Araştırma Makalesi
BibTex RIS Kaynak Göster

GKF ile ASM’nin eş-zamanlı stator ve rotor direnci kestirimleri

Yıl 2024, Cilt: 30 Sayı: 6, 771 - 778, 29.11.2024

Öz

Bu makalede, asenkron motor (ASM) sürücü sistemlerinin parametre
değişimlerine bağlı kestirim başarımlarının kötüleşmesi problemini
çözmek için genişletilmiş Kalman filtresine (GKF) dayalı yeni bir durum
ve parametre gözlemleyicisi tasarlanmıştır. Önerilen GKF tabanlı
gözlemleyici algoritması, ölçülen stator akımları ve rotor mekanik hızı
kullanılarak stator akımlarının ve rotor akılarının stator duran eksen
bileşenlerinin, rotor mekanik hızının, viskoz sürtünme terimi dâhil yük
momentinin, rotor direncinin, stator direncinin ve sistemin toplam
eylemsizliğinin tersinin eş-zamanlı kestirimlerini gerçekleştirmektedir.
Böylece, dirençlerin frekans ve sıcaklık bağımlı değişimlerinin
gözlemleyicide güncellenmek üzere kestirilmesi ASM sürücüsünün
kontrol başarımının iyileştirilmesi sağlar. Ek olarak, gözlemleyicinin
dinamik başarımını artırmak için mekanik parametreler olan yük
momenti ve sistemin toplam eylemsizliğinin tersi de kestirilmektedir.
Önerilen gözlemleyicinin kestirim başarımı ve ASM sürücüsünün
sağlamlığı, hız referansı ve parametrelerdeki değişimleri içeren zorlu
senaryolar altında test edilmektedir. Ayrıca, dokuzuncu dereceden
önerilen gözlemleyicinin kestirim başarımı, ölçülen hızı doğrudan
kullanarak aynı elektriksel parametreleri kestiren altıncı dereceden
GKF’nin kestirim başarımı ile karşılaştırılmıştır. Özetle, benzetim
sonuçları önerilen ASM sürücüsünün etkinliğini açıkça ortaya
koymaktadır.

