The aim of the paper was to optimize the Selective Laser Sintering (SLS) and co-firing in the infrared conveyor furnace parameters in front Screen Printed (SP) contacts. The co-firing in the infrared conveyor furnace was carried out at various temperature. The SLS was carried out at various a laser beam, scanning speed of the laser beam and front electrode thickness. The investigations were carried out on monocrystalline silicon wafers. During investigations was applied a silver powder with the grain size of 40 μm. The contacts parameters are obtained according to the Transmission Line Model (TLM) measurements. Firstly, this paper shows the comparison between the convectional an unconventional method of manufacturing front contacts of monocrystalline silicon solar cells with the different morphology of silicon for comparative purposes. Secondly, the papers shows technological recommendations for both methods in relation to parameters such as: the optimal paste composition, the morphology of the silicon substrate to produce the front electrode of silicon solar cells, which were selected experimentally in order to produce a uniformly melted structure, well adhering to the substrate, with the low resistance of the front electrode-to-substrate joint zone.
Silicon solar cells Screen printing Selective laser sintering Transmission line model.
The aim of the paper was to optimize the Selective Laser Sintering (SLS) and co-firing in the infrared conveyor furnace parameters in front Screen Printed (SP) contacts. The co-firing in the infrared conveyor furnace was carried out at various temperature. The SLS was carried out at various a laser beam, scanning speed of the laser beam and front electrode thickness. The investigations were carried out on monocrystalline silicon wafers. During investigations was applied a silver powder with the grain size of 40 μm. The contacts parameters are obtained according to the Transmission Line Model (TLM) measurements. Firstly, this paper shows the comparison between the convectional an unconventional method of manufacturing front contacts of monocrystalline silicon solar cells with the different morphology of silicon for comparative purposes. Secondly, the papers shows technological recommendations for both methods in relation to parameters such as: the optimal paste composition, the morphology of the silicon substrate to produce the front electrode of silicon solar cells, which were selected experimentally in order to produce a uniformly melted structure, well adhering to the substrate, with the low resistance of the front electrode-to-substrate joint zone.
Silicon solar cells Screen printing Selective laser sintering Transmission line model.
Birincil Dil | Türkçe |
---|---|
Bölüm | Makale |
Yazarlar | |
Yayımlanma Tarihi | 1 Temmuz 2013 |
Yayımlandığı Sayı | Yıl 2013 Cilt: 19 Sayı: 7 |