Araştırma Makalesi
BibTex RIS Kaynak Göster

RAW264.7 hücrelerinde Odoroside A'nın immün transformasyondaki rolü

Yıl 2024, Cilt: 17 Sayı: 4, 2 - 2
https://doi.org/10.31362/patd.1433389

Öz

Amaç: Makrofajlar bağışıklık sisteminin en önemli unsurlarından biridir ve inflamasyonda ikili rol oynamaktadır. Hem ortamda immün yanıtın oluşumunu hem de baskılanmasını düzenlemektedir. Kanser mikroçevresindeki bu sinyalleme, kanserin ilerlemesini etkiler. Bu kanseri teşvik eden veya kanseri ortadan kaldıran süreç makrofajlar tarafından yönetilmektedir. Proinflamatuar sitokin genlerinin ifadesindeki artış, ortamdaki tümör hücrelerinin baskılanmasını sağlar. Bu çalışmada Odoroside A'nın makrofaj dönüşümüne etkisinin araştırılması amaçlanmıştır.
Gereç ve yöntem: Makrofaj hücrelerinde öldürücü olmayan Odoroside A dozu CCK-8 analizi ile belirlenmiştir. Daha sonra RAW264.7 hücrelerinde sitokin genlerinin ve yüzey belirteçlerinin qRT-PCR kullanılarak gen ekspresyon analizi yapılmıştır. Gen ekspresyonu analizinde anlamlı çıkan sitokinlerin protein düzeyleri ELISA yöntemi kullanılarak incelenmiştir.
Bulgular: Odoroside A, RAW264.7 hücrelerinde IL1 ve IL6 genlerinin ekspresyonunu önemli ölçüde artırırken, IL10 geninin ekspresyonunu önemli ölçüde azaltmıştır. IL4 ve TGFβ gen ifadelerinde anlamlı bir değişiklik olmamıştır. İstatistiksel olarak anlamlı artış gösteren IL1 ve IL6 gen ekspresyonlarının protein düzeyinde de anlamlı düzeyde arttığı belirlenmiştir.
Sonuç: Tüm veriler birlikte değerlendirildiğinde Odoroside A'nın RAW264.7 hücrelerinde proinflamatuar yanıtı arttırdığı, dolayısıyla M1 tip makrofaj dönüşümünü sağladığı gözlenmiştir. Bu, Odoroside A'nın, tümör nişindeki makrofaj aracılı oluşan proinflamatuar ortamın tümörün ortadan kaldırılmasında etkili olabileceğini düşündürmektedir.

Kaynakça

  • 1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958-969. https://doi.org/10.1038/nri2448
  • 2. Ginderachter JAV, Movahedi K, Ghassabeh GH, et al. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology 2006;211:487-501. https://doi.org/10.1016/j.imbio.2006.06.002
  • 3. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41:14-20. https://doi.org/10.1016/j.immuni.2014.06.008
  • 4. Wang HW, Joyce J. Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle. 2010;9:4824-4835. https://doi.org/10.4161/cc.9.24.14322
  • 5. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-1437. https://doi.org/10.1038/nm.3394
  • 6. Calderon Montano JM, Burgos Moron E, Orta ML, et al. Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014;2014:794930(e1-10). https://doi.org/10.1155/2014/794930
  • 7. Schoner W, Scheiner Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007;293:509-536. https://doi.org/10.1152/ajpcell.00098.2007
  • 8. Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 2008;8:36-49. https://doi.org/10.1124/mi.8.1.8
  • 9. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 2000;60:3807-3812.
  • 10. Cerella C, Dicato M, Diederich M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013;13:225-234. https://doi.org/10.1016/j.mito.2012.06.003
  • 11. Hsu JL, Liu FL, Hsu LC, et al. Epi-reevesioside F inhibits Na+,K+-ATPase, causing cytosolic acidification, BAK activation and apoptosis in glioblastoma. Oncotarget 2015;6:24032-24046. https://doi.org/10.18632%2Foncotarget.4429
  • 12. Cao YL, Zhang MH, Lu YF, Li CY, Tang JS, Jiang MM. Cardenolides from the leaves of Nerium oleander. Fitoterapia 2018;127:293-300. http://doi.org/10.1016/j.fitote.2018.03.004
  • 13. Rashan LJ, Franke K, Khine MM, et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol 2011;134:781-788. https://doi.org/10.1016/j.jep.2011.01.038
  • 14. Secer Celik F, Eroglu Güneş C, Yavuz E, Kurar E. Apelin triggers macrophage polarization to M2 type in head and neck cancer. Immunobiology 2023;228:152353(e1-8). https://doi.org/10.1016/j.imbio.2023.152353
  • 15. Zengin FH, Karabudak E. Chemerinin sağlık üzerine etkisi. Selcuk Med J 2021;37:83-89. https://doi.org/10.30733/std.2020.01466
  • 16. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-384. https://doi.org/10.1038/ni.1863
  • 17. Kablan A, Otal Y, Avcıoğlu G, Kösa MT. The effect of the vaccination status of RT-PCR+ Covid-19 cases on albumin, N/L Ratio, CRP, and D-dimer levels. Mev Med Sci 2023;3:17-21. http://doi.org/10.56752/Mevmedsci.2023.23
  • 18. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32:593-604. http://doi.org/10.1016/j.immuni.2010.05.007
  • 19. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013;31:317-343. https://doi.org/10.1146/annurev-immunol-032712-095906
  • 20. Salmaninejad A, Valilou SF, Soltani A, et al. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol 2019;42:591-608. https://doi.org/10.1007/s13402-019-00453-z
  • 21. Atay Ö, Asilsoy S. SARS-Cov-2 Immunopathogenesis and possible AntiInflammatory treatment options. Selcuk Med J 2020;36:264-273. http://doi.org/10.30733/std.2020.01469
  • 22. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 2021;22:69-95. https://doi.org/10.3390/ijms22136995
  • 23. Özdemir S. Combining Radiotherapy and Immune Checkpoint Inhibitors. Mev Med Sci 2021;1:95-100.
  • 24. Uçar Tavlı Y, Esen HH, Mevlütoğlu I. Immunohistochemical Evaluation of CD4, CD8 and Matrix Metalloproteinase-9 (MMP-9) Expressions in Biopsies Before and After Treatment of Mycosis Fungoides Patients. Selcuk Med J 2017;33:29-33.
  • 25. Shabo I, Olsson H, Elkarim R, Xiao Feng S, Joar S. Macrophage infiltration in tumor stroma is related to tumor cell expression of CD163 in colorectal cancer. Cancer Microenviron 2014;7:61-69. https://doi.org/10.1007/s12307-014-0145-7
  • 26. Shi X, Yang J, Deng S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022;15:127-135. https://doi.org/10.1186/s13045-022-01349-6

