoritmanın başarısı, F1 skoru, doğruluk, keskinlik (precision) ve geri çağırma (recall) gibi ölçütlerle titizlikle değerlendirilmiş olup, karmaşık ve belirsiz verileri işleme potansiyelini vurgulamaktadır.

Kaynakça

  • [1] Jain AK. “Data clustering: 50 years beyond K-means”. Pattern Recognit Letters, 31, 651–666, 2010.
  • [2] Gan G, Ma C, Wu J. Data Clustering: Theory, Algorithms, and Applications. 2nd ed. Philadelphia, USA, SIAM, 2020.
  • [3] Bezdek JC, Ehrlich R, Full W. “FCM: The fuzzy c-means clustering algorithm”. Comput Geoscience, 10, 191–203, 1984.
  • [4] Ruspini EH, Bezdek JC, Keller JM. “Fuzzy clustering: A historical perspective”. IEEE Computational Intelligence Magazine, 14, 45–55, 2019.
  • [5] Alışkan İ, Ünsal S. “Farklı çıkarım yöntemlerine sahip bulanık mantık denetleyicileri kullanarak kalıcı mıknatıslı senkron motorun hız denetim”. Pamukkale University Journal of Engineering Sciences, 22(7), 551–559, 2016.
  • [6] Tongbram S., Shimray BA. Singh LS, Dhanachandra N. “A novel image segmentation approach using fcm and whale optimization algorithm”. Journal of Ambient Intelligence and Humanized Computing, 1, 1–15, 2021.
  • [7] Sharma R, Vashisht V, Singh U. “EEFCM-DE: energy-efficient clustering based on fuzzy C means and differential evolution algorithm in WSNs”. IET Communications. 13, 996–1007, 2019.
  • [8] Katarya R, Verma OP. “Recommender system with grey wolf optimizer and FCM”. Neural Computing and Appications, 30, 1679–1687, 2018.
  • [9] Corsini P, Lazzerini B, Marcelloni F. “A Fuzzy relational custering algorithm based on a dissimilarity measure extracted from data”. IEEE Transactions on systems, man, and cybernetics, part B (Cybernetics), 34, 775–782, 2004.
  • [10] Corsini P, Lazzerini B, Marcelloni F. “A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm”. Soft Computing, 9, 439–447, 2005.
  • [11] Atanassov KT. “Intuitionistic fuzzy sets”. Fuzzy Sets Systems, 20, 87–96, 1986.
  • [12] Xu Z, Wu J. “Intuitionistic fuzzy C-means clustering algorithms”. Journal of Systems Engineering and Electronics, 21, 580–590, 2010.
  • [13] Chaira T. “A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images”. Applied Soft Computing Journal, 11, 1711–1717, 2011.
  • [14] Kumar D, Verma H, Mehra A, Agrawal RK. “A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image”. Multimed Tools Application, 78, 12663–12687, 2019.
  • [15] Thao NX, Ali M, Smarandache F. “An intuitionistic fuzzy clustering algorithm based on a new correlation coefficient with application in medical diagnosis”. Journal of Intelligent & Fuzzy Systems, 36, 189–198, 2019.
  • [16] Hou WH, Wang YT, Wang, JG, Cheng PF, Li L. “Intuitionistic fuzzy c-means clustering algorithm based on a novel weighted proximity measure and genetic algorithm”. International Journal of Machine Learning and Cybernetics. 12, 859–875, 2021.
  • [17] Ren C, Song Z, Meng Z. “Differential Evolution with fitness-difference based parameter control and hypervolume diversity indicator for numerical optimization”. Engineering Applications of Artificial Intelligence, 133, 108081, 2024.
  • [18] Xia P, Zhang L, Li F. “Learning similarity with cosine similarity ensemble”. Information Science, 307, 39-52, 2015.
  • [19] Kramosil I, Michalek J. “Fuzzy Metrics and Statistical Metric Spaces”. Kybernetika. 11, 336–344, 1975.
  • [20] George A, Veeramani P. “On some results in fuzzy metric spaces”. Fuzzy Sets Systems. 64, 395–399, 1994.
  • [21] Gregori V, Morillas S, Sapena A. “Examples of fuzzy metrics and applications”. Fuzzy Sets Systems. 170, 95–111, 2011.
  • [22] Shankar B, Murugan K, Obulesu A, Shadrach FDS, Anitha R. MRI image segmentation using bat optimization algorithm with fuzzy C means clustering”. Journal of Medical Imaging Health information, 11, 661–666, 2020.
  • [23] Soppari K, Chandra NS. “Development of improved whale optimization based FCM clustering for image watermarking”. Computer Science Review, 37, 100287, 2020.
  • [24] Storn R, Price K. “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”. Journal of Global Optimization. 11, 341–359, 1997.
  • [25] University of California, Irvine. “UCI Machine Learning Repository”. https://archive.ics.uci.edu (15.05.2025).
  • [26] Saladi K, Rani BJ, Srinivasa RK. “A unique unsupervised enhanced intuitionistic fuzzy C-means for MR brain tissue segmentation”. Scientific Reports, 14, 14257, 2024.
  • [27] Kaur M, Bhatia S, Singh A. “Exploring meta-heuristics for partitional clustering: methods and trends”. Artificial Intelligence Review, 57(3), 1-35, 2024.
  • [28] Priya S, Vijayalakshmi A, Balasubramanian V. “Modified Intuitionistic Fuzzy Clustering Method (MIFCM) for microarray image segmentation”. Procedia Computer Science, 230, 759-769, 2024.
  • [29] Xie J, Liu W, Zhang F. “Constructing intuitionistic neighborhood based on three-way decision models”. Fuzzy Sets and Systems, 488, 108719, 2025.
  • [30] Alcantud JCR, González MA, Torra V. “Decision-making and clustering algorithms based on the scored-energy of hesitant fuzzy soft sets”. Soft Computing, 29(5), 10042-10058, 2025.
  • [31] Kutlu F, Ayaz İ, Garg H. “Integrating fuzzy metrics and negation operator in FCM algorithm via genetic algorithm for MRI image segmentation”. Neural Computing & Applications, 36, 17057-17077, 2024.
  • [32] Kutlu F, Göleli K, Castillo O. “Enhanced classification in IF-ARCA and IF-KNN with fuzzy metrics and cosine similarity through dual stage optimization using Harris Hawks algorithm”. Signal, Image & Video Processing, 19, 1162, 2025.
  • [33] Sethia R, Chauhan N, Sharma R. “An effective imputation approach for handling missing data using intuitionistic fuzzy clustering algorithms”. Discover Computing, 5(1), 96, 2025.
  • [34] Koçoğlu İ, Kızılkaya Aydoğan E, Ecer F. “Fuzzy clustering-based hybrid model proposal on location problems in post-disaster management”. Journal of Industrial & Management Optimization, 21(5), 4839-4861, 2025.
  • [35] Alharbe NR, Ahmed M, Abdullah R. “Fuzzy clustering-based scheduling algorithm for minimizing computational overhead in large-scale optimization”. Scientific Reports, 15, 2654, 2025.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fatih Kutlu

