Araştırma Makalesi
BibTex RIS Kaynak Göster

Gray Wolf and Krill Herd optimizations: Performance analysis and comparison

Yıl 2023, Cilt: 29 Sayı: 7, 711 - 736, 30.12.2023

Öz

Herding behavior is defined as a group of animals of similar size that migrate in the same direction and hunt together. Gray wolves are usually seen in packs. Each gray wolf in the herd has a distinct duty and a distinct name that reflects the task. Krill swarms form the basis of ocean ecology. There are two reasons for the movement of the Krill herd. The first reason is that difficult for other organisms to prey on Krill living in herds. Another compelling factor is the way Krill form vast herds and effortlessly seize their prey. Gray Wolf Optimization (GWO) is inspired by gray wolf herding behavior, while Krill Herd Optimization (KHO) is based on krill herding. In this study, GWO and KHO algorithms are examined in detail and it is decided whether they had sufficient success. The fact that the GWO and KHO algorithms are swarm-based is accepted as a common feature of the two algorithms. However, compared with GWO and KHO analysis, as well as 23 single-mode, multimodal, and fixed-size multimodal benchmarking optimization tests. In another hand, the success of the algorithms has been demonstrated by running them on various dimensions ({10, 20, 30, 50, 100, 500}). Additionally, the performances of the GWO and KHO are compared with Tree Seed Algorithm (TSA), Particle Swarm Algorithm (PSO), Jaya algorithm, Arithmetic Optimization Algorithm (AOA), Evolutionary Mating Algorithm (EMA), Fire Hawk Optimizer (FHO), Honey Badger Algorithm (HBA) algorithms. Moreover, all of the analyses are obtained in detail, complete with statistical tests and figures. As a result, while GWO and KHO algorithms show superior success in different test problems with their own characteristics, they are at a competitive level with many old and newly proposed algorithms today. In order to determine the success of the GWO and KHO algorithms, not only the classical test functions but also two different benchmark test sets are used. These are the CEC-C06 2019 functions and the big data problem, which is a current problem today. The same algorithms are run for both problems and rank values are obtained according to the average results. In CEC-C06 2019 functions, KHO achieved good results, while in big data problems, GWO achieved good results. In this study, the success of the GWO and KHO algorithms are examined in detail in three different experimental sets and it sheds light on researchers who will study with GWO and KHO algorithms.