The role of Odoroside A in immune transformation in RAW264.7 cells

Yıl 2024, Cilt: 17 Sayı: 4, 2 - 2
https://doi.org/10.31362/patd.1433389

Öz

Purpose: Macrophages are one of the most important elements of the immune system and play dual role in inflammation. They regulate both the formation of the immune response in the environment and the suppression. This signaling in the cancer microenvironment affects the progression of cancer. This cancer-promoting or cancer-eliminating process is managed by macrophages. The increase in pro-inflammatory cytokine genes provides suppression of tumor cells in the environment. It was aimed to investigate the effect of Odoroside A on macrophage transformation.
Materials and methods: The non-lethal dose of Odoroside A in macrophage cells was determined by CCK-8 analysis. Then, gene expression analysis of cytokines genes and surface markers in RAW264.7 cells was performed by using qRT-PCR. The protein levels of the cytokines that were significant in the gene expression analysis were examined using the ELISA method.
Results: Odoroside A significantly increased the expression of IL1 and IL6 genes in RAW264.7 cells, while it significantly decreased the expression of IL10 gene. There was no significant change in IL4 and TGFβ gene expressions. IL1 and IL6 gene expressions, which had a statistically significant increase, were also found to increase significantly at the protein level.
Conclusions: When all the data are evaluated together, it has been observed that Odoroside A increases the pro-inflammatory response in RAW264.7 cells, thus providing M1 type macrophage transformation. This suggests that Odoroside A may be effective in tumor elimination of the macrophage-mediated environment in the tumor niche.
Key words: Odoroside A, Macrophage, Cytokines.

