Araştırma Makalesi
BibTex RIS Kaynak Göster

Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım

Yıl 2019, Cilt: 25 Sayı: 6, 643 - 654, 25.11.2019

Öz

Bu
çalışma, sönüm azaltma katsayısının, yer hareketinin yönüne bağlı değişimini
incelemektedir. Bu amaçla, seçilen orijinal yer hareketlerinin, birbirine dik
yatay bileşenleri, maksimum yer hızlarına göre gruplandırılmış ve bu yatay
bileşenler, 0°’den 180°’ye kadar, 10°’lik artımlarla döndürülmüştür. Orijinal
ve döndürülmüş kayıtlara ait sönüm azaltma katsayıları, %10, %20 ve %30 sönüm
oranları için hesaplanmıştır. Daha sonra, sönüm azaltma katsayısındaki
değişimi, yer hareketinin yönüne bağlı olarak hesap etmek amacıyla,
basitleştirilmiş yeni bir yöntem önerilmiştir. Sonuçlar, yer hareketi yönünün,
sönüm azaltma katsayısının hesabında önemli bir parametre olduğunu ve bu
çalışmada önerilen yöntemin, periyot ve sönüm oranından bağımsız olarak, sönüm
azaltma katsayısını ortalama bazda hesaplanması bakımından oldukça başarılı
olduğunu göstermiştir.