Kaynakça

  • [1] Bunday BD. Basic Optimisation Methods. 1th ed. London, England, Edward Arnold, 1984.
  • [2] Kahaner D, Moler C, Nash S. Numerical Methods and Software. 1th ed. United States, USD, Prentice-Hall, 1989.
  • [3] Li S, Chen H, Wang M, Heidari AA, Mirjalili S. “Slime mould algorithm: A new method for stochastic optimization”. Future Generation Computer Systems, 111, 300-323, 2020.
  • [4] Mirjalili S, Lewis A. “The whale optimization algorithm”. Advances in Engineering Software, 95, 51-67, 2016.
  • [5] Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. “Harris hawks optimization: Algorithm and applications”. Future Generation Computer Systems, 97, 849-872, 2019.
  • [6] Askarzadeh A. “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm”. Computers & Structures, 169, 1-12, 2016.
  • [7] Kaveh A, Farhoudi N. “A new optimization method: Dolphin echolocation”. Advances in Engineering Software, 59, 53-70, 2013.
  • [8] Dhiman G, Kaur A. “Spotted hyena optimizer for solving engineering design problems”. In 2017 International Conference on Machine Learning and Data Science (MLDS), Noida, India, 14-05 December 2017.
  • [9] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems”. Advances in Engineering Software, 114, 163-191, 2017.
  • [10] Uymaz SA, Tezel G, Yel E. “Artificial algae algorithm (AAA) for nonlinear global optimization”. Applied Soft Computing, 31, 153-171, 2015.
  • [11] Rahman CM, Rashid TA. “Dragonfly algorithm and its applications in applied science survey”. Computational Intelligence and Neuroscience, 2019, 1-21, 2019.
  • [12] Polap D, Woźniak M. “Red fox optimization algorithm”. Expert Systems with Applications, 166, 1-21, 2021.
  • [13] Mirjalili S. “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm”. Knowledge-Based Systems, 89, 228-249, 2015.
  • [14] Wang GG, Deb S, Coelho LDS. “Elephant herding optimization”. In 2015 3rd international symposium on computational and business intelligence (ISCBI), Bali, Indonesia, 07-09 December 2015.
  • [15] Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH. “Aquila optimizer: a novel metaheuristic optimization algorithm”. Computers & Industrial Engineering, 157, 1-37, 2021.
  • [16] Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S. “Mountain gazelle optimizer: a new natureinspired metaheuristic algorithm for global optimization problems”. Advances in Engineering Software, 174, 1-34, 2022.
  • [17] MiarNaeimi F, Azizyan G, Rashki M. “Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems”. Knowledge-Based Systems, 213, 1-17, 2021.
  • [18] MiarNaeimi F, Azizyan G, Rashki M, Dhiman G. “MOSOA: a new multi-objective seagull optimization algorithm”. Expert Systems with Applications, 167, 1-22, 2021.
  • [19] Chou JS, Truong DN. “A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean”. Applied Mathematics and Computation, 389, 1-47, 2021.
  • [20] Feng Y, Deb S, Wang GG, Alavi AH. “Monarch butterfly optimization: a comprehensive review”. Expert Systems with Applications, 168, 1-27, 2021.
  • [21] Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A. “Grasshopper optimization algorithm: theory, variants, and applications”. IEEE Access, 9, 50001-50024, 2021.
  • [22] Arora S, Singh S. “Butterfly optimization algorithm: a novel approach for global optimization”. Soft Computing, 23(3), 715-734, 2019.
  • [23] Shadravan S, Naji H, Bardsiri VK. “The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems”. Engineering Applications of Artificial Intelligence, 80, 20-34, 2019.
  • [24] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. “The arithmetic optimization algorithm”. Computer Methods in Applied Mechanics and Engineering, 376, 1-38 2021.
  • [25] Sulaiman MH, Mustaffa Z, Saari MM. “Evolutionary mating algorithm”. Neural Computing & Application, 35, 487-516, 2023.
  • [26] Azizi M, Talatahari S, Gandomi AH. “Fire Hawk Optimizer: a novel metaheuristic algorithm”. Artificial Intelligence Review, 56, 287-363, 2023.
  • [27] Hashim FA, Houssein EH, Hussain K, Mabrouk MS, AlAtabany W. “Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems”. Mathematics and Computers in Simulation, 192, 84-110, 2022.
  • [28] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [29] Gandomi AH, Alavi AH. “Krill herd: a new bio-inspired optimization algorithm”. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845, 2012.
  • [30] Emary E, Zawbaa HM, Grosan C. “Experienced gray wolf optimization through reinforcement learning and neural networks”. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 681-694, 2017.
  • [31] Zareie A, Sheikhahmadi A, Jalili M. “Identification of influential users in social network using gray wolf optimization algorithm”. Expert Systems with Applications, 142, 1-11, 2020.
  • [32] Wang GG, Guo L, Gandomi AH, Hao GS, Wang H. “Chaotic krill herd algorithm”. Information Sciences, 274, 17-34, 2014.
  • [33] Wang GG, Gandomi AH, Alavi AH, Deb S. “A multi-stage krill herd algorithm for global numerical optimization”. International Journal on Artificial Intelligence Tools, 25(2), 1-17, 2016.
  • [34] Wang G, Guo L, Gandomi AH, Cao L, Alavi AH, Duan H, Li J. “Lévy-flight krill herd algorithm”. Mathematical Problems in Engineering, 2013, 1-14, 2013.
  • [35] Hafez AI, Hassanien AE, Zawbaa HM, Emary E. “Hybrid monkey algorithm with krill herd algorithm optimization for feature selection”. In 2015 11th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 29-30 December 2015.
  • [36] Kennedy J, Eberhart R. “Particle swarm optimization”. Proceedings of ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, 27 November, 1 December 1995.
  • [37] Kiran MS. “TSA: Tree-seed algorithm for continuous optimization”. Expert Systems with Applications, 42(19), 6686-6698, 2015.
  • [38] Rao RV. Jaya: An Advanced Optimization Algorithm and its Engineering Applications. 1th ed. Heidelberg, Germany, Springer Cham, 2019.
  • [39] Price KV, Awad NH, Ali MZ, Suganthan PN. “The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization”. Nanyang Technological University, 1, 1-21, 2018.
  • [40] Abdullah JM, Ahmed T. "Fitness dependent optimizer: inspired by the bee swarming reproductive process". IEEE Access, 7, 43473-43486, 2019.
  • [41] Goh SK, Tan KC, Al-Mamun A, Abbass HA. “Evolutionary big optimization (BigOpt) of signals”. In: 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25-28 May 2015.
  • [42] Goh SK, Abbass HA, Tan KC, Al Mamun A. “Artifact removal from EEG using a multi-objective independent component analysis model”. In Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, 3-6 November 2014.
  • [43] Gandomi AH, Alavi AH. “Krill herd: A new bio-inspired optimization algorithm”. Communications in Nonlinear Science and Numerical Simulation, 17, 4831-4845, 2012.

