Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok amaçlı yapay alg algoritması ile kısıtlı mühendislik tasarım problemlerinin çözülmesi

Yıl 2023, Cilt: 29 Sayı: 2, 183 - 193, 30.04.2023

Öz

Mühendislik tasarım problemleri, optimize edilmesi oldukça zor olan problemler sınıfına girer. Doğadan ilham alan metasezgisel teknikler, bu tür problemleri çözmek için faydalı olabilmektedir. Bu çalışmada, yakın zamanda önerilen çok amaçlı yapay alg algoritması (MOAAA) kullanılarak 7 tanesi benchmark problemi, 7 tanesi mühendislik tasarım problemi olmak üzere toplam 14 farklı problem optimize edilmiştir. MOAAA’nın performans testi için, HV, SPREAD, EPSILON ve IGD olarak isimlendirilen 4 farklı metrik kullanılmıştır. Performans karşılaştırması literatürde iyi bilinen NSGA-II, PAES, MOCell, IBEA ve MOVS algoritmaları ile yapılmıştır. Tüm algoritmalar için elde edilen metriklere Friedman testi uygulanmış ve her algoritmanın ortalama başarı sırası hesaplanmıştır. Sonuçlar, MOAAA'nın 4 performans metriğinden 3'ünde diğer algoritmalardan daha iyi performansa sahip olduğunu göstermektedir. Ayrıca Wilcoxon testi, MOAAA ile elde edilen sonuçların %95 güven düzeyinde anlamlı olduğunu ortaya koymaktadır.