Kübra Göleli

Gönderilme Tarihi 24 Haziran 2025
Kabul Tarihi 10 Kasım 2025
Erken Görünüm Tarihi 5 Aralık 2025
Yayımlandığı Sayı Yıl 2026 Sayı: Advanced Online Publication

Kaynak Göster

APA Kutlu, F., & Göleli, K. (2025). Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi(Advanced Online Publication). https://doi.org/10.65206/pajes.76350
AMA Kutlu F, Göleli K. Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;(Advanced Online Publication). doi:10.65206/pajes.76350
Chicago Kutlu, Fatih, ve Kübra Göleli. “Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication (Aralık 2025). https://doi.org/10.65206/pajes.76350.
EndNote Kutlu F, Göleli K (01 Aralık 2025) Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication
IEEE F. Kutlu ve K. Göleli, “Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, Aralık2025, doi: 10.65206/pajes.76350.
ISNAD Kutlu, Fatih - Göleli, Kübra. “Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication (Aralık2025). https://doi.org/10.65206/pajes.76350.
JAMA Kutlu F, Göleli K. Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.65206/pajes.76350.
MLA Kutlu, Fatih ve Kübra Göleli. “Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, 2025, doi:10.65206/pajes.76350.
Vancouver Kutlu F, Göleli K. Intuitionistic fuzzy any relation clustering algorithm based on similarity matrix integration with intuitionistic fuzzy C-means and differential evolution optimization. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025(Advanced Online Publication).