Kaynakça

  • 1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958-969. https://doi.org/10.1038/nri2448
  • 2. Ginderachter JAV, Movahedi K, Ghassabeh GH, et al. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology 2006;211:487-501. https://doi.org/10.1016/j.imbio.2006.06.002
  • 3. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41:14-20. https://doi.org/10.1016/j.immuni.2014.06.008
  • 4. Wang HW, Joyce J. Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle. 2010;9:4824-4835. https://doi.org/10.4161/cc.9.24.14322
  • 5. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-1437. https://doi.org/10.1038/nm.3394
  • 6. Calderon Montano JM, Burgos Moron E, Orta ML, et al. Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014;2014:794930(e1-10). https://doi.org/10.1155/2014/794930
  • 7. Schoner W, Scheiner Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007;293:509-536. https://doi.org/10.1152/ajpcell.00098.2007
  • 8. Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 2008;8:36-49. https://doi.org/10.1124/mi.8.1.8
  • 9. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 2000;60:3807-3812.
  • 10. Cerella C, Dicato M, Diederich M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013;13:225-234. https://doi.org/10.1016/j.mito.2012.06.003
  • 11. Hsu JL, Liu FL, Hsu LC, et al. Epi-reevesioside F inhibits Na+,K+-ATPase, causing cytosolic acidification, BAK activation and apoptosis in glioblastoma. Oncotarget 2015;6:24032-24046. https://doi.org/10.18632%2Foncotarget.4429
  • 12. Cao YL, Zhang MH, Lu YF, Li CY, Tang JS, Jiang MM. Cardenolides from the leaves of Nerium oleander. Fitoterapia 2018;127:293-300. http://doi.org/10.1016/j.fitote.2018.03.004
  • 13. Rashan LJ, Franke K, Khine MM, et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol 2011;134:781-788. https://doi.org/10.1016/j.jep.2011.01.038
  • 14. Secer Celik F, Eroglu Güneş C, Yavuz E, Kurar E. Apelin triggers macrophage polarization to M2 type in head and neck cancer. Immunobiology 2023;228:152353(e1-8). https://doi.org/10.1016/j.imbio.2023.152353
  • 15. Zengin FH, Karabudak E. Chemerinin sağlık üzerine etkisi. Selcuk Med J 2021;37:83-89. https://doi.org/10.30733/std.2020.01466
  • 16. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-384. https://doi.org/10.1038/ni.1863
  • 17. Kablan A, Otal Y, Avcıoğlu G, Kösa MT. The effect of the vaccination status of RT-PCR+ Covid-19 cases on albumin, N/L Ratio, CRP, and D-dimer levels. Mev Med Sci 2023;3:17-21. http://doi.org/10.56752/Mevmedsci.2023.23
  • 18. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32:593-604. http://doi.org/10.1016/j.immuni.2010.05.007
  • 19. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013;31:317-343. https://doi.org/10.1146/annurev-immunol-032712-095906
  • 20. Salmaninejad A, Valilou SF, Soltani A, et al. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol 2019;42:591-608. https://doi.org/10.1007/s13402-019-00453-z
  • 21. Atay Ö, Asilsoy S. SARS-Cov-2 Immunopathogenesis and possible AntiInflammatory treatment options. Selcuk Med J 2020;36:264-273. http://doi.org/10.30733/std.2020.01469
  • 22. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 2021;22:69-95. https://doi.org/10.3390/ijms22136995
  • 23. Özdemir S. Combining Radiotherapy and Immune Checkpoint Inhibitors. Mev Med Sci 2021;1:95-100.
  • 24. Uçar Tavlı Y, Esen HH, Mevlütoğlu I. Immunohistochemical Evaluation of CD4, CD8 and Matrix Metalloproteinase-9 (MMP-9) Expressions in Biopsies Before and After Treatment of Mycosis Fungoides Patients. Selcuk Med J 2017;33:29-33.
  • 25. Shabo I, Olsson H, Elkarim R, Xiao Feng S, Joar S. Macrophage infiltration in tumor stroma is related to tumor cell expression of CD163 in colorectal cancer. Cancer Microenviron 2014;7:61-69. https://doi.org/10.1007/s12307-014-0145-7
  • 26. Shi X, Yang J, Deng S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022;15:127-135. https://doi.org/10.1186/s13045-022-01349-6
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fatma Seçer Çelik 0000-0001-5619-8958

Canan Eroğlu Güneş 0000-0002-3796-575X

Erken Görünüm Tarihi 3 Nisan 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Şubat 2024
Kabul Tarihi 1 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 4

Kaynak Göster

APA Seçer Çelik, F., & Eroğlu Güneş, C. (2024). RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü. Pamukkale Medical Journal, 17(4), 2-2. https://doi.org/10.31362/patd.1433389
AMA Seçer Çelik F, Eroğlu Güneş C. RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü. Pam Tıp Derg. Nisan 2024;17(4):2-2. doi:10.31362/patd.1433389
Chicago Seçer Çelik, Fatma, ve Canan Eroğlu Güneş. “RAW264.7 hücrelerinde Odoroside A’nın immün Transformasyondaki Rolü”. Pamukkale Medical Journal 17, sy. 4 (Nisan 2024): 2-2. https://doi.org/10.31362/patd.1433389.
EndNote Seçer Çelik F, Eroğlu Güneş C (01 Nisan 2024) RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü. Pamukkale Medical Journal 17 4 2–2.
IEEE F. Seçer Çelik ve C. Eroğlu Güneş, “RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü”, Pam Tıp Derg, c. 17, sy. 4, ss. 2–2, 2024, doi: 10.31362/patd.1433389.
ISNAD Seçer Çelik, Fatma - Eroğlu Güneş, Canan. “RAW264.7 hücrelerinde Odoroside A’nın immün Transformasyondaki Rolü”. Pamukkale Medical Journal 17/4 (Nisan 2024), 2-2. https://doi.org/10.31362/patd.1433389.
JAMA Seçer Çelik F, Eroğlu Güneş C. RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü. Pam Tıp Derg. 2024;17:2–2.
MLA Seçer Çelik, Fatma ve Canan Eroğlu Güneş. “RAW264.7 hücrelerinde Odoroside A’nın immün Transformasyondaki Rolü”. Pamukkale Medical Journal, c. 17, sy. 4, 2024, ss. 2-2, doi:10.31362/patd.1433389.
Vancouver Seçer Çelik F, Eroğlu Güneş C. RAW264.7 hücrelerinde Odoroside A’nın immün transformasyondaki rolü. Pam Tıp Derg. 2024;17(4):2-.
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır