Araştırma Makalesi
BibTex RIS Kaynak Göster

Havacılık Sektöründe Büyüme Stratejilerinin Önceliklendirilmesi: Fuzzy DEMATEL Yaklaşımı

Yıl 2025, Cilt: 9 Sayı: 3, 921 - 939, 19.09.2025
https://doi.org/10.30586/pek.1608924

Öz

Havacılık sektöründe büyüme stratejilerinin önceliklendirilmesi, sektörün değişen düzenleyici ortamlar, operasyonel zorluklar ve COVID-19 pandemisinin uzun vadeli etkileriyle başa çıkarken kritik bir öneme sahiptir. Bu çalışma, temel stratejik girişimler arasındaki karşılıklı bağımlılıkları sistematik olarak analiz etmek için Bulanık DEMATEL (Fuzzy DEMATEL) yöntemini kullanarak Sürdürülebilir Havacılık Uygulamaları (SAP) ve Karbon Emisyonlarının Azaltılması (CER) stratejilerini büyümenin en önemli itici güçleri olarak belirlemiştir. Çalışma, Türkiye'deki uzman değerlendirmelerine dayanmaktadır. Havacılık sürdürülebilirliği, havalimanı planlaması, düzenleyici politika, filo operasyonları ve stratejik karar alma alanlarında uzmanlaşmış dokuz uzman seçilmiştir. Uzmanların deneyim seviyeleri 10 ila 30 yıl arasında değişmekte olup, büyüme stratejilerinin kapsamlı ve bilinçli bir şekilde değerlendirilmesini sağlamaktadır. Uzmanlar, çeşitli stratejik faktörlerin etkisini değerlendirmek için çift yönlü karşılaştırmalar gerçekleştirmiş ve Bulanık DEMATEL yöntemi kullanılarak nedensellik ilişkileri analiz edilmiştir. Bulgular, SAP’nin en yüksek önem ve net nedensellik puanlarına sahip olduğunu ve Enerji Tüketiminin Optimizasyonu (ECO), COVID Sonrası İyileşme Stratejileri (PCRS) ve Gelecek Havalimanı Planlaması (FAP) için temel bir kolaylaştırıcı rol oynadığını göstermektedir. İkinci en etkili strateji olarak belirlenen CER, SAP ve ECO üzerinde önemli bir etkiye sahiptir, düzenleyici uyumluluğun sağlanması ve operasyonel verimliliğin artırılmasında kritik bir rol üstlenmektedir. Çalışma, SAP ve CER’ye öncelik verilmesinin, havacılık yöneticilerinin stratejilerini küresel sürdürülebilirlik hedefleriyle uyumlu hale getirmelerine, kaynak tahsisini optimize etmelerine ve sektörün dayanıklılığını artırmalarına olanak sağladığını ortaya koymaktadır. Ayrıca, PCRS ve FAP gibi bağımlı stratejiler, iyileşme ve uzun vadeli altyapı geliştirme açısından kritik bir rol oynamaktadır, ancak etkinlikleri büyük ölçüde SAP ve CER’in başarılı uygulanmasına bağlıdır. Çalışma Türkiye'deki uzman görüşlerine dayansa da kullanılan metodoloji uluslararası havacılık yönetimi için uygulanabilir, tekrarlanabilir bir karar alma çerçevesi sunmaktadır.