Kaynakça

  • Gulkan P, and Sozen M. “Inelastic response of reinforced concrete structures to earthquake motions”. ACI Journal, 71(12), 604-610, 1974.
  • Shibata A, Sozen M. “Substitute-structure method for seismic design in RC”. Journal of Structural Division (ASCE), 102(1), 1-18, 1976.
  • Rezaeian S, Bozorgnia Y, Idriss IM, Abrahamson NA, Campbell KW, Silva WJ. “Damping scaling factors for vertical elastic response spectra for shallow crustal earthquakes in active tectonic regions”. Earthquake Spectra, 30(4): 1335-1358, 2014.
  • Hubbard DT, Mavroeidis GP. “Damping coefficients for near-fault ground motion response spectra”. Soil Dynamics and Earthquake Engineering, 31(3), 401-417, 2011.
  • Hatzigeorgiou GD. “Damping modification factors for SDOF systems subjected to near-fault, far-fault and artificial earthquakes”. Earthquake Engineering and Structural Dynamics, 39(12), 1239-1258, 2010.
  • Cardone D, Dolce M, Rivelli M. “Evaluation of reduction factors for high-damping design response spectra”. Bulletin of Earthquake Engineering, 7(1), 273-291, 2009.
  • Stafford PJ, Mendis R, Bommer JJ. “Dependence of damping correction factors for response spectra on duration and numbers of cycles”. Journal of Structural Engineering (ASCE), 134(8), 1364-1373, 2008.
  • Cameron WI, Green RA. “Damping correction factors for horizontal ground-motion response spectra”. Bulletin of Seismological Society of America, 97(3), 934-960, 2007.
  • Lin YY, Chang KC. “Effects of site classes on damping reduction factors”. Journal of Structural Engineering, 130(11), 1667-1675, 2004.
  • Bommer JJ, Mendis R. “Scaling of spectral displacement ordinates with damping ratios”. Earthquake Engineering and Structural Dynamics, 34(2), 145-165, 2005.
  • Pavlou EA, Constantinou MC. “Response of elastic and inelastic structures with damping systems to near-field and soft-soil ground motions”. Engineering Structures, 26(9), 1217-1230, 2004.
  • Lin YY, Tsai MH, Chang KC. “On the discussion of the damping reduction factors in the constant acceleration region for ATC-40 and FEMA 273”. Earthquake Spectra, 19(4), 1001-1006, 2003.
  • Ramirez OM, Constantinou MC, Whittaker AS, Kircher CA, Chrysostomou CZ. “Elastic and inelastic seismic response of buildings with damping systems”. Earthquake Spectra, 18(3), 531-547, 2002.
  • Newmark NM, Hall WJ. Earthquake spectra and design, EERI monograph. Earthquake Engineering Research Institute, 1982.
  • International Code Council. “International building code”. Falls Church, VA, 2000.
  • Building Seismic Safety Council. “NEHRP recommended provisions for seismic regulations for new buildings and other structures”. Federal Emergency Management Agency, Washington, DC, 2004.
  • Rupakhety R, Sigbjörnsson R. “Rotation-invariant measures of earthquake response spectra”. Bulletin of Earthquake Engineering, 11(6), 1885-1893, 2013.
  • Boore DM. “Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion”. Bulletin of the Seismological Society of America, 100(4), 1830-1835, 2010.
  • Boore DM, Watson-Lamprey J, Abrahamson NA. “Orientation-independent measures of ground motion”. Bulletin of the Seismological Society of America, 96(4A), 1502-1511, 2006.
  • Beyer K, Bommer JJ. “Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion”. Bulletin of Seismological Society of America, 96(4A), 1512-1522, 2006.
  • Reyes JC, Kalkan E. “Significance of rotating ground motions on behavior of symmetric- and asymmetric-plan structures: Part 1. Single-story Structures”. Earthquake Spectra, 31(3), 1591-1612, 2015.
  • Moschonas IF, Kappos AJ. “Assessment of concrete bridges subjected to ground motion with an arbitrary angle of incidence: static and dynamic approach”. Bulletin of Earthquake Engineering, 11(2), 581-605, 2013.
  • Rigato AB, Medina RA. “Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions”. Engineering Structures, 29(10), 2593-2601, 2007.
  • Lopez OA, Torres R. “The critical angle of seismic incidence and the maximum structural response”. Earthquake Engineering and Structural Dynamics, 26(9), 881-894, 1997.
  • Bommer JJ, Elnashai AS, Chlimintzas GO, Lee D. “Review and Development of Response Spectra for Displacement-Based Design”. ESEE Research Report No. 98-3, Imperial College London, 1998.
  • Mollaioli F, Liberatore L, Lucchini A. “Displacement damping modification factors for pulse-like and ordinary records”. Engineering Structures, 78, 17-27, 2014.
  • Somerville P, Smith N, Punyamurthula S, Sun J. “Development of ground motion time histories for phase 2 of the FEMA/SAC steel project”. Report No. SAC/BD-97-04, Sacramento, CA, 1997.
  • Avsar O and Ozdemir G. “Response of seismic-isolated bridges in relation to intensity measures of ordinary and pulselike ground motions”. Journal of Bridge Engineering, 18(3), 250-260, 2013.
  • Yang D, Pan J, Li G. “Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions”. Earthquake Engineering and Structural Dynamics, 38(11), 1257-1280, 2009.
  • Mavroeidis GP. “Discussion on displacement damping modification factors for pulse-like and ordinary records”. Engineering Structures, 100: 249-252, 2015.
  • Eurocode 8. “Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings”. EN 1998-1, Comite Europeen de Normalisation, Brussels, 2004.
  • Faccioli E, Villani M, Vanini M, Cauzzi C. Mapping seismic hazard for the needs of displacement-based design: the case of Italy. Advances in Performance-Based Earthquake Engineering, 13, 3-14, Springer, 2010.
  • Wu J, Hanson RD. “Study of inelastic spectra with high damping”. Journal of Structural Engineering (ASCE)”. 115(6), 1412-1431, 1989.
  • American Society of Civil Engineers (ASCE). “Minimum design loads for buildings and other structures”. Reston, VA 2010.

A new approach for estimation of damping reduction factor of oriented ground motion records in an average sense

Yıl 2019, Cilt: 25 Sayı: 6, 643 - 654, 25.11.2019

Öz

This
study investigates the dependence of damping reduction factor on ground motion
orientation. For this purpose, orthogonal horizontal components of selected
as-recorded ground motions, clustered according to their peak ground velocity
values, were rotated from 0o to 180o with increments of
10o. Damping reduction factors of all the rotated and original
records were computed for damping ratios of %10, %20 and %30. Then, a new
simplified method is proposed to estimate the variation in damping reduction
factor due to ground motion orientation. The results indicate that ground
motion orientation is a significant parameter in computation of damping
reduction factor and proposed method is quite satisfactory in estimating
damping reduction factor in an average sense regardless of the period and
damping ratio.