Kaynakça

  • [1] Yildiz R, Demir R, Barut M. “Online estimations for electrical and mechanical parameters of the induction motor by extended Kalman filter”. Transactions of the Institute of Measurement and Control, 45(14), 2725-2738. 2023.
  • [2] Tikkani A, Prasad PVN. “a fuzzy-2 indirect vector control of induction motor using space vector fuzzy-2 based PWM”. Journal of Electrical Engineering & Technology, 17(3), 1845–1858, 2022.
  • [3] Demir R. “Robust stator flux and load torque estimations for induction motor drives with EKF-based observer”. Electrical Engineering, 105(1), 551–562, 2023.
  • [4] Demir R, Barut M.“Novel hybrid estimator based on model reference adaptive system and extended Kalman filter for speed-sensorless induction motor control”. Transactions of the Institute of Measurement and Control, 40(13), 3884–3898, 2018.
  • [5] Rodriguez J, Kennel RM, Espinoza JR, Trincado M, Silva C A, Rojas CA. “High-Performance control strategies for electrical drives: an experimental assessment”. IEEE Transactions on Industrial Electronics, 59(2), 812–820, 2012.
  • [6] Nguyen ND, Nam NN, Yoon C, Lee Y. I. “Speed sensorless model predictive torque control of induction motors using a modified adaptive full-order observer”. IEEE Transactions on Industrial Electronics, 69(6), 6162–6172, 2022.
  • [7] Özdemir S.“A new stator voltage error-based MRAS model for field-oriented controlled induction motor speed estimation without using voltage transducers”. Electrical Engineering, 102(4), 2465–2479, 2020.
  • [8] Yin Z, Bai C, Du N, Du C, Liu J. “Research on internal model control of induction motors based on luenberger disturbance observer”. IEEE Transactions on Power Electronics, 36(7), 8155–8170, 2021.
  • [9] Mousavi MS, Davari SA, Nekoukar V, Garcia C, He L, Wang F, Rodriguez J. “Predictive torque control of induction motor based on a robust integral sliding mode observer”. IEEE Transactions on Industrial Electronics, 70(3), 2339–2350, 2023.
  • [10] Yildiz R, Barut M, Zerdali E.“A comprehensive comparison of extended and unscented kalman filters for speedsensorless control applications of induction motors”. IEEE Transactions on Industrial Informatics, 16(10), 6423–6432, 2020.
  • [11] Karanayil B, Rahman MF, Grantham C. “Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks”. IEEE Transactions on Energy Conversion, 20(4), 771–780, 2005.
  • [12] Salmasi FR, Najafabadi TA. “An adaptive observer with online rotor and stator resistance estimation for induction motors with one phase current sensor”. IEEE Transactions on Energy Conversion, 26(3), 959–966, 2011.
  • [13] Mapelli FL, Tarsitano D, Cheli F. “MRAS rotor resistance estimators for EV vector controlled induction motor traction drive: Analysis and experimental results”. Electric Power Systems Research, 146, 298–307, 2017.
  • [14] Yang S, DingD, Li X, Xie Z, Zhang X, Chang L.“A novel online parameter estimation method for indirect field oriented induction motor drives”. IEEE Transactions on Energy Conversion, 32(4), 1562–1573, 2017.
  • [15] Yang S, Ding D, Li X, Xie Z, Zhang X, Chang L. “A decoupling estimation scheme for rotor resistance and mutual inductance in indirect vector controlled induction motor drives”. IEEE Transactions on Energy Conversion, 34(2), 1033–1042, 2019.
  • [16] Bednarz SA, and Dybkowski M. “Estimation of the induction motor stator and rotor resistance using active and reactive power based model reference adaptive system estimator”. Applied Sciences, 9(23), 1-19, 2019.
  • [17] Bogosyan S, Barut M, Gokasan M. “Braided extended Kalman filters for sensorless estimation in induction motors at high-low/zero speed”. IET Control Theory & Applications, 1(4), 987–998, 2007.
  • [18] Özsoy EE, Gokaşan M, Bogosyan S. “Simultaneous rotor and stator resistance estimation of squirrel cage induction machine with a single extended kalman filter”. Turkish Journal of Electrical Engineering and Computer Sciences, 18(5), 853–863, 2010.
  • [19] Altınışık YE, Demir R, Barut M. “Improved switching-EKF based field oriented control of induction motors”. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 10(2), 545–552, 2021.
  • [20] Barut M, Bogosyan S, Gokasan M. “Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs”. Energy Conversion and Management, 48(12), 3120–3134, 2007.
  • [21] Barut M, Bogosyan S, Gokasan M. “Experimental evaluation of Braided EKF for sensorless control of induction motors”. IEEE Transactions on Industrial Electronics, 55(2), 620–632, 2008.
  • [22] Barut M, Demir R, Zerdali E, Inan R. “Real-Time implementation of bi input-extended kalman filter-based estimator for speed-sensorless control of induction motors”. IEEE Transactions on Industrial Electronics, 59(11), 4197-4206, 2012.
  • [23] Zerdali E, Barut M. “Novel version of bi input-extended Kalman filter for speed-sensorless control of induction motors with estimations of rotor and stator resistances, load torque, and inertia”. Turkish Journal of Electrical Engineering & Computer Sciences, 24, 4525-4544, 2016.
  • [24] Talla J, Peroutka Z, Blahnik V, Streit L. “Rotor and stator resistance estimation of induction motor based on augmented EKF”. International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 08-09 September 2015.
  • [25] Demir R, Barut M, Yildiz R, Inan R, Zerdali E. “EKF based rotor and stator resistance estimations for direct torque control of Induction Motors”. International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25-27 May 2017.
  • [26] Demir R, Barut M, Yildiz R. “Reduced Order Extended Kalman Filter based Parameter Estimations for speedsensored Induction Motor Drive”. Pamukkale University Journal of Engineering Sciences, 24(8), 1464–1471, 2018.
  • [27] Yildiz R, Barut M, Demir R. “Extended Kalman filter based estimations for improving speed‐sensored control performance of induction motors”. IET Electric Power Applications, 14(12), 2471–2479, 2020.
  • [28] Zerdali E, Demir R. “Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications”. Turkish Journal of Electrical Engineering & Computer Sciences, 29(1), 223-240, 2021.