Gri Kurt ve Kril Sürü optimizasyonları: Performans analizi ve karşılaştırması

Yıl 2023, Cilt: 29 Sayı: 7, 711 - 736, 30.12.2023

Öz

Sürü davranışı, aynı yönde göç eden ve birlikte avlanan benzer büyüklükteki bir grup hayvan olarak tanımlanmaktadır. Gri kurtlar, genellikle sürüler halinde yaşamaktadırlar. Sürüdeki her gri kurdun ayrı bir görevi ve görevine göre aldığı farklı bir ismi bulunmaktadır. Diğer yandan Kril sürüleri, ekosistemin temelini oluşmaktadır. Kril sürüsünün hareketi iki sebebi bulunmaktadır. Birinci sebep, diğer canlılar için sürüler halinde yaşayan Kril’in avlanması ve yakalanmasının zor olmasıdır. Diğer sebebi ise, Kril sürüleri avlarını sürü hareketiyle kolayca yakalayabilmektedir. Gri Kurt Optimizasyonu (GWO) gri kurt sürü davranışından ilham alınırken, Kril Sürü Optimizasyonu (KHO) Kril sürü davranışından esinlenmiştir. Bu çalışmada GWO ve KHO algoritmaları detaylı bir şekilde incelenmiş ve yeterli bir başarıya sahip olup olmadıklarına karar verilmiştir. GWO ve KHO algoritmalarının sürü tabanlı olması, iki algoritmanın ortak bir özeliği olarak kabul edilmektedir. Ayrıca, GWO ve KHO performans analizinin yanı sıra 23 tek modlu, çok modlu ve sabit boyutlu çok modlu kıyaslama optimizasyon testleri ile karşılaştırılmıştır. Algoritmaların başarısı, çeşitli boyutlarda ({10, 20, 30, 50, 100, 500}) çalıştırılarak gösterilmiştir. İlaveten, GWO ve KHO algoritmaları Ağaç Tohum Algoritması (TSA), Parçacık Sürü Algoritması (PSO), Jaya algoritması, Aritmetik Optimizasyon Algoritması (AOA), Evrimsel Çiftleşme Algoritması (EMA), Ateş Şahini Optimize edicisi (FHO), Bal Porsuğu Algoritması (HBA) algoritmalarının performansı ile de karşılaştırılmıştır. Elde edilen tüm sonuçlar, istatistiksel testler ve şekillerle detaylı olarak gösterilmektedir. Sonuç olarak GWO ve KHO algoritmaları kendine öz özellikleri ile farklı test problemlerinde üstün başarı gösterirken, eski ve günümüzde yeni önerilmiş birçok algoritma ile de yarışır düzeydedir. GWO ve KHO algoritmalarının başarılarını tespit etmek için sadece klasik test fonksiyonları değil iki farklı kıyaslama test seti de kullanılmıştır. Bunlar CEC-C06 2019 fonksiyonları ve günümüzde güncel bir problem olan büyük veri problemidir. Aynı algoritmalar her iki problem içinde çalıştırılmış ve ortalama sonuçlara göre rank değerleri elde edilmiştir. CEC-C06 2019 fonksiyonlarında KHO iyi sonuçlar elde ederken büyük veri problemlerinde GWO iyi sonuçlar elde etmiştir. Bu çalışmada GWO ve KHO algoritmalarının başarıları üç farklı deneysel sette detaylı bir şekilde incelenmiş ve GWO ve KHO algoritmaları ile çalışacak araştırmacılar için ışık tutmaktadır.