Kaynakça

  • [1] Yang XS, Deb S. "Multiobjective cuckoo search for design optimization". Computers & Operations Research, 40(6), 1616-1624, 2013.
  • [2] Yu CL, Lu Y, Chu J. "Multi-objective optimization with combination of particle swarm and extremal optimization for constrained engineering design". WSEAS Transactions on Systems and Control, 4(7), 129-138, 2012.
  • [3] Deb K, Pratap A, Agarwal S,Meyarivan T. "A fast and elitist multiobjective genetic algorithm: NSGA-II". IEEE Transactions on Evolutionary Computation, 6(2), 182-197, 2002.
  • [4] Coello CAC, Pulido GT, Lechuga MS. "Handling multiple objectives with particle swarm optimization". IEEE Transactions on Evolutionary Computation, 8(3), 256-279, 2004.
  • [5] Zitzler E, Laumanns M, Thiele L. "SPEA2: Improving the strength Pareto evolutionary algorithm". TIK-Report. Zurich, Switzerland, 103, 2001.
  • [6] Knowles J, Corne D. "The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation". Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6-9 July 1999.
  • [7] Corne DW, Knowles JD, Oates MJ. "The Pareto envelopebased selection algorithm for multiobjective optimization". Parallel Problem Solving from Nature PPSN VI: 6th International Conference, Paris, France, 18-20 September 2000.
  • [8] Li H, Zhang Q. "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II". IEEE Transactions on Evolutionary Computation, 13(2), 284-302, 2009.
  • [9] Zitzler E, Künzli S. "Indicator-based selection in multiobjective search". Parallel Problem Solving from Nature PPSN VIII: 8th International Conference, Birmingham, UK, 18-22 September 2004. [
  • 10] Wolpert DH, Macready WG. "No free lunch theorems for optimization". IEEE Transactions on Evolutionary Computation, 1(1), 67-82, 1997. [
  • 11] Savsani V, Tawhid MA. "Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems". Engineering Applications of Artificial Intelligence, 63, 20-32, 2017.
  • [12] Huang VL, Suganthan PN, Liang JJ. "Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems". International Journal of Intelligent Systems, 21(2), 209-226, 2006.
  • [13] Sierra MR, Coello CC. "Improving PSO-based multiobjective optimization using crowding, mutation and edominance". Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9-11 March 2005.
  • [14] Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CC, Luna F,Alba E. "Smpso: A new pso-based metaheuristic for multiobjective optimization". Computational İntelligence in Miulti-Criteria Decision-Making (MCDM). Nashville, TN, USA, 30 March 2009-02 April 2009.
  • [15] Moslehi G, Mahnam M. "A Pareto approach to multiobjective flexible job-shop scheduling problem using particle swarm optimization and local search". International Journal of Production Economics, 129(1), 14-22, 2011.
  • [16] Wang Y, Yang Y. "Particle swarm optimization with preference order ranking for multi-objective optimization". Information Sciences, 179(12), 1944-1959, 2009.
  • [17] Dai C, Wang Y, Ye M. "A new multi-objective particle swarm optimization algorithm based on decomposition". Information Sciences, 325, 541-557, 2015.
  • [18] Zhang Y, Gong DW, Geng N. "Multi-objective optimization problems using cooperative evolvement particle swarm optimizer". Journal of Computational and Theoretical Nanoscience, 10(3), 655-663, 2013.
  • [19] Omkar S, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S. "Artificial Bee Colony (ABC) for multiobjective design optimization of composite structures". Applied Soft Computing, 11(1), 489-499, 2011.
  • [20] Akbari R, Hedayatzadeh R, Ziarati K,Hassanizadeh B. "A multi-objective artificial bee colony algorithm". Swarm and Evolutionary Computation, 2, 39-52, 2012.
  • [21] Zhang H, Zhu Y, Zou W,Yan X. "A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production". Applied Mathematical Modelling, 36(6), 2578-2591, 2012.
  • [22] Akay B. "Synchronous and asynchronous Pareto-based multi-objective artificial bee colony algorithms". Journal of Global Optimization, 57, 415-445, 2013.
  • [23] Gravel M, Price WL, Gagné C. "Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic". European Journal of Operational Research, 143(1), 218-229, 2002.
  • [24] McMullen PR. "An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives". Artificial Intelligence in Engineering, 1 5(3), 309-317, 2001.
  • [25] T'kindt V, Monmarché N, Tercinet F, Laügt D. "An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem". European Journal of Operational Research, 142(2), 250-257, 2002.
  • [26] Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS. "Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization". Expert Systems with Applications, 47, 106-119, 2016.
  • [27] Mirjalili S, Jangir P, Saremi S. "Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems". Applied Intelligence, 46(1), 79-95, 2017.
  • [28] Sadollah A, Eskandar H, Kim JH. "Water cycle algorithm for solving constrained multi-objective optimization problems". Applied Soft Computing, 27, 279-298, 2015.
  • [29] Suman B, Hoda N, Jha S. "Orthogonal simulated annealing for multiobjective optimization". Computers & Chemical Engineering, 34(10), 1618-1631, 2010.
  • [30] Aydin I, Karakose M, Akin E. "A multi-objective artificial immune algorithm for parameter optimization in support vector machine". Applied soft computing, 11(1), 120-129, 2011.
  • [31] Gong M, Jiao L, Du H,Bo L. "Multiobjective immune algorithm with nondominated neighbor-based selection". Evolutionary Computation, 16(2), 225-255, 2008.
  • [32] Gao J, Wang J. "A hybrid quantum-inspired immune algorithm for multiobjective optimization". Applied Mathematics and Computation, 217(9), 4754-4770, 2011.
  • [33] Jamuna K, Swarup K. "Multi-objective biogeography based optimization for optimal PMU placement". Applied Soft Computing, 12(5), 1503-1510, 2012.
  • [34] Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A,Lucas C. "Multiobjective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets". Applied Soft Computing, 12(1), 100-112, 2012.
  • [35] Yang XS. "Multiobjective firefly algorithm for continuous optimization". Engineering with Computers, 29(2), 175-184, 2013.
  • [36] Yang XS. "Bat algorithm for multi-objective optimisation". International Journal of Bio-Inspired Computation, 3(5), 267-274, 2011.
  • [37] Krishnanand K, Panigrahi BK, Rout PK, Mohapatra A. "Application of multi-objective teaching-learning-based algorithm to an economic load dispatch problem with incommensurable objectives". International Conference on Swarm, Evolutionary, and Memetic Computing, Andhra Pradesh, India, 19-21 December 2011.
  • [38] Arshi SS, Zolfaghari A, Mirvakili SM. "A multi-objective shuffled frog leaping algorithm for in-core fuel management optimization". Computer Physics Communications, 185(10), 2622-2628, 2014.
  • [39] Karakoyun M, Gülcü Ş, Kodaz H. "D-MOSG: Discrete multiobjective shuffled gray wolf optimizer for multi-level image thresholding". Engineering Science and Technology, an International Journal, 24(6), 1455-1466, 2021.
  • [40] Karakoyun M, Kodaz H. "Çok amaçlı mühendislik tasarımı ve kısıtlı problemler için hibrit birçok amaçlı optimizasyon algoritması". Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1200-1211, 2021.
  • [41] Karakoyun M, Ozkis A, Kodaz H. "A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems". Applied Soft Computing, 96, 1-26, 2020.
  • [42] Özkış A, Babalık A. "A novel metaheuristic for multiobjective optimization problems: The multi-objective vortex search algorithm". Information Sciences, 402, 124-148, 2017.
  • [43] Babalik A, Ozkis A, Uymaz SA, Kiran MS. "A multi-objective artificial algae algorithm". Applied Soft Computing, 68, 377-395, 2018.
  • [44] Augusto OB, Bennis F, Caro SJPO. "Multiobjective engineering design optimization problems: a sensitivity analysis approach". Pesquisa Operacional, 32, 575-596, 2012.
  • [45] Tawhid MA, Savsani VJAI. "A novel multi-objective optimization algorithm based on artificial algae for multiobjective engineering design problems". Applied Intelligence, 48, 3762-3781, 2018.
  • [46] Tawhid MA, Savsani VJNC, Applications. "Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems". Neural Computing and Applications, 31, 915-929, 2019.
  • [47] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. 1st ed. Chichester, UK, Wiley, 2001.
  • [48] Durillo JJ, Nebro AJ. "jMetal: A Java framework for multiobjective optimization". Advances in Engineering Software, 42(10), 760-771, 2011.
  • [49] Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W,Tiwari S. "Multiobjective optimization test instances for the CEC 2009 special session and competition". University of Essex, Colchester, UK and Nanyang technological University, Singapore, Special Session On Performance Assessment Of Multi-Objective Optimization Algorithms, Technical Report, 264, 2008.
  • [50] Uymaz SA, Tezel G, Yel E. "Artificial algae algorithm (AAA) for nonlinear global optimization". Applied Soft Computing, 31, 153-171, 2015.
  • [51] Agrawal RB, Deb K, Agrawal R. "Simulated binary crossover for continuous search space". Complex Systems, 9(2), 115-148, 1995.
  • [52] Tawhid MA, Savsani V. "∊-constraint heat transfer search (∊-HTS) algorithm for solving multi-objective engineering design problems". Journal of Computational Design and Engineering, 5(1), 104-119, 2018.
  • [53] Kashan MH, Nahavandi N, Kashan AH. "DisABC: a new artificial bee colony algorithm for binary optimization". Applied Soft Computing, 12(1), 342-352, 2012.
  • [54] Derrac J, García S, Molina D,Herrera F. "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms". Swarm and Evolutionary Computation, 1(1), 3-18, 2011.

Solving constrained engineering design problems with multi-objective artificial algae algorithm

Yıl 2023, Cilt: 29 Sayı: 2, 183 - 193, 30.04.2023

Öz

Engineering design problems fall into the category of problems that are very difficult to optimize. Nature-inspired metaheuristic techniques can be beneficial to solve such problems. In this study, a total of 14 different problems, 7 of which are benchmark problems and 7 of which are engineering design problems, were optimized using the recently proposed multi-objective artificial algae algorithm, MOAAA for short. For the performance test of the MOAAA, 4 different metrics named HV, SPREAD, EPSILON and IGD were used. Performance comparison was made with NSGA-II, PAES, MOCell, IBEA and MOVS algorithms which are well known in the literature. The Friedman test was applied to the metrics obtained for all algorithms and the average ranks of each algorithm were calculated. The results show that MOAAA has better performance than other algorithms in 3 of 4 metrics. In addition, the Wilcoxon's test reveals that the results obtained by the MOAAA are significant in the 95% confidence level.

Kaynakça

  • [1] Yang XS, Deb S. "Multiobjective cuckoo search for design optimization". Computers & Operations Research, 40(6), 1616-1624, 2013.
  • [2] Yu CL, Lu Y, Chu J. "Multi-objective optimization with combination of particle swarm and extremal optimization for constrained engineering design". WSEAS Transactions on Systems and Control, 4(7), 129-138, 2012.
  • [3] Deb K, Pratap A, Agarwal S,Meyarivan T. "A fast and elitist multiobjective genetic algorithm: NSGA-II". IEEE Transactions on Evolutionary Computation, 6(2), 182-197, 2002.
  • [4] Coello CAC, Pulido GT, Lechuga MS. "Handling multiple objectives with particle swarm optimization". IEEE Transactions on Evolutionary Computation, 8(3), 256-279, 2004.
  • [5] Zitzler E, Laumanns M, Thiele L. "SPEA2: Improving the strength Pareto evolutionary algorithm". TIK-Report. Zurich, Switzerland, 103, 2001.
  • [6] Knowles J, Corne D. "The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation". Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6-9 July 1999.
  • [7] Corne DW, Knowles JD, Oates MJ. "The Pareto envelopebased selection algorithm for multiobjective optimization". Parallel Problem Solving from Nature PPSN VI: 6th International Conference, Paris, France, 18-20 September 2000.
  • [8] Li H, Zhang Q. "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II". IEEE Transactions on Evolutionary Computation, 13(2), 284-302, 2009.
  • [9] Zitzler E, Künzli S. "Indicator-based selection in multiobjective search". Parallel Problem Solving from Nature PPSN VIII: 8th International Conference, Birmingham, UK, 18-22 September 2004. [
  • 10] Wolpert DH, Macready WG. "No free lunch theorems for optimization". IEEE Transactions on Evolutionary Computation, 1(1), 67-82, 1997. [
  • 11] Savsani V, Tawhid MA. "Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems". Engineering Applications of Artificial Intelligence, 63, 20-32, 2017.
  • [12] Huang VL, Suganthan PN, Liang JJ. "Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems". International Journal of Intelligent Systems, 21(2), 209-226, 2006.
  • [13] Sierra MR, Coello CC. "Improving PSO-based multiobjective optimization using crowding, mutation and edominance". Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9-11 March 2005.
  • [14] Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CC, Luna F,Alba E. "Smpso: A new pso-based metaheuristic for multiobjective optimization". Computational İntelligence in Miulti-Criteria Decision-Making (MCDM). Nashville, TN, USA, 30 March 2009-02 April 2009.
  • [15] Moslehi G, Mahnam M. "A Pareto approach to multiobjective flexible job-shop scheduling problem using particle swarm optimization and local search". International Journal of Production Economics, 129(1), 14-22, 2011.
  • [16] Wang Y, Yang Y. "Particle swarm optimization with preference order ranking for multi-objective optimization". Information Sciences, 179(12), 1944-1959, 2009.
  • [17] Dai C, Wang Y, Ye M. "A new multi-objective particle swarm optimization algorithm based on decomposition". Information Sciences, 325, 541-557, 2015.
  • [18] Zhang Y, Gong DW, Geng N. "Multi-objective optimization problems using cooperative evolvement particle swarm optimizer". Journal of Computational and Theoretical Nanoscience, 10(3), 655-663, 2013.
  • [19] Omkar S, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S. "Artificial Bee Colony (ABC) for multiobjective design optimization of composite structures". Applied Soft Computing, 11(1), 489-499, 2011.
  • [20] Akbari R, Hedayatzadeh R, Ziarati K,Hassanizadeh B. "A multi-objective artificial bee colony algorithm". Swarm and Evolutionary Computation, 2, 39-52, 2012.
  • [21] Zhang H, Zhu Y, Zou W,Yan X. "A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production". Applied Mathematical Modelling, 36(6), 2578-2591, 2012.
  • [22] Akay B. "Synchronous and asynchronous Pareto-based multi-objective artificial bee colony algorithms". Journal of Global Optimization, 57, 415-445, 2013.
  • [23] Gravel M, Price WL, Gagné C. "Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic". European Journal of Operational Research, 143(1), 218-229, 2002.
  • [24] McMullen PR. "An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives". Artificial Intelligence in Engineering, 1 5(3), 309-317, 2001.
  • [25] T'kindt V, Monmarché N, Tercinet F, Laügt D. "An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem". European Journal of Operational Research, 142(2), 250-257, 2002.
  • [26] Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS. "Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization". Expert Systems with Applications, 47, 106-119, 2016.
  • [27] Mirjalili S, Jangir P, Saremi S. "Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems". Applied Intelligence, 46(1), 79-95, 2017.
  • [28] Sadollah A, Eskandar H, Kim JH. "Water cycle algorithm for solving constrained multi-objective optimization problems". Applied Soft Computing, 27, 279-298, 2015.
  • [29] Suman B, Hoda N, Jha S. "Orthogonal simulated annealing for multiobjective optimization". Computers & Chemical Engineering, 34(10), 1618-1631, 2010.
  • [30] Aydin I, Karakose M, Akin E. "A multi-objective artificial immune algorithm for parameter optimization in support vector machine". Applied soft computing, 11(1), 120-129, 2011.
  • [31] Gong M, Jiao L, Du H,Bo L. "Multiobjective immune algorithm with nondominated neighbor-based selection". Evolutionary Computation, 16(2), 225-255, 2008.
  • [32] Gao J, Wang J. "A hybrid quantum-inspired immune algorithm for multiobjective optimization". Applied Mathematics and Computation, 217(9), 4754-4770, 2011.
  • [33] Jamuna K, Swarup K. "Multi-objective biogeography based optimization for optimal PMU placement". Applied Soft Computing, 12(5), 1503-1510, 2012.
  • [34] Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A,Lucas C. "Multiobjective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets". Applied Soft Computing, 12(1), 100-112, 2012.
  • [35] Yang XS. "Multiobjective firefly algorithm for continuous optimization". Engineering with Computers, 29(2), 175-184, 2013.
  • [36] Yang XS. "Bat algorithm for multi-objective optimisation". International Journal of Bio-Inspired Computation, 3(5), 267-274, 2011.
  • [37] Krishnanand K, Panigrahi BK, Rout PK, Mohapatra A. "Application of multi-objective teaching-learning-based algorithm to an economic load dispatch problem with incommensurable objectives". International Conference on Swarm, Evolutionary, and Memetic Computing, Andhra Pradesh, India, 19-21 December 2011.
  • [38] Arshi SS, Zolfaghari A, Mirvakili SM. "A multi-objective shuffled frog leaping algorithm for in-core fuel management optimization". Computer Physics Communications, 185(10), 2622-2628, 2014.
  • [39] Karakoyun M, Gülcü Ş, Kodaz H. "D-MOSG: Discrete multiobjective shuffled gray wolf optimizer for multi-level image thresholding". Engineering Science and Technology, an International Journal, 24(6), 1455-1466, 2021.
  • [40] Karakoyun M, Kodaz H. "Çok amaçlı mühendislik tasarımı ve kısıtlı problemler için hibrit birçok amaçlı optimizasyon algoritması". Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1200-1211, 2021.
  • [41] Karakoyun M, Ozkis A, Kodaz H. "A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems". Applied Soft Computing, 96, 1-26, 2020.
  • [42] Özkış A, Babalık A. "A novel metaheuristic for multiobjective optimization problems: The multi-objective vortex search algorithm". Information Sciences, 402, 124-148, 2017.
  • [43] Babalik A, Ozkis A, Uymaz SA, Kiran MS. "A multi-objective artificial algae algorithm". Applied Soft Computing, 68, 377-395, 2018.
  • [44] Augusto OB, Bennis F, Caro SJPO. "Multiobjective engineering design optimization problems: a sensitivity analysis approach". Pesquisa Operacional, 32, 575-596, 2012.
  • [45] Tawhid MA, Savsani VJAI. "A novel multi-objective optimization algorithm based on artificial algae for multiobjective engineering design problems". Applied Intelligence, 48, 3762-3781, 2018.
  • [46] Tawhid MA, Savsani VJNC, Applications. "Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems". Neural Computing and Applications, 31, 915-929, 2019.
  • [47] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. 1st ed. Chichester, UK, Wiley, 2001.
  • [48] Durillo JJ, Nebro AJ. "jMetal: A Java framework for multiobjective optimization". Advances in Engineering Software, 42(10), 760-771, 2011.
  • [49] Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W,Tiwari S. "Multiobjective optimization test instances for the CEC 2009 special session and competition". University of Essex, Colchester, UK and Nanyang technological University, Singapore, Special Session On Performance Assessment Of Multi-Objective Optimization Algorithms, Technical Report, 264, 2008.
  • [50] Uymaz SA, Tezel G, Yel E. "Artificial algae algorithm (AAA) for nonlinear global optimization". Applied Soft Computing, 31, 153-171, 2015.
  • [51] Agrawal RB, Deb K, Agrawal R. "Simulated binary crossover for continuous search space". Complex Systems, 9(2), 115-148, 1995.
  • [52] Tawhid MA, Savsani V. "∊-constraint heat transfer search (∊-HTS) algorithm for solving multi-objective engineering design problems". Journal of Computational Design and Engineering, 5(1), 104-119, 2018.
  • [53] Kashan MH, Nahavandi N, Kashan AH. "DisABC: a new artificial bee colony algorithm for binary optimization". Applied Soft Computing, 12(1), 342-352, 2012.
  • [54] Derrac J, García S, Molina D,Herrera F. "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms". Swarm and Evolutionary Computation, 1(1), 3-18, 2011.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Ahmet Özkış Bu kişi benim

