Araştırma Makalesi
BibTex RIS Kaynak Göster

Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra

Yıl 2025, Cilt: 31 Sayı: 8, 1431 - 1438, 17.12.2025
https://doi.org/10.65206/pajes.82826

Öz

Muscovite is a dioctahedral mica mineral belonging to the phyllosilicates, also known as sheet silicates. It is also referred to as white mica; muscovites can be found in all major rock groups, including igneous, metamorphic, and sedimentary rocks. Muscovites, which are common in igneous rocks, especially in S-type granites and pegmatitic rocks, are also present in varying proportions within metamorphic rocks composed of schist and gneiss in the greenschist facies. Phyllosilicates, one of the main types of silicates, possess variable structures and complex chemistries. Due to these structural and compositional differences, the Raman shifts of phyllosilicates can be observed in different spectral regions. Furthermore, variations in the crystallization processes of magma and differences in the pressure-temperature conditions during metamorphism affect the intensity and wavenumber of their Raman spectra. In this study, the Raman spectra of muscovites of both igneous and metamorphic origins were compared, and the differences in their Raman spectra, including peak shifts, were analyzed to elucidate the distinctions between them. There are shifts in the Raman spectra of muscovites due to differences in pressure and temperature. The peak shifts, which typically develop in metamorphic rocks, occur due to the effects of temperature and, especially, pressure. In addition, it is known that peak shifts are also related to the content of elements such as Si and Al in muscovites. It is thought that metamorphic muscovites have undergone preferential orientation due to the pressure acting during metamorphism, and therefore, the peak intensity has increased, and the band width has increased due to structural defects arising from foliation developed as a result of the pressure during metamorphism. The results of this study demonstrate that the origin of muscovites and the rock types to which they belong can be identified by utilising Raman spectra.

Kaynakça

  • [1] Larkin PJ. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1st ed. New York, USA, Elsevier, 2011.
  • [2] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach. 2nd ed. Hoboken, NJ, USA, Wiley, 2019.
  • [3] Griffith WP. “Raman spectroscopy of minerals”. Nature, 224, 264–266, 1969.
  • [4] McMillan PF, Hofmeister AM. Infrared and Raman Spectroscopy. Editor: Hawthorne FC. Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy, 18(1), 99–159, Washington, D.C., USA, Mineralogical Society of America, 1988.
  • [5] McMillan PF. “Raman spectroscopy in mineralogy and geochemistry”. Annual Review of Earth and Planetary Sciences, 17, 255–283, 1989.
  • [6] Kloprogge T, Frost R, Lack D. “Non-destructive identification of minerals by Raman microscopy”. Chemistry in Australia, 66(1), 40–44, 1999.
  • [7] Nasdala L, Smith DC, Kaindl R, Gaft M, Ziemann MA. Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. Editors: Beran A, Libowitzky E. Spectroscopic Methods in Mineralogy, EMU Notes in Mineralogy, 6, 281–343, Budapest, Hungary, Eötvös University Press, 2004.
  • [8] Foucher F, Lopez-Reyes G, Bost N, Rull-Perez F, Rüßmann P, Westall F. “Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions”. Journal of Raman Spectroscopy, 44(6), 916–925, 2013.
  • [9] Foucher F, Guimbretière G, Bost N, Westall F. Petrographical and Mineralogical Applications of Raman Mapping. Editor: Maaz K. Raman Spectroscopy and Applications, 163–180, London, UK, IntechOpen, 2017.
  • [10] Fries M, Steele A. Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography. Editors: Toporski J, Dieing T, Hollricher O. Confocal Raman Microscopy, Springer Series in Surface Sciences, 66, 209–236, Cham, Switzerland, Springer International Publishing, 2018.
  • [11] Akçe MA, Kadıoğlu YK. “Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması”. Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99–115, 2020.
  • [12] Chukanov NV, Vigasina MF. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. 1st ed. Springer Mineralogy Series, Cham, Switzerland, Springer, 2020.
  • [13] Güllü B, Kadıoğlu YK. “Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 68–74, 2017.
  • [14] Koralay T, Ören U. “Determination of spectroscopic features and gemstone potential of garnet crystals from the Çamköy region (Aydın - SW Turkey) using XRPD, XRF, confocal Raman spectroscopy, EPMA and gemological test methods”. Periodico di Mineralogia, 89(2), 105–123. 2020.
  • [15] Akçe MA, Kadıoğlu YK. “S-tipi granitlerdeki beyaz mikaların Raman karakteristikleri: Yozgat İntrüzif Kompleksi kuzey bölümü”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 385–398, 2021.
  • [16] Deniz K. “Mica types as indication of magma nature, Central Anatolia, Turkey”. Acta Geologica Sinica (English Edition), 96(3), 844–857, 2022.
  • [17] Ören U, Koralay T. “Menderes Masifi’ndeki (Hacıaliler/Çine-Aydın) granat (lal taşı) porfiroblastlarının, mineralojik-jeokimyasal ve gemolojik incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(7), 769–782, 2023.
  • [18] Ören U, Koralay T. “Evaluation of garnet phenocrysts in volcanic rocks (Görece/İzmir - Western Türkiye) for their usability as a semi-precious gemstone by multi-analytical methods”. Spectroscopy Letters, 57(7), 388–411, 2024.
  • [19] Wang A, Freeman JJ, Jolliff BL. “Understanding the Raman spectral features of phyllosilicates”. Journal of Raman Spectroscopy, Special Issue: 11th International GeoRaman Conference, 46(10), 829–845, 2015.
  • [20] Wang A, Freeman J, Kuebler KE. “Raman spectroscopic characterization of phyllosilicates”. The 33rd Lunar and Planetary Science Conference, #1374, League City, Texas, USA, 11-15 March 2002.
  • [21] Li H, Zhang L, Christy AG. The Correlation Between Raman Spectra and the Mineral Composition of Muscovite and Phengite. Editors: Dobrzhinetskaya L, Faryad SW, Wallis S, Cuthbert S. Ultrahigh-Pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond, 187–212, London, UK, Elsevier, 2011.
  • [22] Loh E. “Optical vibrations in sheet silicates”. Journal of Physics C: Solid State Physics, 6(6), 1091–1104, 1973.
  • [23] Haley LV, Wylie IW, Koningstein JA. “An investigation of the lattice and interlayer water vibrational spectral regions of muscovite and vermiculite using Raman microscopy”. Journal of Raman Spectroscopy, 13(2), 203–205, 1982.
  • [24] Tlili A, Smith DC, Beny JM, Boyer H. “A Raman microprobe study of natural micas”. Mineralogical Magazine, 53(370), 165–179, 1989.
  • [25] Robert J-L, Beny J-M, Della Ventura G, Hardy M. “Fluorine in micas: crystal-chemical control of the OH-F distribution between trioctahedral and dioctahedral sites”. European Journal of Mineralogy, 5(1), 7–18, 1993.
  • [26] McKeown DA, Bell MI, Etz ES. “Vibrational analysis of the dioctahedral mica: 2M1 muscovite”. American Mineralogist, 84(7-8), 1041–1048, 1999.
  • [27] McKeown DA, Bell MI, Etz ES. “Raman spectra and vibrational analysis of the trioctahedral mica phlogopite”. American Mineralogist, 84(5-6), 970–976, 1999.
  • [28] Šontevska V, Jovanovski G, Makreski P, Raškovska A, Šoptrajanov B. “Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals”. Acta Chimica Slovenica, 55(4), 757–766, 2008.
  • [29] Singh M, Singh L. “Vibrational spectroscopic study of muscovite and biotite layered phyllosilicates”. Indian Journal of Pure & Applied Physics, 54(2), 116–122, 2016.
  • [30] Kadıoğlu YK, Dilek Y, Foland KA. Slab Break-off and Syncollisional Origin of the Late Cretaceous Magmatism in the Central Anatolian Crystalline Complex, Turkey. Editors: Dilek Y, Pavlides S. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Special Paper, 381–415, Boulder, CO, USA, 2006.
  • [31] Akçe MA. Yozgat Batolitinin Kuzey Bölümünün Jeolojisi ve Petrolojisi. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye, 2003.
  • [32] Akçe MA, Kadıoğlu YK. “Petrology of S-type granites and gabbros of Yozgat Batholith: Central Anatolian Crystalline Complex”. Geochimica et Cosmochimica Acta, 68(11, Suppl.), A659–A659, 2004.
  • [33] Akçe MA, Kadıoğlu YK. “Yozgat Batoliti kuzey bölümündeki lökogranitlerin petrolojisi”. Türkiye Jeoloji Bülteni, 48(2), 1–20, 2005.
  • [34] Sulák M, Kaindl R, Putiš M, Sitek J, Krenn K, Tóth I. “Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge”. Lithos, 113(3-4), 709–730, 2009.
  • [35] Zhang Z, Dai J, Wang X, Hu Z, Wan X, Peng B, Fu M. “Application of spectroscopic characteristics of white mica in porphyry tungsten deposits: A case study involving the Shimensi deposit in Northern Jiangxi”. Minerals, 13(2), 256, 2023.

Magmatik ve metamorfik kayalardaki muskovitlerin Raman spektrumlarına göre ayırımı

Yıl 2025, Cilt: 31 Sayı: 8, 1431 - 1438, 17.12.2025
https://doi.org/10.65206/pajes.82826

Öz

Muskovit, levha silikatlar olarak da bilinen fillosilikatlara ait bir dioktahedral mika mineralidir. Beyaz mika olarak da adlandırılan muskovitler, magmatik, metamorfik ve sedimanter kayalar dahil olmak üzere tüm ana kaya gruplarında bulunabilir. Magmatik kayalarda özellikle S-tipi granitlerde ve pegmatitik kayalarda yaygın olan muskovitler, genellikle yeşilşist fasiyesinde şist ve gnays bileşimindeki metamorfik kayalar içerisinde de değişen oranlarda yer almaktadır. Ana silikat türlerinden biri olan fillosilikatlar, değişken yapılara ve karmaşık kimyasal özelliklere sahiptirler. Bu yapısal ve bileşimsel farklılıklardan dolayı, fillosilikatların Raman kaymaları farklı spektral bölgelerde gözlemlenebilir. Bunun yanında, magmanın kristalleşme süreçlerindeki değişimler ve metamorfizma sırasındaki basınç-sıcaklık koşullarındaki farklılıklar, Raman spektrumlarının şiddetini ve dalga sayısını etkilemektedir. Bu çalışmada, magmatik ve metamorfik kökenli muskovitlerin Raman spektrumları karşılaştırılmış ve aralarındaki ayrımların ortaya konulabilmesi için pik kaymaları da dahil olmak üzere Raman spektrumlarındaki farklılıklar analiz edilmiştir. Basınç ve sıcaklık farklılıklarından dolayı muskovitlerin Raman spektrumlarında kaymalar bulunmaktadır. Genelde metamorfik kayalarda gelişen pik kaymaları, sıcaklık ve özellikle basıncın etkisiyle meydana gelmektedir. Bunun yanında pik kaymalarının muskovitlerdeki Si ve Al gibi bazı elementlerin içeriği ile de ilişkili olduğu bilinmektedir. Metamorfik muskovitlerin metamorfizma sırasında etkili olan basınç nedeniyle tercihli yönelime uğradığı ve bu nedenle pik şiddetinin arttığı, bant genişliğinin ise metamorfizma sırasındaki basınç sonucu gelişen foliasyondan kaynaklanan yapısal kusurlar nedeniyle arttığı düşünülmektedir. Bu çalışmanın sonuçları, Raman spektrumlarından yararlanılarak muskovitlerin kökeninin ve ait olduğu kaya türlerinin belirlenebileceğini göstermektedir.

Kaynakça

  • [1] Larkin PJ. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1st ed. New York, USA, Elsevier, 2011.
  • [2] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach. 2nd ed. Hoboken, NJ, USA, Wiley, 2019.
  • [3] Griffith WP. “Raman spectroscopy of minerals”. Nature, 224, 264–266, 1969.
  • [4] McMillan PF, Hofmeister AM. Infrared and Raman Spectroscopy. Editor: Hawthorne FC. Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy, 18(1), 99–159, Washington, D.C., USA, Mineralogical Society of America, 1988.
  • [5] McMillan PF. “Raman spectroscopy in mineralogy and geochemistry”. Annual Review of Earth and Planetary Sciences, 17, 255–283, 1989.
  • [6] Kloprogge T, Frost R, Lack D. “Non-destructive identification of minerals by Raman microscopy”. Chemistry in Australia, 66(1), 40–44, 1999.
  • [7] Nasdala L, Smith DC, Kaindl R, Gaft M, Ziemann MA. Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. Editors: Beran A, Libowitzky E. Spectroscopic Methods in Mineralogy, EMU Notes in Mineralogy, 6, 281–343, Budapest, Hungary, Eötvös University Press, 2004.
  • [8] Foucher F, Lopez-Reyes G, Bost N, Rull-Perez F, Rüßmann P, Westall F. “Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions”. Journal of Raman Spectroscopy, 44(6), 916–925, 2013.
  • [9] Foucher F, Guimbretière G, Bost N, Westall F. Petrographical and Mineralogical Applications of Raman Mapping. Editor: Maaz K. Raman Spectroscopy and Applications, 163–180, London, UK, IntechOpen, 2017.
  • [10] Fries M, Steele A. Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography. Editors: Toporski J, Dieing T, Hollricher O. Confocal Raman Microscopy, Springer Series in Surface Sciences, 66, 209–236, Cham, Switzerland, Springer International Publishing, 2018.
  • [11] Akçe MA, Kadıoğlu YK. “Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması”. Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99–115, 2020.
  • [12] Chukanov NV, Vigasina MF. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. 1st ed. Springer Mineralogy Series, Cham, Switzerland, Springer, 2020.
  • [13] Güllü B, Kadıoğlu YK. “Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 68–74, 2017.
  • [14] Koralay T, Ören U. “Determination of spectroscopic features and gemstone potential of garnet crystals from the Çamköy region (Aydın - SW Turkey) using XRPD, XRF, confocal Raman spectroscopy, EPMA and gemological test methods”. Periodico di Mineralogia, 89(2), 105–123. 2020.
  • [15] Akçe MA, Kadıoğlu YK. “S-tipi granitlerdeki beyaz mikaların Raman karakteristikleri: Yozgat İntrüzif Kompleksi kuzey bölümü”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 385–398, 2021.
  • [16] Deniz K. “Mica types as indication of magma nature, Central Anatolia, Turkey”. Acta Geologica Sinica (English Edition), 96(3), 844–857, 2022.
  • [17] Ören U, Koralay T. “Menderes Masifi’ndeki (Hacıaliler/Çine-Aydın) granat (lal taşı) porfiroblastlarının, mineralojik-jeokimyasal ve gemolojik incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(7), 769–782, 2023.
  • [18] Ören U, Koralay T. “Evaluation of garnet phenocrysts in volcanic rocks (Görece/İzmir - Western Türkiye) for their usability as a semi-precious gemstone by multi-analytical methods”. Spectroscopy Letters, 57(7), 388–411, 2024.
  • [19] Wang A, Freeman JJ, Jolliff BL. “Understanding the Raman spectral features of phyllosilicates”. Journal of Raman Spectroscopy, Special Issue: 11th International GeoRaman Conference, 46(10), 829–845, 2015.
  • [20] Wang A, Freeman J, Kuebler KE. “Raman spectroscopic characterization of phyllosilicates”. The 33rd Lunar and Planetary Science Conference, #1374, League City, Texas, USA, 11-15 March 2002.
  • [21] Li H, Zhang L, Christy AG. The Correlation Between Raman Spectra and the Mineral Composition of Muscovite and Phengite. Editors: Dobrzhinetskaya L, Faryad SW, Wallis S, Cuthbert S. Ultrahigh-Pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond, 187–212, London, UK, Elsevier, 2011.
  • [22] Loh E. “Optical vibrations in sheet silicates”. Journal of Physics C: Solid State Physics, 6(6), 1091–1104, 1973.
  • [23] Haley LV, Wylie IW, Koningstein JA. “An investigation of the lattice and interlayer water vibrational spectral regions of muscovite and vermiculite using Raman microscopy”. Journal of Raman Spectroscopy, 13(2), 203–205, 1982.
  • [24] Tlili A, Smith DC, Beny JM, Boyer H. “A Raman microprobe study of natural micas”. Mineralogical Magazine, 53(370), 165–179, 1989.
  • [25] Robert J-L, Beny J-M, Della Ventura G, Hardy M. “Fluorine in micas: crystal-chemical control of the OH-F distribution between trioctahedral and dioctahedral sites”. European Journal of Mineralogy, 5(1), 7–18, 1993.
  • [26] McKeown DA, Bell MI, Etz ES. “Vibrational analysis of the dioctahedral mica: 2M1 muscovite”. American Mineralogist, 84(7-8), 1041–1048, 1999.
  • [27] McKeown DA, Bell MI, Etz ES. “Raman spectra and vibrational analysis of the trioctahedral mica phlogopite”. American Mineralogist, 84(5-6), 970–976, 1999.
  • [28] Šontevska V, Jovanovski G, Makreski P, Raškovska A, Šoptrajanov B. “Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals”. Acta Chimica Slovenica, 55(4), 757–766, 2008.
  • [29] Singh M, Singh L. “Vibrational spectroscopic study of muscovite and biotite layered phyllosilicates”. Indian Journal of Pure & Applied Physics, 54(2), 116–122, 2016.
  • [30] Kadıoğlu YK, Dilek Y, Foland KA. Slab Break-off and Syncollisional Origin of the Late Cretaceous Magmatism in the Central Anatolian Crystalline Complex, Turkey. Editors: Dilek Y, Pavlides S. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Special Paper, 381–415, Boulder, CO, USA, 2006.
  • [31] Akçe MA. Yozgat Batolitinin Kuzey Bölümünün Jeolojisi ve Petrolojisi. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye, 2003.
  • [32] Akçe MA, Kadıoğlu YK. “Petrology of S-type granites and gabbros of Yozgat Batholith: Central Anatolian Crystalline Complex”. Geochimica et Cosmochimica Acta, 68(11, Suppl.), A659–A659, 2004.
  • [33] Akçe MA, Kadıoğlu YK. “Yozgat Batoliti kuzey bölümündeki lökogranitlerin petrolojisi”. Türkiye Jeoloji Bülteni, 48(2), 1–20, 2005.
  • [34] Sulák M, Kaindl R, Putiš M, Sitek J, Krenn K, Tóth I. “Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge”. Lithos, 113(3-4), 709–730, 2009.
  • [35] Zhang Z, Dai J, Wang X, Hu Z, Wan X, Peng B, Fu M. “Application of spectroscopic characteristics of white mica in porphyry tungsten deposits: A case study involving the Shimensi deposit in Northern Jiangxi”. Minerals, 13(2), 256, 2023.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Musa Avni Akçe

Yusuf Kagan Kadıoğlu

Gönderilme Tarihi 29 Eylül 2025
Kabul Tarihi 9 Kasım 2025
Erken Görünüm Tarihi 12 Aralık 2025
Yayımlanma Tarihi 17 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 8

Kaynak Göster

APA Akçe, M. A., & Kadıoğlu, Y. K. (2025). Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(8), 1431-1438. https://doi.org/10.65206/pajes.82826
AMA Akçe MA, Kadıoğlu YK. Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;31(8):1431-1438. doi:10.65206/pajes.82826
Chicago Akçe, Musa Avni, ve Yusuf Kagan Kadıoğlu. “Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 8 (Aralık 2025): 1431-38. https://doi.org/10.65206/pajes.82826.
EndNote Akçe MA, Kadıoğlu YK (01 Aralık 2025) Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 8 1431–1438.
IEEE M. A. Akçe ve Y. K. Kadıoğlu, “Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 8, ss. 1431–1438, 2025, doi: 10.65206/pajes.82826.
ISNAD Akçe, Musa Avni - Kadıoğlu, Yusuf Kagan. “Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/8 (Aralık2025), 1431-1438. https://doi.org/10.65206/pajes.82826.
JAMA Akçe MA, Kadıoğlu YK. Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1431–1438.
MLA Akçe, Musa Avni ve Yusuf Kagan Kadıoğlu. “Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 8, 2025, ss. 1431-8, doi:10.65206/pajes.82826.
Vancouver Akçe MA, Kadıoğlu YK. Differentiation of muscovites in igneous and metamorphic rocks according to their Raman spectra. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(8):1431-8.