Kaynakça

  • Abdullah, F. M., Al-Ahmari, A. M., & Anwar, S. (2022). Exploring key decisive factors in manufacturing strategies in the adoption of industry 4.0 by using the fuzzy DEMATEL method. Processes, 10(5), 987. https://doi.org/10.3390/pr10050987
  • Addepalli, S., Pagalday, G., Salonitis, K., & Roy, R. (2018). Socio-economic and demographic factors that contribute to the growth of the civil aviation industry. Procedia Manufacturing, 1(19), 2-9. https://doi.org/10.1016/j.promfg.2018.01.002
  • Afonso, F., Sohst, M., Diogo, C. M., Rodrigues, S. S., Ferreira, A., Ribeiro, I., ... & Suleman, A. (2023). Strategies towards a more sustainable aviation: A systematic review. Progress in Aerospace Sciences, 1(137), 100878. https://doi.org/10.1016/j.paerosci.2022.100878
  • Ansell, P. J. (2023). Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Progress in Aerospace Sciences, 1(141), 100919. https://doi.org/10.1016/j.paerosci.2023.100919
  • Cankaya, B., Topuz, K., Delen, D., & Glassman, A. (2023). Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents. Omega, 1(120), 102906. https://doi.org/10.1016/j.omega.2023.102906
  • Cristea, A. D. (2023). The role of aviation networks for urban development. Journal of Regional Science, 63(4), 947-980. https://doi.org/10.1111/jors.12645
  • Cui, Q., Hu, Y. X., & Yu, L. T. (2022). Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines. Energy, 1(245), 123272. https://doi.org/10.1016/j.energy.2022.123272
  • Dožić, S. (2019). Multi-criteria decision-making methods: Application in the aviation industry. Journal of Air Transport Management, 1(79), 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
  • Garcia, A. B., Babiceanu, R. F., & Seker, R. (2021, April). Artificial intelligence and machine learning approaches for aviation cybersecurity: An overview. In 2021 integrated communications navigation and surveillance conference (ICNS)(pp. 1-8). IEEE. https://doi.org/10.1109/ICNS52807.2021.9441594
  • Gössling, S., & Humpe, A. (2023). Net-zero aviation: Time for a new business model?. Journal of Air Transport Management, 1(107), 102353. https://doi.org/10.1016/j.jairtraman.2022.102353
  • Heyes, G., Urquhart, C., Hooper, P., & Thomas, C. (2023). Comprehensive Strategic Analysis for Sustainability: An Aviation Industry Case Study. Sustainability, 15(11), 8806. https://doi.org/10.3390/su15118806
  • Kumar, R., Rehman, U. U., & Phanden, R. K. (2024). Strengthening the social performance of Indian SMEs in the digital era: a fuzzy DEMATEL analysis of enablers. The TQM Journal, 36(1), 139-160. https://doi.org/10.1108/TQM-06-2022-0193
  • Liangrokapart, J., & Sittiwatethanasiri, T. (2023). Strategic direction for aviation maintenance, repair, and overhaul hub after crisis recovery. Asia Pacific Management Review, 28(2), 81-89. https://doi.org/10.1016/j.apmrv.2022.03.003
  • Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 1(214), 107812. https://doi.org/10.1016/j.ress.2021.107812
  • Merlo, T. R. (2024). Emerging Role of Artificial Intelligence (AI) in Aviation: Using Predictive Maintenance for Operational Efficiency. Ayse Asli Yilmaz (Eds,). In Harnessing Digital Innovation for Air Transportation (pp. 25-41). IGI Global.
  • Michelmann, J., Schmalz, U., Becker, A., Stroh, F., Behnke, S., & Hornung, M. (2023). Influence of COVID-19 on air travel-A scenario study toward future trusted aviation. Journal of air transport management, 1(106), 102325. https://doi.org/10.1016/j.jairtraman.2022.102325
  • Mızrak, F. (2023). Analyzing Criteria Affecting Decision-Making Processes of Human Resource Management in the Aviation Sector-A Fuzzy Logic Approach. Journal of Aviation, 7(3), 376-387. https://doi.org/10.30518/jav.1331688
  • Montsiemang, T., & Dube, K. (2023). Post-COVID-19 Aviation Industry Recovery, Resilience, Challenges and Opportunities: A Focus on Western Cape Province, South Africa. Kaitano Dube, Ishmael Mensah, Lazarus Chapungu (Eds,). COVID-19, Tourist Destinations and Prospects for Recovery: Volume Two: An African Perspective, (p243-259). Springer Nature. https://doi.org/10.1007/978-3-031-24655-5_13
  • Orikpete, O. F., Gungura, N. M., Ehimare, E., & Ewim, D. R. E. (2023). A critical review of energy consumption and optimization strategies in the Nigerian aviation sector: challenges and prospects. Bulletin of the National Research Centre, 47(1), 170. https://doi.org/10.1186/s42269-023-01146-2
  • Priyanka, R., Ravindran, K., Sankaranarayanan, B., & Ali, S. M. (2023). A fuzzy DEMATEL decision modeling framework for identifying key human resources challenges in start-up companies: Implications for sustainable development. Decision Analytics Journal, 1(6), 100192. https://doi.org/10.1016/j.dajour.2023.100192
  • Quezada, L. E., López-Ospina, H. A., Valenzuela, J. E., Oddershede, A. M., & Palominos, P. I. (2024). A method for formulating a manufacturing strategy using fuzzy DEMATEL and fuzzy VIKOR. Engineering Management Journal, 36(2), 147-163. https://doi.org/10.1080/10429247.2023.2224707
  • Raval, S. J., Kant, R., & Shankar, R. (2021). Analyzing the critical success factors influencing Lean Six Sigma implementation: fuzzy DEMATEL approach. Journal of Modelling in Management, 16(2), 728-764. https://doi.org/10.1108/JM2-07-2019-0155
  • Saroha, M., Garg, D., & Luthra, S. (2022). Identification and analysis of circular supply chain management practices for sustainability: a fuzzy-DEMATEL approach. International Journal of Productivity and Performance Management, 71(3), 722-747. https://doi.org/10.1108/IJPPM-11-2020-0613
  • Serrano, F., & Kazda, A. (2020). The future of airports post COVID-19. Journal of Air Transport Management, 1(89), 101900. https://doi.org/10.1016/j.jairtraman.2020.101900
  • Singh, J., Rana, S., Abdul Hamid, A. B., & Gupta, P. (2023). Who should hold the baton of aviation sustainability?. Social Responsibility Journal, 19(7), 1161-1177. https://doi.org/10.1108/SRJ-05-2021-0181
  • Sun, X., Wandelt, S., & Zhang, A. (2023). A data-driven analysis of the aviation recovery from the COVID-19 pandemic. Journal of Air Transport Management, 1(109), 102401. https://doi.org/10.1016/j.jairtraman.2023.102401
  • Zhu, C., Wu, J., Liu, M., Wang, L., Li, D., & Kouvelas, A. (2021). Recovery preparedness of global air transport influenced by COVID-19 pandemic: Policy intervention analysis. Transport Policy, 1(106), 54-63. https://doi.org/10.1016/j.tranpol.2021.03.009