Ahmet Babalık Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 2

Kaynak Göster

APA Özkış, A., & Babalık, A. (2023). Solving constrained engineering design problems with multi-objective artificial algae algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 183-193.
AMA Özkış A, Babalık A. Solving constrained engineering design problems with multi-objective artificial algae algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2023;29(2):183-193.
Chicago Özkış, Ahmet, ve Ahmet Babalık. “Solving Constrained Engineering Design Problems With Multi-Objective Artificial Algae Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 2 (Nisan 2023): 183-93.
EndNote Özkış A, Babalık A (01 Nisan 2023) Solving constrained engineering design problems with multi-objective artificial algae algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 2 183–193.
IEEE A. Özkış ve A. Babalık, “Solving constrained engineering design problems with multi-objective artificial algae algorithm”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, ss. 183–193, 2023.
ISNAD Özkış, Ahmet - Babalık, Ahmet. “Solving Constrained Engineering Design Problems With Multi-Objective Artificial Algae Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/2 (Nisan 2023), 183-193.
JAMA Özkış A, Babalık A. Solving constrained engineering design problems with multi-objective artificial algae algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:183–193.
MLA Özkış, Ahmet ve Ahmet Babalık. “Solving Constrained Engineering Design Problems With Multi-Objective Artificial Algae Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, 2023, ss. 183-9.
Vancouver Özkış A, Babalık A. Solving constrained engineering design problems with multi-objective artificial algae algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(2):183-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.