Kaynakça

  • [1] Bunday BD. Basic Optimisation Methods. 1th ed. London, England, Edward Arnold, 1984.
  • [2] Kahaner D, Moler C, Nash S. Numerical Methods and Software. 1th ed. United States, USD, Prentice-Hall, 1989.
  • [3] Li S, Chen H, Wang M, Heidari AA, Mirjalili S. “Slime mould algorithm: A new method for stochastic optimization”. Future Generation Computer Systems, 111, 300-323, 2020.
  • [4] Mirjalili S, Lewis A. “The whale optimization algorithm”. Advances in Engineering Software, 95, 51-67, 2016.
  • [5] Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. “Harris hawks optimization: Algorithm and applications”. Future Generation Computer Systems, 97, 849-872, 2019.
  • [6] Askarzadeh A. “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm”. Computers & Structures, 169, 1-12, 2016.
  • [7] Kaveh A, Farhoudi N. “A new optimization method: Dolphin echolocation”. Advances in Engineering Software, 59, 53-70, 2013.
  • [8] Dhiman G, Kaur A. “Spotted hyena optimizer for solving engineering design problems”. In 2017 International Conference on Machine Learning and Data Science (MLDS), Noida, India, 14-05 December 2017.
  • [9] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems”. Advances in Engineering Software, 114, 163-191, 2017.
  • [10] Uymaz SA, Tezel G, Yel E. “Artificial algae algorithm (AAA) for nonlinear global optimization”. Applied Soft Computing, 31, 153-171, 2015.
  • [11] Rahman CM, Rashid TA. “Dragonfly algorithm and its applications in applied science survey”. Computational Intelligence and Neuroscience, 2019, 1-21, 2019.
  • [12] Polap D, Woźniak M. “Red fox optimization algorithm”. Expert Systems with Applications, 166, 1-21, 2021.
  • [13] Mirjalili S. “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm”. Knowledge-Based Systems, 89, 228-249, 2015.
  • [14] Wang GG, Deb S, Coelho LDS. “Elephant herding optimization”. In 2015 3rd international symposium on computational and business intelligence (ISCBI), Bali, Indonesia, 07-09 December 2015.
  • [15] Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH. “Aquila optimizer: a novel metaheuristic optimization algorithm”. Computers & Industrial Engineering, 157, 1-37, 2021.
  • [16] Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S. “Mountain gazelle optimizer: a new natureinspired metaheuristic algorithm for global optimization problems”. Advances in Engineering Software, 174, 1-34, 2022.
  • [17] MiarNaeimi F, Azizyan G, Rashki M. “Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems”. Knowledge-Based Systems, 213, 1-17, 2021.
  • [18] MiarNaeimi F, Azizyan G, Rashki M, Dhiman G. “MOSOA: a new multi-objective seagull optimization algorithm”. Expert Systems with Applications, 167, 1-22, 2021.
  • [19] Chou JS, Truong DN. “A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean”. Applied Mathematics and Computation, 389, 1-47, 2021.
  • [20] Feng Y, Deb S, Wang GG, Alavi AH. “Monarch butterfly optimization: a comprehensive review”. Expert Systems with Applications, 168, 1-27, 2021.
  • [21] Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A. “Grasshopper optimization algorithm: theory, variants, and applications”. IEEE Access, 9, 50001-50024, 2021.
  • [22] Arora S, Singh S. “Butterfly optimization algorithm: a novel approach for global optimization”. Soft Computing, 23(3), 715-734, 2019.
  • [23] Shadravan S, Naji H, Bardsiri VK. “The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems”. Engineering Applications of Artificial Intelligence, 80, 20-34, 2019.
  • [24] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. “The arithmetic optimization algorithm”. Computer Methods in Applied Mechanics and Engineering, 376, 1-38 2021.
  • [25] Sulaiman MH, Mustaffa Z, Saari MM. “Evolutionary mating algorithm”. Neural Computing & Application, 35, 487-516, 2023.
  • [26] Azizi M, Talatahari S, Gandomi AH. “Fire Hawk Optimizer: a novel metaheuristic algorithm”. Artificial Intelligence Review, 56, 287-363, 2023.
  • [27] Hashim FA, Houssein EH, Hussain K, Mabrouk MS, AlAtabany W. “Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems”. Mathematics and Computers in Simulation, 192, 84-110, 2022.
  • [28] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [29] Gandomi AH, Alavi AH. “Krill herd: a new bio-inspired optimization algorithm”. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845, 2012.
  • [30] Emary E, Zawbaa HM, Grosan C. “Experienced gray wolf optimization through reinforcement learning and neural networks”. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 681-694, 2017.
  • [31] Zareie A, Sheikhahmadi A, Jalili M. “Identification of influential users in social network using gray wolf optimization algorithm”. Expert Systems with Applications, 142, 1-11, 2020.
  • [32] Wang GG, Guo L, Gandomi AH, Hao GS, Wang H. “Chaotic krill herd algorithm”. Information Sciences, 274, 17-34, 2014.
  • [33] Wang GG, Gandomi AH, Alavi AH, Deb S. “A multi-stage krill herd algorithm for global numerical optimization”. International Journal on Artificial Intelligence Tools, 25(2), 1-17, 2016.
  • [34] Wang G, Guo L, Gandomi AH, Cao L, Alavi AH, Duan H, Li J. “Lévy-flight krill herd algorithm”. Mathematical Problems in Engineering, 2013, 1-14, 2013.
  • [35] Hafez AI, Hassanien AE, Zawbaa HM, Emary E. “Hybrid monkey algorithm with krill herd algorithm optimization for feature selection”. In 2015 11th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 29-30 December 2015.
  • [36] Kennedy J, Eberhart R. “Particle swarm optimization”. Proceedings of ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, 27 November, 1 December 1995.
  • [37] Kiran MS. “TSA: Tree-seed algorithm for continuous optimization”. Expert Systems with Applications, 42(19), 6686-6698, 2015.
  • [38] Rao RV. Jaya: An Advanced Optimization Algorithm and its Engineering Applications. 1th ed. Heidelberg, Germany, Springer Cham, 2019.
  • [39] Price KV, Awad NH, Ali MZ, Suganthan PN. “The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization”. Nanyang Technological University, 1, 1-21, 2018.
  • [40] Abdullah JM, Ahmed T. "Fitness dependent optimizer: inspired by the bee swarming reproductive process". IEEE Access, 7, 43473-43486, 2019.
  • [41] Goh SK, Tan KC, Al-Mamun A, Abbass HA. “Evolutionary big optimization (BigOpt) of signals”. In: 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25-28 May 2015.
  • [42] Goh SK, Abbass HA, Tan KC, Al Mamun A. “Artifact removal from EEG using a multi-objective independent component analysis model”. In Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, 3-6 November 2014.
  • [43] Gandomi AH, Alavi AH. “Krill herd: A new bio-inspired optimization algorithm”. Communications in Nonlinear Science and Numerical Simulation, 17, 4831-4845, 2012.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veri Yapıları ve Algoritmalar
Bölüm Makale
Yazarlar

