Derleme
BibTex RIS Kaynak Göster

Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması

Yıl 2020, Cilt: 26 Sayı: 7, 1319 - 1327, 07.12.2020

Öz

Bazı metallere canlı organizmaların düzenli fonksiyonlarında çok az miktarda da olsa ihtiyaç duyulmakta bu nedenle bu metallerin varlığı önem kazanmaktadır (bakır, çinko, demir, vb. gibi). Fakat bazıları zehirli olup bu zehirli metaller insanların yaşadığı çevre ve yiyecekler için tehlikeli eser metaller olarak kabul edilmektedir. Bu metaller (kurşun, cıva, kadmiyum, arsenik, çinko, demir, bakır, mangan, krom) yüksek derişimlerde zehirli bileşenlerine dönüşmesi nedeniyle zararlı olabilmektedir. Bu nedenle modern analitik kimyada, eser metallerin tayini için basit, çevre için güvenli, duyarlı ve seçici yöntemlerin geliştirilmesine doğru bir eğilim vardır. Eser metallerin düşük derişimleri nedeniyle genellikle bir ayırma ve zenginleştirme tekniği gerekmektedir. Bu tekniklerden en yaygın olarak kullanılanlardan birisi de katı faz özütleme (SPE) tekniğidir. Katı faz özütleme alanındaki yeni çalışmalar, asit ve bazlara dayanıklılık, analite seçicilik, geniş yüzey alanı ve yüksek adsorpsiyon kapasitesi gibi iyi performanslı yeni katı fazların sentezlenmesiyle ilgilidir. Grafen (G) ve grafen oksit (GO)’in maksimum adsorpsiyon kapasiteleri şimdiye kadar rapor edilenlere göre çok daha yüksek olması nedeni ile G ve GO nanotabakaları hem organik bileşikler hem de metal türler için klasik SPE’de başarılı bir şekilde uygulanabilmektedir.