Kaynakça

  • Gulkan P, and Sozen M. “Inelastic response of reinforced concrete structures to earthquake motions”. ACI Journal, 71(12), 604-610, 1974.
  • Shibata A, Sozen M. “Substitute-structure method for seismic design in RC”. Journal of Structural Division (ASCE), 102(1), 1-18, 1976.
  • Rezaeian S, Bozorgnia Y, Idriss IM, Abrahamson NA, Campbell KW, Silva WJ. “Damping scaling factors for vertical elastic response spectra for shallow crustal earthquakes in active tectonic regions”. Earthquake Spectra, 30(4): 1335-1358, 2014.
  • Hubbard DT, Mavroeidis GP. “Damping coefficients for near-fault ground motion response spectra”. Soil Dynamics and Earthquake Engineering, 31(3), 401-417, 2011.
  • Hatzigeorgiou GD. “Damping modification factors for SDOF systems subjected to near-fault, far-fault and artificial earthquakes”. Earthquake Engineering and Structural Dynamics, 39(12), 1239-1258, 2010.
  • Cardone D, Dolce M, Rivelli M. “Evaluation of reduction factors for high-damping design response spectra”. Bulletin of Earthquake Engineering, 7(1), 273-291, 2009.
  • Stafford PJ, Mendis R, Bommer JJ. “Dependence of damping correction factors for response spectra on duration and numbers of cycles”. Journal of Structural Engineering (ASCE), 134(8), 1364-1373, 2008.
  • Cameron WI, Green RA. “Damping correction factors for horizontal ground-motion response spectra”. Bulletin of Seismological Society of America, 97(3), 934-960, 2007.
  • Lin YY, Chang KC. “Effects of site classes on damping reduction factors”. Journal of Structural Engineering, 130(11), 1667-1675, 2004.
  • Bommer JJ, Mendis R. “Scaling of spectral displacement ordinates with damping ratios”. Earthquake Engineering and Structural Dynamics, 34(2), 145-165, 2005.
  • Pavlou EA, Constantinou MC. “Response of elastic and inelastic structures with damping systems to near-field and soft-soil ground motions”. Engineering Structures, 26(9), 1217-1230, 2004.
  • Lin YY, Tsai MH, Chang KC. “On the discussion of the damping reduction factors in the constant acceleration region for ATC-40 and FEMA 273”. Earthquake Spectra, 19(4), 1001-1006, 2003.
  • Ramirez OM, Constantinou MC, Whittaker AS, Kircher CA, Chrysostomou CZ. “Elastic and inelastic seismic response of buildings with damping systems”. Earthquake Spectra, 18(3), 531-547, 2002.
  • Newmark NM, Hall WJ. Earthquake spectra and design, EERI monograph. Earthquake Engineering Research Institute, 1982.
  • International Code Council. “International building code”. Falls Church, VA, 2000.
  • Building Seismic Safety Council. “NEHRP recommended provisions for seismic regulations for new buildings and other structures”. Federal Emergency Management Agency, Washington, DC, 2004.
  • Rupakhety R, Sigbjörnsson R. “Rotation-invariant measures of earthquake response spectra”. Bulletin of Earthquake Engineering, 11(6), 1885-1893, 2013.
  • Boore DM. “Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion”. Bulletin of the Seismological Society of America, 100(4), 1830-1835, 2010.
  • Boore DM, Watson-Lamprey J, Abrahamson NA. “Orientation-independent measures of ground motion”. Bulletin of the Seismological Society of America, 96(4A), 1502-1511, 2006.
  • Beyer K, Bommer JJ. “Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion”. Bulletin of Seismological Society of America, 96(4A), 1512-1522, 2006.
  • Reyes JC, Kalkan E. “Significance of rotating ground motions on behavior of symmetric- and asymmetric-plan structures: Part 1. Single-story Structures”. Earthquake Spectra, 31(3), 1591-1612, 2015.
  • Moschonas IF, Kappos AJ. “Assessment of concrete bridges subjected to ground motion with an arbitrary angle of incidence: static and dynamic approach”. Bulletin of Earthquake Engineering, 11(2), 581-605, 2013.
  • Rigato AB, Medina RA. “Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions”. Engineering Structures, 29(10), 2593-2601, 2007.
  • Lopez OA, Torres R. “The critical angle of seismic incidence and the maximum structural response”. Earthquake Engineering and Structural Dynamics, 26(9), 881-894, 1997.
  • Bommer JJ, Elnashai AS, Chlimintzas GO, Lee D. “Review and Development of Response Spectra for Displacement-Based Design”. ESEE Research Report No. 98-3, Imperial College London, 1998.
  • Mollaioli F, Liberatore L, Lucchini A. “Displacement damping modification factors for pulse-like and ordinary records”. Engineering Structures, 78, 17-27, 2014.
  • Somerville P, Smith N, Punyamurthula S, Sun J. “Development of ground motion time histories for phase 2 of the FEMA/SAC steel project”. Report No. SAC/BD-97-04, Sacramento, CA, 1997.
  • Avsar O and Ozdemir G. “Response of seismic-isolated bridges in relation to intensity measures of ordinary and pulselike ground motions”. Journal of Bridge Engineering, 18(3), 250-260, 2013.
  • Yang D, Pan J, Li G. “Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions”. Earthquake Engineering and Structural Dynamics, 38(11), 1257-1280, 2009.
  • Mavroeidis GP. “Discussion on displacement damping modification factors for pulse-like and ordinary records”. Engineering Structures, 100: 249-252, 2015.
  • Eurocode 8. “Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings”. EN 1998-1, Comite Europeen de Normalisation, Brussels, 2004.
  • Faccioli E, Villani M, Vanini M, Cauzzi C. Mapping seismic hazard for the needs of displacement-based design: the case of Italy. Advances in Performance-Based Earthquake Engineering, 13, 3-14, Springer, 2010.
  • Wu J, Hanson RD. “Study of inelastic spectra with high damping”. Journal of Structural Engineering (ASCE)”. 115(6), 1412-1431, 1989.
  • American Society of Civil Engineers (ASCE). “Minimum design loads for buildings and other structures”. Reston, VA 2010.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Gökhan Özdemir