Online stator and rotor resistance estimations of IM by using EKF

Yıl 2024, Cilt: 30 Sayı: 6, 771 - 778, 29.11.2024

Öz

In this paper, a state and parameter observer, based on a novel extended
Kalman filter (EKF), is designed to solve the parameter variations
dependent estimation performance deterioration of induction motor
(IM) drive systems. The proposed EKF based observer algorithm
performs online estimation of the rotor mechanical speed, stator
stationary axis component of the stator currents and rotor fluxes, stator
resistance, rotor resistance, reciprocal of the total inertia of the system,
and load torque including viscous friction term in a single EKF by using
measured rotor mechanical speed and stator currents. Thus, frequency
and temperature-dependent variations of the resistances are estimated
to be updated in the observer, which leads to control performance
enhancement of the IM drive. Moreover, to rise the dynamic
performance of the observer, the load torque and reciprocal of the total
inertia of the system which are mechanical parameters are also
estimated. To verify the robustness of the IM drive and the estimation
performance of the proposed observer, they have been tested under
challenging scenarios including changes in parameters and speed
reference. Moreover, the estimation performance of the proposed ninth
order observer is compared with that of a sixth order EKF estimating
the same electrical parameters by using directly measured speed.
Ultimately, the simulation results obviously reveal the efficacy of the
proposed IM drive.

Kaynakça

  • [1] Yildiz R, Demir R, Barut M. “Online estimations for electrical and mechanical parameters of the induction motor by extended Kalman filter”. Transactions of the Institute of Measurement and Control, 45(14), 2725-2738. 2023.
  • [2] Tikkani A, Prasad PVN. “a fuzzy-2 indirect vector control of induction motor using space vector fuzzy-2 based PWM”. Journal of Electrical Engineering & Technology, 17(3), 1845–1858, 2022.
  • [3] Demir R. “Robust stator flux and load torque estimations for induction motor drives with EKF-based observer”. Electrical Engineering, 105(1), 551–562, 2023.
  • [4] Demir R, Barut M.“Novel hybrid estimator based on model reference adaptive system and extended Kalman filter for speed-sensorless induction motor control”. Transactions of the Institute of Measurement and Control, 40(13), 3884–3898, 2018.
  • [5] Rodriguez J, Kennel RM, Espinoza JR, Trincado M, Silva C A, Rojas CA. “High-Performance control strategies for electrical drives: an experimental assessment”. IEEE Transactions on Industrial Electronics, 59(2), 812–820, 2012.
  • [6] Nguyen ND, Nam NN, Yoon C, Lee Y. I. “Speed sensorless model predictive torque control of induction motors using a modified adaptive full-order observer”. IEEE Transactions on Industrial Electronics, 69(6), 6162–6172, 2022.
  • [7] Özdemir S.“A new stator voltage error-based MRAS model for field-oriented controlled induction motor speed estimation without using voltage transducers”. Electrical Engineering, 102(4), 2465–2479, 2020.
  • [8] Yin Z, Bai C, Du N, Du C, Liu J. “Research on internal model control of induction motors based on luenberger disturbance observer”. IEEE Transactions on Power Electronics, 36(7), 8155–8170, 2021.
  • [9] Mousavi MS, Davari SA, Nekoukar V, Garcia C, He L, Wang F, Rodriguez J. “Predictive torque control of induction motor based on a robust integral sliding mode observer”. IEEE Transactions on Industrial Electronics, 70(3), 2339–2350, 2023.
  • [10] Yildiz R, Barut M, Zerdali E.“A comprehensive comparison of extended and unscented kalman filters for speedsensorless control applications of induction motors”. IEEE Transactions on Industrial Informatics, 16(10), 6423–6432, 2020.
  • [11] Karanayil B, Rahman MF, Grantham C. “Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks”. IEEE Transactions on Energy Conversion, 20(4), 771–780, 2005.
  • [12] Salmasi FR, Najafabadi TA. “An adaptive observer with online rotor and stator resistance estimation for induction motors with one phase current sensor”. IEEE Transactions on Energy Conversion, 26(3), 959–966, 2011.
  • [13] Mapelli FL, Tarsitano D, Cheli F. “MRAS rotor resistance estimators for EV vector controlled induction motor traction drive: Analysis and experimental results”. Electric Power Systems Research, 146, 298–307, 2017.
  • [14] Yang S, DingD, Li X, Xie Z, Zhang X, Chang L.“A novel online parameter estimation method for indirect field oriented induction motor drives”. IEEE Transactions on Energy Conversion, 32(4), 1562–1573, 2017.
  • [15] Yang S, Ding D, Li X, Xie Z, Zhang X, Chang L. “A decoupling estimation scheme for rotor resistance and mutual inductance in indirect vector controlled induction motor drives”. IEEE Transactions on Energy Conversion, 34(2), 1033–1042, 2019.
  • [16] Bednarz SA, and Dybkowski M. “Estimation of the induction motor stator and rotor resistance using active and reactive power based model reference adaptive system estimator”. Applied Sciences, 9(23), 1-19, 2019.
  • [17] Bogosyan S, Barut M, Gokasan M. “Braided extended Kalman filters for sensorless estimation in induction motors at high-low/zero speed”. IET Control Theory & Applications, 1(4), 987–998, 2007.
  • [18] Özsoy EE, Gokaşan M, Bogosyan S. “Simultaneous rotor and stator resistance estimation of squirrel cage induction machine with a single extended kalman filter”. Turkish Journal of Electrical Engineering and Computer Sciences, 18(5), 853–863, 2010.
  • [19] Altınışık YE, Demir R, Barut M. “Improved switching-EKF based field oriented control of induction motors”. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 10(2), 545–552, 2021.
  • [20] Barut M, Bogosyan S, Gokasan M. “Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs”. Energy Conversion and Management, 48(12), 3120–3134, 2007.
  • [21] Barut M, Bogosyan S, Gokasan M. “Experimental evaluation of Braided EKF for sensorless control of induction motors”. IEEE Transactions on Industrial Electronics, 55(2), 620–632, 2008.
  • [22] Barut M, Demir R, Zerdali E, Inan R. “Real-Time implementation of bi input-extended kalman filter-based estimator for speed-sensorless control of induction motors”. IEEE Transactions on Industrial Electronics, 59(11), 4197-4206, 2012.
  • [23] Zerdali E, Barut M. “Novel version of bi input-extended Kalman filter for speed-sensorless control of induction motors with estimations of rotor and stator resistances, load torque, and inertia”. Turkish Journal of Electrical Engineering & Computer Sciences, 24, 4525-4544, 2016.
  • [24] Talla J, Peroutka Z, Blahnik V, Streit L. “Rotor and stator resistance estimation of induction motor based on augmented EKF”. International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 08-09 September 2015.
  • [25] Demir R, Barut M, Yildiz R, Inan R, Zerdali E. “EKF based rotor and stator resistance estimations for direct torque control of Induction Motors”. International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25-27 May 2017.
  • [26] Demir R, Barut M, Yildiz R. “Reduced Order Extended Kalman Filter based Parameter Estimations for speedsensored Induction Motor Drive”. Pamukkale University Journal of Engineering Sciences, 24(8), 1464–1471, 2018.
  • [27] Yildiz R, Barut M, Demir R. “Extended Kalman filter based estimations for improving speed‐sensored control performance of induction motors”. IET Electric Power Applications, 14(12), 2471–2479, 2020.
  • [28] Zerdali E, Demir R. “Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications”. Turkish Journal of Electrical Engineering & Computer Sciences, 29(1), 223-240, 2021.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Recep Yıldız