Kaynakça

  • [1] Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Wang X. “Environmental remediation of heavy metal ions by novel-nanomaterials: a review”. Environmental Pollution, 246, 608-620, 2019.
  • [2] Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Wang X. “Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review”. Environmental Pollution, 252, 62-73, 2019.
  • [3] Ahmad H, Huang Z, Kanagaraj P, Liu C. “Separation and preconcentration of arsenite and other heavy metal ıons using graphene oxide laminated with protein molecules”. Journal of Hazardous Materials, 384, 121479, 2020.
  • [4] Türker AR. “Separation, preconcentration and speciation of metal ions by solid phase extraction”. Separation & Purification Reviews, 41, 169-206, 2012.
  • [5] Turkish Standard. “Water Intended for Human Consumption”. Ankara, Turkey, 266, 2005.
  • [6] Wen Y. Recent advances in solid-phase extraction techniques with nanomaterials. Editor: Hussain CM. Handbook of nanomaterials in analytical chemistry. 57-73, Amsterdam, Netherlands, Elsevier, 2020.
  • [7] Türker AR. “New sorbents for solid-phase extraction for metal enrichment”. Clean-Soil, Air, Water, 35, 548-557, 2007.
  • [8] Chen X, Hai X, Wang J. “Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review”. Analytica Chimica Acta, 922, 1-10, 2016.
  • [9] Sitko R, Zawisza B, Malicka E. “Graphene as a new sorbnet in analytical chemistry”. Trends in Analytical Chemistry, 51, 33-43, 2013.
  • [10] Laskar MA, Siddiqui S. Nanomaterials-based on graphene oxide and its derivatives-for separation and preconcentration of metal ions. Editors: Jawaid M, Ahmad A, Lokhat D. Graphene-Based Nanotchnologies for Energy and Environment. 205-219, Amsterdam, Netherlands, Elsevier, 2019.
  • [11] Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Sheibani S. “Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb 2+ from biological samples prior to determination by ICP MS.” Materials Science and Engineering: C, 77, 459-469, 2017.
  • [12] Hou X, Tang S, Wang J. “Recent advances and applications of graphene-based extraction materials in food safety”. Trends in Analytical Chemistry, 119, 1-15, 2019.
  • [13] Mehrani Z, Ebrahimzadeh H, Moradi E. “Poly m-aminophenol/ nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle”. Journal of Chromatography A, 1600, 87-94, 2019.
  • [14] Pourjavid MR, Akbari Sehat A, Haji Hosseini M, Rezaee M, Arabieh M, Yousefi SR, Jamali MR. “Use of 2-(tert-butoxy)-N-(3-carbamothioylphenyl)acetamide and graphene oxide for separation and preconcentration of Fe(III), Ni(II), Cu(II) and Zn(II) ions in different samples”. Chinese Chemical Letters, 25(5), 791-793, 2014.
  • [15] Ahmad H, Chaojie C, Liu C. “Separation and preconcentration of Pb(II) and Cd(II) from aqueous samples using hyperbranched polyethyleneimine-functionalized graphene oxide-immobilized polystyrene spherical adsorbents”. Microchemical Journal, 145, 833-842, 2019.
  • [16] Amirifard P, Taher MA, Naghizadeh M. “Preconcentration of Pd ion in novel modified magnetic graphene oxide nanoparticles in different samples and its determination by ETAAS”. Environmental Nanotechnology, Monitoring & Management, 10, 140-147, 2018.
  • [17] Harrington CF, Clough R, Hansen HR, Hill SJ, Spiros A, Pergantis SA, Tyson JF. “Atomic spectrometry update, Elemental speciation”. Journal of Anaytical. Atomic Spectrometry, 24, 999-1025, 2009.
  • [18] Pyrzynska K. “Carbon nanostructures for separation, preconcentration and speciation of metal ions”. Trends in Analytical Chemistry, 29, 718-727, 2010.
  • [19] Matsuoka S, Yoshimura K. “Recent trends in solid phase spectrometry: 2003-2009. A Review”. Anaytica Chimica Acta, 664, 1-18, 2010.
  • [20] Shamspur T, Mostafavi A. “Flame atomic absorption spectrometry determination of trace amount of cobalt (II) after preconcentration using modified analcime zeolite loaded with bis-(2-hydroxy-1-naphthaldimine)-ndiethylene-triamine”. Journal of AOAC International, 92(4), 1203-1207, 2009.
  • [21] Doğan M, Turhan Y, Alkan M, Namlı H, Turan P, Demirbaş O. “Functionalized sepiolite for heavy metal ions adsorption”. Desalination, 230, 248-268, 2008.
  • [22] Kim ML, Tudino MB. “Evaluation of performance of three different hybrid mesoporous solids based on silica for preconcentration purposes in analytical chemistry: From the study of sorption features to the determination of elements of group IB”. Talanta, 82(3), 923-930, 2010.
  • [23] Soylak M, Ünsal YE, Aydın A, Kızıl N. “Membrane filtration of nickel(II) on cellulose acetate filters for its preconcentration, separation, and flame atomic absorption spectrometric determination”. Clean-Soil, Air, Water, 38(1), 91-95, 2010.
  • [24] Faraji M, Yamini Y, Shariati S. “Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination”. Journal of Hazardous Materials, 166(2), 1383-1388, 2009.
  • [25] Monasterio RR, Willoud RG. “Trace level determination of cadmium in wine by on-line preconcentration in a 5-Br-PADAP functionalized wool-packed microcolumn coupled to flame atomic absorption spectrometry”. Talanta, 79(5), 1484-1488, 2009.
  • [26] Memon JR, Memon SQ, Bhanger, MI, El-Turki A, Hallam KR, Allen GC. “Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater”. Colloids and Surface B Biointerfaces, 70(2), 232-237, 2009.