Emine Bas Bu kişi benim

Aysegul Ihsan Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 7

Kaynak Göster

APA Bas, E., & Ihsan, A. (2023). Gray Wolf and Krill Herd optimizations: Performance analysis and comparison. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(7), 711-736.
AMA Bas E, Ihsan A. Gray Wolf and Krill Herd optimizations: Performance analysis and comparison. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2023;29(7):711-736.
Chicago Bas, Emine, ve Aysegul Ihsan. “Gray Wolf and Krill Herd Optimizations: Performance Analysis and Comparison”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 7 (Aralık 2023): 711-36.
EndNote Bas E, Ihsan A (01 Aralık 2023) Gray Wolf and Krill Herd optimizations: Performance analysis and comparison. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 7 711–736.
IEEE E. Bas ve A. Ihsan, “Gray Wolf and Krill Herd optimizations: Performance analysis and comparison”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 7, ss. 711–736, 2023.
ISNAD Bas, Emine - Ihsan, Aysegul. “Gray Wolf and Krill Herd Optimizations: Performance Analysis and Comparison”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/7 (Aralık 2023), 711-736.
JAMA Bas E, Ihsan A. Gray Wolf and Krill Herd optimizations: Performance analysis and comparison. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:711–736.
MLA Bas, Emine ve Aysegul Ihsan. “Gray Wolf and Krill Herd Optimizations: Performance Analysis and Comparison”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 7, 2023, ss. 711-36.
Vancouver Bas E, Ihsan A. Gray Wolf and Krill Herd optimizations: Performance analysis and comparison. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(7):711-36.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.