Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical investigation of aerodynamic characteristics of generic pickup trucks

Yıl 2020, Cilt: 26 Sayı: 1, 21 - 29, 20.02.2020

Öz

In the present study, aerodynamic properties of modified generic pickup trucks were investigated by means of finite volume method. Steady, three-dimensional and turbulent flows over the pickup trucks were solved by standard k-epsilon turbulence model. An experimentally investigated two-dimensional pickup truck found in the open literature was used as a benchmark case and some modifications were done on it by closing the sides of the bed first. Then a tonneau was used to close the top of the box and finally, a canopy was used to cover the box completely from the tailgate to the cab roof. Simulations reveal that such modifications that were done on the reference case improve the aerodynamic characteristics of the vehicles in terms of drag coefficient. With respect to the original case, the drag coefficient reduces approximately 50%, 30% and 20% by using a canopy, a tonneau and closing all sides except top of the bed. Such decreases in drag coefficient was achieved because every modification prevents the flow separation more effectively around the bed and behind the cab. Regardless of the shape of the bed, the drag coefficient decreases with increasing Reynolds (Re) number up to Re=120103. It seems that this is the critical Reynolds number since drag coefficient does not change considerably with Re any more.

Kaynakça

  • Agelin-Chaab M. “Structure of turbulent flows over two-dimensional bluff bodies inspired by a pickup truck geometry”. International Journal of Heat Fluid Flow, 50, 417-430, 2014.
  • Bayraktar S, Bilgili YO. “Effects of under body diffuser on the aerodynamics of a generic car”. International Journal of Automotive Engineering Technology, 7(2), 99-109, 2018.
  • Sudin MN, Abdullah MA. Shamsuddin SA, Ramli FR, Tahir MM. “Review of research on vehicles aerodynamic drag reduction methods”. International Journal of Mechanical Engineering, 14(2), 35-47, 2014.
  • Altaf A, Omar AA, Asrar W. “Passive drag reduction of square back road vehicles”. Journal of Wind Engineering and Industrial Aerodynamics, 134, 30-43, 2014.
  • Das P, Tsubokura M, Matsuuki T, Oshima N, Kitoh K. “Large eddy simulation of the flow-field around a full-scale heavy-duty truck”. Proceeding Engineering, 56, 521-530, 2013.
  • Chilbule C, Upadhyay A, Mukkamala Y. “Analyzing the profile modification of truck-trailer to prune the aerodynamic drag and its repercussion of fuel consumption”. Proceeding Engineering, 97, 1208-1219, 2014.
  • Turkish Statistical Institute (TUIK). “Motorized Ground Vehicles”. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27647, (14.12.2018).
  • U.S. Department of Transportation, Bureau of Transportation Statistics, National Transport Statistics 2017,
  • Yang Z, Khalighi B. “CFD simulations for flow over pickup trucks”. SAE World Congress, Detroit, Michigan, USA, 11-14 April 2005.
  • Lokhande B, Sovani S, Khalighi B. “Transient simulation of the flow field around a generic pickup truck”. SAE World Congress, Detroit, Michigan, USA, March 3-6 2003.
  • Williams NA, Gordis JH, Leatherwood M. “Drag optimization of light trucks using computational fluid dynamics”, SAE Commercial Vehicle Engineering Congress & Exhibition, Chicago, Illinois, USA, 26-28 October 2004.
  • Ha J, Obayashi S, Kohama Y. “Drag characteristics of a pickup truck according to the bed geometry”, Proceedings of the 7th IASME/WSEAS International Conference on Fluid Mechanics & Aerodynamics, Moscow, Russia, 20-22 August 2009.
  • Ha J, Jeong S, Obayashi S. “Drag reduction of a pickup truck by a rear downward flap”. International Journal of Automotive Technology, 12(3), 369-374, 2011.
  • Moussa AA, Fischer J, Yadav R. “Aerodynamic drag reduction for a generic truck using geometrically optimized rear cabin bumps”. Journal of Engineering, Article ID 789475, 1-14, 2015.
  • Boyer H, Sigurdson L. “Flow visualization of light vehicle-trailer systems aerodynamics”, Journal of Visualization, 18, 459-468, 2015.
  • Launder BE, Spalding DB. Lectures in Mathematical Models of Turbulence, London, England, Academic Press, 1972.
  • Cengel YA, Cimbala JM, Fluid Mechanics Fundamentals and Applications. 4th ed. New York, USA, McGraw-Hill Education, 2017.
  • Sharma RB, Bansal R. “CFD simulation for flow over passenger car using tail pates for aerodynamic drag reduction”. Journal of Mechanical and Civil Engineering, 7(5), 28-35, 2013.
  • Altinisik A, Kutukceken E, Umur H. “Experimental and numerical aerodynamic analysis of a passenger car: Influence of the blockage ratio on drag coefficient”.Journal of Fluid Engineering, 137, 081104-114, 2015.
  • Bayraktar S, Yayla S, Oztekin A, Ma H. “Wall proximity effects on flow over cylinders with different cross-sections”. Canadian Journal of Physics, 92(10), 1141, 1148, 2014.