Prioritizing Growth Strategies in Aviation Sector: a Fuzzy DEMATEL Approach

Yıl 2025, Cilt: 9 Sayı: 3, 921 - 939, 19.09.2025
https://doi.org/10.30586/pek.1608924

Öz

The prioritization of growth strategies in the aviation sector is crucial as the industry navigates evolving regulatory landscapes, operational challenges, and the long-term repercussions of the COVID-19 pandemic. This study employs the Fuzzy DEMATEL method to analyze the interdependencies among key strategic initiatives systematically, identifying Sustainable Aviation Practices (SAP) and Carbon Emission Reduction (CER) as critical drivers of growth. The study is based on expert evaluations from Turkey, with nine experts selected based on their extensive professional experience in aviation sustainability, airport planning, regulatory policy, fleet operations, and strategic decision-making. Their experience levels range from 10 to 30 years, ensuring a comprehensive and informed assessment of growth strategies. Experts conducted pairwise comparisons to evaluate the influence of various strategic factors, with results analyzed using the Fuzzy DEMATEL approach to determine causal relationships among key strategies. Findings indicate that SAP, with the highest prominence and net causality scores, serves as a fundamental enabler for Energy Consumption Optimization (ECO), Post-COVID Recovery Strategies (PCRS), and Future Airport Planning (FAP). CER, ranking second in influence, significantly impacts SAP and ECO, reinforcing its role in regulatory compliance and operational efficiency. The study highlights that prioritizing SAP and CER enables aviation managers to align strategies with global sustainability objectives, optimize resource allocation, and enhance industry resilience. Furthermore, dependent strategies such as PCRS and FAP emerge as essential for recovery and long-term infrastructure development, yet their effectiveness is contingent on the successful implementation of SAP and CER. While the study is based on expert evaluations in Turkey, the methodology provides a replicable and applicable decision-making framework for international aviation management.