  • [27] Sweileh JA. “Sorption of trace metals on human hair and application for cadmium and lead pre-concentration with flame atomic absorption determination”. Analytical and Bioanalaytical Chemistry, 375(5), 450-455, 2003.
  • [28] Baytak S, Türker AR. “Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA”. Journal of Hazardous Materials, 129, 130-136, 2006.
  • [29] Mahanta PL, Chakrapani G, Radhamani R. “Determination of rare earth elements in uranite samples by ICP-OES after solid phase extraction on activated carbon”. Atomic Spectroscopy, 31(1), 21-26, 2010.
  • [30] Farhadi K, Abdollahnezhad N, Maleki R. “Separation and preconcentration of uranium(VI) from aqueous samples using a surfactant-coated alumina modified with meloxicam”. International Journal of Enviromental. Analytical Chemistry, 88(10), 725-735, 2008.
  • [31] Çiftçi H. “Separation and preconcentration of cobalt using a new Schiff base derivative on Amberlite XAD -7”. Clean-Soil, Air, Water, 38(7), 657-662, 2010.
  • [32] Özdemir S, Gül Güven R, Kılınç E, Doğru M, Erdoğan S. “Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp stromboliensis immobilized on Amberlite XAD-4”. Microchimica Acta, 169, 79-85, 2010.
  • [33] Burham N. “Separation and preconcentration system for lead and cadmium determination in natural samples using 2-aminoacetylthiophenol modified polyurethane foam”. Desalination, 249, 1199-1205, 2009.
  • [34] Yalçınkaya Ö, Kalfa OM, Türker AR. “Chelating agent free solid phase extraction (CAF-SPE) method for separation and/or preconcentration of iron(III) ions”. Turkish Journal of Chemistry, 34, 207-217, 2010.
  • [35] Kara D, Fisher A, Hill SJ. “Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4”. Journal of Hazardous Materials, 165, 1165-1169, 2009.
  • [36] Baytak S, Türker AR. “Determination of chromium, cadmium and manganese in water and fish samples after preconcentration using Penicillium digitatu immobilized on pumice stone”. Clean-Soil, air, water, 37(4-5), 314-318, 2009.
  • [37] Kalfa OM, Yalçınkaya O, Türker AR. “Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium”. Journal of Hazardous Materials, 166, 455-461, 2009.
  • [38] Samuels WD, LaFemina NH, Sukwarotwat V, Yantasee W, Li XHS, Fryxell GE. “Chloromethylated Activated Carbon: A useful new synthon for making a novel class of sorbents for heavy metal separations”. Separation Sicence and Technology, 45, 228-235, 2010.
  • [39] Picó Y, Fernández M, Ruiz MJ, Font G. “Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment”. Journal of Biochemical and Biophysical Method, 70, 117-131, 2007.
  • [40] Jiang X, Huang K, Deng D, Xia H, Hou X, Zheng C. “Nanomaterials in analytical atomic spectrometry”. Trends in Analytical Chemistry, 39, 38-59, 2012.
  • [41] Lemos V.A, Teixeira LSG, Bezerra MA, Spinola Costa AC, Castro JT, Cardoso LAM, Jesus DS, Santos ES, Baliza PX, Santos LN. “New materials for solid-phase extraction of trace elements”. Applied Spectroscopy, 43, 303-334, 2008.
  • [42] Lucena R. Simonet, BM, Cárdenas S, Valcárcel M. “Potential of nanoparticles in sample preparation”. Journal of Chromatography A, 1218, 620-637, 2011.
  • [43] Valcarcel M, Cardenas S, Simonet BM, Moliner-Martinez Y, Lucena R. “Carbon nanostructures as sorbent materials in analytical processes”. Trends in Analytical Chemistry, 27, 34-43, 2008.
  • [44] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. “Graphene and graphene oxide: synthesis, properties, and applications”. Advanced Materials, 22, 3906-3924, 2010.
  • [45] Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of American Chemical Society, 80(6), 1339-1339, 1958.
  • [46] Marcano D.C, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. “Improved synthesis of graphene oxide”. ACS Nano, 4, 4806-4814, 2010.
  • [47] Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. “Graphene-based ultracapacitors”. Nano Letters, 8, 3498-3502, 2008.
  • [48] He H, Klinowski J, Forster M. “A new structural model for graphite oxide”. Chemical Physics Letters, 287, 53-56, 1998.
  • [49] Liu Q, Shi J, Jiang G. “Application of graphene in analytical sample preparation”. Trends in Analytical Chemistry, 37, 1-11, 2012.
  • [50] Zhao G, Li J, Ren X, Chen C, Wang X. “Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management”. Environmental Science and Technology, 45, 10454-10462, 2011.
  • [51] Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang,Y, Wang X. “Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets”. Dalton Transactions, 40, 10945-10952, 2011.
  • [52] Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X. “Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions”. Dalton Transactions, 41, 6182-6188, 2012.
  • [53] Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. “Folding/ aggregation of graphene oxide and its application in Cu2+ removal”. Journal of Colloid and Interface Science, 351, 122-127, 2010.
  • [54] Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R, Kuang Y. “Highly Efficient removal of Cu(II) from aqueous solution by using graphene oxide”. Water Air Soil Pollution, 224, 1372-1379, 2013.
  • [55] Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X. “Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles”. ACS Applied Material Interfaces, 4, 4991-5000, 2012.
  • [56] Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. “Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions”. Chemical Engineering Journal, 210, 539-546, 2012.
  • [57] Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q. “Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II)”. Talanta, 93, 350-357, 2012.
  • [58] Fan L, Luo C, Sun M, Li X, Lu F, Qiu H. “Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue”. Bioresource Technology, 114, 703-706, 2012.
  • [59] Fan L, Luo C, Sun M, Qiu H. “Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal”. Journal of Materials Chemistry, 22, 24577-24583, 2012.
  • [60] Sun Y, Wang Q, Chen C, Tan X, Wang X. “Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques”. Environmental Science Technology, 46, 6020-6027, 2012.
  • [61] Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R. “Adsorption of divalent metal ions from aqueous solutions using graphene oxide”. Dalton Transactions, 42, 5682-5689, 2013.
  • [62] Canlıdinç SR, Kalfa OM, Üstündağ Z, Erdoğan Y. “Graphene oxide modified expanded perlite as a new sorbent for Cu(II) and Pb(II) prior to determination by high-resolution continuum source flame atomic absorption spectrometry”. Separation Science and Technology, 52(13), 2069-2078, 2017.
  • [63] Sitko R, Zawisza B, Malicka E. “Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions”. Trends in Analytical Chemistry, 37, 22-31, 2012.
  • [64] Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S. “Adsorption behavior of EDTA-graphene oxide for Pb(II) removal”. ACS Applied Material Interfaces, 4, 1186-1193, 2012.
  • [65] Ren Y, Yan N, Wen Q, Fan Z, Wei T, Zhang M, Ma J. “Graphene/d-MnO2 composite as adsorbent for the removal of nickel ions from wastewater”. Chemical Engineering Journal, 175, 1-7, 2011.
  • [66] Ren Y, Yan N, Feng J, Ma J, Wen Q, Li N, Dong Q. “Adsorption mechanism of copper and lead ions onto graphene nanosheet/d-MnO2”. Materials Chemistry and Physics, 136, 538-544, 2012.
  • [67] Liu M, Chen C, Hu J, Wu X, Wang X. “Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal”. Journal of Physical Chemistry C, 115, 25234-25240, 2011.
  • [68] Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS. “Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal”. ACS Nano, 4, 3979-3986, 2010.
  • [69] Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G. “Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites”. Chemical Engineering Journal, 187, 45-52, 2012.
  • [70] Fan L, Luo C, Sun M, Li X, Qiu H. “Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites”. Colloid and Surfaces B, 103, 523-529, 2013.
  • [71] Huang KJ, Jing QS, Wei CY, Wu Y. “Spectrofluorimetric determination of glutathione in human plasma by solid-phase extraction using graphene as adsorbent”. Spectrochimica Acta Part A, 79, 1860-1865, 2011.
  • [72] Huang KJ, Yu S, Li J, Wu ZW, Wei CY. “Extraction of neurotransmitters from rat brain using graphene as a solid-phase sorbent, and their fluorescent detection by HPLC”. Microchimica Acta, 176, 327-335, 2012.
  • [73] Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G. “Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes”. Journal of Chromatography A, 1218, 197-204, 2011.
  • [74] Wu J, Chen L, Mao P, Lu Y, Wang H. “Determination of chloramphenicol in aquatic products by graphene-based SPE coupled with HPLC-MS/MS”. Journal of Separation Science, 35, 3586-3592, 2012.
  • [75] Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G. “Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction”. Angewandte Chemie International Edition, 50, 5913-5917, 2011.
  • [76] Wang Y, Gao S, Zang X, Li J, Ma J. “Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples”. Analytica Chimica Acta, 716, 112-118, 2012.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme
Yazarlar

Rukiye Saygılı Canlıdinç Bu kişi benim

Yayımlanma Tarihi 7 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 7

Kaynak Göster

APA Saygılı Canlıdinç, R. (2020). Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1319-1327.
AMA Saygılı Canlıdinç R. Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2020;26(7):1319-1327.
Chicago Saygılı Canlıdinç, Rukiye. “Grafen/Grafen Oksit Temelli adsorbanların Katı Faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 7 (Aralık 2020): 1319-27.
EndNote Saygılı Canlıdinç R (01 Aralık 2020) Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 7 1319–1327.
IEEE R. Saygılı Canlıdinç, “Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 7, ss. 1319–1327, 2020.
ISNAD Saygılı Canlıdinç, Rukiye. “Grafen/Grafen Oksit Temelli adsorbanların Katı Faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/7 (Aralık 2020), 1319-1327.
JAMA Saygılı Canlıdinç R. Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:1319–1327.
MLA Saygılı Canlıdinç, Rukiye. “Grafen/Grafen Oksit Temelli adsorbanların Katı Faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 7, 2020, ss. 1319-27.
Vancouver Saygılı Canlıdinç R. Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(7):1319-27.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.