Beyhan Bayhan

Yayımlanma Tarihi 25 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 6

Kaynak Göster

APA Özdemir, G., & Bayhan, B. (2019). Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(6), 643-654.
AMA Özdemir G, Bayhan B. Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2019;25(6):643-654.
Chicago Özdemir, Gökhan, ve Beyhan Bayhan. “Döndürülmüş Yer Hareketleri için Hesaplanacak Ortalama sönüm Azaltma katsayısının Kestirimi için Yeni Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 6 (Kasım 2019): 643-54.
EndNote Özdemir G, Bayhan B (01 Kasım 2019) Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 6 643–654.
IEEE G. Özdemir ve B. Bayhan, “Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 6, ss. 643–654, 2019.
ISNAD Özdemir, Gökhan - Bayhan, Beyhan. “Döndürülmüş Yer Hareketleri için Hesaplanacak Ortalama sönüm Azaltma katsayısının Kestirimi için Yeni Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/6 (Kasım 2019), 643-654.
JAMA Özdemir G, Bayhan B. Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:643–654.
MLA Özdemir, Gökhan ve Beyhan Bayhan. “Döndürülmüş Yer Hareketleri için Hesaplanacak Ortalama sönüm Azaltma katsayısının Kestirimi için Yeni Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 6, 2019, ss. 643-54.
Vancouver Özdemir G, Bayhan B. Döndürülmüş yer hareketleri için hesaplanacak ortalama sönüm azaltma katsayısının kestirimi için yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(6):643-54.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.