Jenerik pikap kamyonetlerin aerodinamik karakteristiklerinin sayısal olarak incelenmesi

Yıl 2020, Cilt: 26 Sayı: 1, 21 - 29, 20.02.2020

Öz

Bu çalışmada, modifiye edilerek oluşurulmuş kamyonetlerin aerodinamik özellikleri sonlu hacimler metodu ile incelenmiştir. Kamyonetler etrafındaki daimi, üç-boyutlu ve türbülanslı akışlar standart k-epsilon türbülans modeli ile çözülmüştür. Açık literatürde bulunan ve deneysel olarak iki-boyutlu-olarak incelenmiş bir kamyonet referans alınarak, kasası üzerinde bir takım modifikasyonlar yapılmıştır. Bunun için, kasanın yanlarının dışında, üst kısmı da düzlemsel bir yüzeyle örtülmüştür. Son olarak, kasanın üstü, yanlarıyla beraber kamyonet kasasından kabin üst yüzeyine kadar her tarafından tamamen kapatılmıştır. Yapılan simülasyonlar, referans araç üzerinde yapılan değişikliklerin, direnç katsayısı dikkate alındığında, araçların aerodinamik karakteristiklerini iyileştirdiğini ortaya koymuştur. Orijinal duruma nazaran aracın kabinden kasanın üstüne kadar kaplanmasıyla %50, kasanın arka, üst ve yanlarının kapatılmasıyla %30 ve sadece kasanın arka ve yanlarının kapatılıp üst tarafının açık bırakılmasıyla direnç değerinde, %20 düşüş sağlanmıştır. Dirençteki bu azalmaların sebebi, kasa etrafında ve kasa ile kabin arasındaki bölgede akış ayrılmasının önlenmesidir. Kasanın şekli ne olursa olsun, direnç katsayısı Reynolds (Re) sayısının Re=120103‘e kadar arttırılmasıyla azalmıştır. Bu değerden sonra direnç değerleri Re sayısıyla artık çok fazla değişmediği için bu değerin kritik Reynolds sayısı olduğu görülmüştür.