Murat Barut

Rıdvan Demir

Yayımlanma Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 6

Kaynak Göster

APA Yıldız, R., Barut, M., & Demir, R. (2024). Online stator and rotor resistance estimations of IM by using EKF. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(6), 771-778.
AMA Yıldız R, Barut M, Demir R. Online stator and rotor resistance estimations of IM by using EKF. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2024;30(6):771-778.
Chicago Yıldız, Recep, Murat Barut, ve Rıdvan Demir. “Online Stator and Rotor Resistance Estimations of IM by Using EKF”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 6 (Kasım 2024): 771-78.
EndNote Yıldız R, Barut M, Demir R (01 Kasım 2024) Online stator and rotor resistance estimations of IM by using EKF. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 6 771–778.
IEEE R. Yıldız, M. Barut, ve R. Demir, “Online stator and rotor resistance estimations of IM by using EKF”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, ss. 771–778, 2024.
ISNAD Yıldız, Recep vd. “Online Stator and Rotor Resistance Estimations of IM by Using EKF”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/6 (Kasım 2024), 771-778.
JAMA Yıldız R, Barut M, Demir R. Online stator and rotor resistance estimations of IM by using EKF. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:771–778.
MLA Yıldız, Recep vd. “Online Stator and Rotor Resistance Estimations of IM by Using EKF”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, 2024, ss. 771-8.
Vancouver Yıldız R, Barut M, Demir R. Online stator and rotor resistance estimations of IM by using EKF. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(6):771-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.