Kaynakça

  • Agelin-Chaab M. “Structure of turbulent flows over two-dimensional bluff bodies inspired by a pickup truck geometry”. International Journal of Heat Fluid Flow, 50, 417-430, 2014.
  • Bayraktar S, Bilgili YO. “Effects of under body diffuser on the aerodynamics of a generic car”. International Journal of Automotive Engineering Technology, 7(2), 99-109, 2018.
  • Sudin MN, Abdullah MA. Shamsuddin SA, Ramli FR, Tahir MM. “Review of research on vehicles aerodynamic drag reduction methods”. International Journal of Mechanical Engineering, 14(2), 35-47, 2014.
  • Altaf A, Omar AA, Asrar W. “Passive drag reduction of square back road vehicles”. Journal of Wind Engineering and Industrial Aerodynamics, 134, 30-43, 2014.
  • Das P, Tsubokura M, Matsuuki T, Oshima N, Kitoh K. “Large eddy simulation of the flow-field around a full-scale heavy-duty truck”. Proceeding Engineering, 56, 521-530, 2013.
  • Chilbule C, Upadhyay A, Mukkamala Y. “Analyzing the profile modification of truck-trailer to prune the aerodynamic drag and its repercussion of fuel consumption”. Proceeding Engineering, 97, 1208-1219, 2014.
  • Turkish Statistical Institute (TUIK). “Motorized Ground Vehicles”. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27647, (14.12.2018).
  • U.S. Department of Transportation, Bureau of Transportation Statistics, National Transport Statistics 2017,
  • Yang Z, Khalighi B. “CFD simulations for flow over pickup trucks”. SAE World Congress, Detroit, Michigan, USA, 11-14 April 2005.
  • Lokhande B, Sovani S, Khalighi B. “Transient simulation of the flow field around a generic pickup truck”. SAE World Congress, Detroit, Michigan, USA, March 3-6 2003.
  • Williams NA, Gordis JH, Leatherwood M. “Drag optimization of light trucks using computational fluid dynamics”, SAE Commercial Vehicle Engineering Congress & Exhibition, Chicago, Illinois, USA, 26-28 October 2004.
  • Ha J, Obayashi S, Kohama Y. “Drag characteristics of a pickup truck according to the bed geometry”, Proceedings of the 7th IASME/WSEAS International Conference on Fluid Mechanics & Aerodynamics, Moscow, Russia, 20-22 August 2009.
  • Ha J, Jeong S, Obayashi S. “Drag reduction of a pickup truck by a rear downward flap”. International Journal of Automotive Technology, 12(3), 369-374, 2011.
  • Moussa AA, Fischer J, Yadav R. “Aerodynamic drag reduction for a generic truck using geometrically optimized rear cabin bumps”. Journal of Engineering, Article ID 789475, 1-14, 2015.
  • Boyer H, Sigurdson L. “Flow visualization of light vehicle-trailer systems aerodynamics”, Journal of Visualization, 18, 459-468, 2015.
  • Launder BE, Spalding DB. Lectures in Mathematical Models of Turbulence, London, England, Academic Press, 1972.
  • Cengel YA, Cimbala JM, Fluid Mechanics Fundamentals and Applications. 4th ed. New York, USA, McGraw-Hill Education, 2017.
  • Sharma RB, Bansal R. “CFD simulation for flow over passenger car using tail pates for aerodynamic drag reduction”. Journal of Mechanical and Civil Engineering, 7(5), 28-35, 2013.
  • Altinisik A, Kutukceken E, Umur H. “Experimental and numerical aerodynamic analysis of a passenger car: Influence of the blockage ratio on drag coefficient”.Journal of Fluid Engineering, 137, 081104-114, 2015.
  • Bayraktar S, Yayla S, Oztekin A, Ma H. “Wall proximity effects on flow over cylinders with different cross-sections”. Canadian Journal of Physics, 92(10), 1141, 1148, 2014.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Volkan Atatug Bu kişi benim

Seyfettin Bayraktar Bu kişi benim

Yayımlanma Tarihi 20 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 1

Kaynak Göster

APA Atatug, V., & Bayraktar, S. (2020). Numerical investigation of aerodynamic characteristics of generic pickup trucks. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 21-29.
AMA Atatug V, Bayraktar S. Numerical investigation of aerodynamic characteristics of generic pickup trucks. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2020;26(1):21-29.
Chicago Atatug, Volkan, ve Seyfettin Bayraktar. “Numerical Investigation of Aerodynamic Characteristics of Generic Pickup Trucks”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 1 (Şubat 2020): 21-29.
EndNote Atatug V, Bayraktar S (01 Şubat 2020) Numerical investigation of aerodynamic characteristics of generic pickup trucks. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 1 21–29.
IEEE V. Atatug ve S. Bayraktar, “Numerical investigation of aerodynamic characteristics of generic pickup trucks”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, ss. 21–29, 2020.
ISNAD Atatug, Volkan - Bayraktar, Seyfettin. “Numerical Investigation of Aerodynamic Characteristics of Generic Pickup Trucks”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/1 (Şubat 2020), 21-29.
JAMA Atatug V, Bayraktar S. Numerical investigation of aerodynamic characteristics of generic pickup trucks. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:21–29.
MLA Atatug, Volkan ve Seyfettin Bayraktar. “Numerical Investigation of Aerodynamic Characteristics of Generic Pickup Trucks”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, 2020, ss. 21-29.
Vancouver Atatug V, Bayraktar S. Numerical investigation of aerodynamic characteristics of generic pickup trucks. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(1):21-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.