Kaynakça

  • Abdullah, F. M., Al-Ahmari, A. M., & Anwar, S. (2022). Exploring key decisive factors in manufacturing strategies in the adoption of industry 4.0 by using the fuzzy DEMATEL method. Processes, 10(5), 987. https://doi.org/10.3390/pr10050987
  • Addepalli, S., Pagalday, G., Salonitis, K., & Roy, R. (2018). Socio-economic and demographic factors that contribute to the growth of the civil aviation industry. Procedia Manufacturing, 1(19), 2-9. https://doi.org/10.1016/j.promfg.2018.01.002
  • Afonso, F., Sohst, M., Diogo, C. M., Rodrigues, S. S., Ferreira, A., Ribeiro, I., ... & Suleman, A. (2023). Strategies towards a more sustainable aviation: A systematic review. Progress in Aerospace Sciences, 1(137), 100878. https://doi.org/10.1016/j.paerosci.2022.100878
  • Ansell, P. J. (2023). Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Progress in Aerospace Sciences, 1(141), 100919. https://doi.org/10.1016/j.paerosci.2023.100919
  • Cankaya, B., Topuz, K., Delen, D., & Glassman, A. (2023). Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents. Omega, 1(120), 102906. https://doi.org/10.1016/j.omega.2023.102906
  • Cristea, A. D. (2023). The role of aviation networks for urban development. Journal of Regional Science, 63(4), 947-980. https://doi.org/10.1111/jors.12645
  • Cui, Q., Hu, Y. X., & Yu, L. T. (2022). Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines. Energy, 1(245), 123272. https://doi.org/10.1016/j.energy.2022.123272
  • Dožić, S. (2019). Multi-criteria decision-making methods: Application in the aviation industry. Journal of Air Transport Management, 1(79), 101683. https://doi.org/10.1016/j.jairtraman.2019.101683
  • Garcia, A. B., Babiceanu, R. F., & Seker, R. (2021, April). Artificial intelligence and machine learning approaches for aviation cybersecurity: An overview. In 2021 integrated communications navigation and surveillance conference (ICNS)(pp. 1-8). IEEE. https://doi.org/10.1109/ICNS52807.2021.9441594
  • Gössling, S., & Humpe, A. (2023). Net-zero aviation: Time for a new business model?. Journal of Air Transport Management, 1(107), 102353. https://doi.org/10.1016/j.jairtraman.2022.102353
  • Heyes, G., Urquhart, C., Hooper, P., & Thomas, C. (2023). Comprehensive Strategic Analysis for Sustainability: An Aviation Industry Case Study. Sustainability, 15(11), 8806. https://doi.org/10.3390/su15118806
  • Kumar, R., Rehman, U. U., & Phanden, R. K. (2024). Strengthening the social performance of Indian SMEs in the digital era: a fuzzy DEMATEL analysis of enablers. The TQM Journal, 36(1), 139-160. https://doi.org/10.1108/TQM-06-2022-0193
  • Liangrokapart, J., & Sittiwatethanasiri, T. (2023). Strategic direction for aviation maintenance, repair, and overhaul hub after crisis recovery. Asia Pacific Management Review, 28(2), 81-89. https://doi.org/10.1016/j.apmrv.2022.03.003
  • Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 1(214), 107812. https://doi.org/10.1016/j.ress.2021.107812
  • Merlo, T. R. (2024). Emerging Role of Artificial Intelligence (AI) in Aviation: Using Predictive Maintenance for Operational Efficiency. Ayse Asli Yilmaz (Eds,). In Harnessing Digital Innovation for Air Transportation (pp. 25-41). IGI Global.
  • Michelmann, J., Schmalz, U., Becker, A., Stroh, F., Behnke, S., & Hornung, M. (2023). Influence of COVID-19 on air travel-A scenario study toward future trusted aviation. Journal of air transport management, 1(106), 102325. https://doi.org/10.1016/j.jairtraman.2022.102325
  • Mızrak, F. (2023). Analyzing Criteria Affecting Decision-Making Processes of Human Resource Management in the Aviation Sector-A Fuzzy Logic Approach. Journal of Aviation, 7(3), 376-387. https://doi.org/10.30518/jav.1331688
  • Montsiemang, T., & Dube, K. (2023). Post-COVID-19 Aviation Industry Recovery, Resilience, Challenges and Opportunities: A Focus on Western Cape Province, South Africa. Kaitano Dube, Ishmael Mensah, Lazarus Chapungu (Eds,). COVID-19, Tourist Destinations and Prospects for Recovery: Volume Two: An African Perspective, (p243-259). Springer Nature. https://doi.org/10.1007/978-3-031-24655-5_13
  • Orikpete, O. F., Gungura, N. M., Ehimare, E., & Ewim, D. R. E. (2023). A critical review of energy consumption and optimization strategies in the Nigerian aviation sector: challenges and prospects. Bulletin of the National Research Centre, 47(1), 170. https://doi.org/10.1186/s42269-023-01146-2
  • Priyanka, R., Ravindran, K., Sankaranarayanan, B., & Ali, S. M. (2023). A fuzzy DEMATEL decision modeling framework for identifying key human resources challenges in start-up companies: Implications for sustainable development. Decision Analytics Journal, 1(6), 100192. https://doi.org/10.1016/j.dajour.2023.100192
  • Quezada, L. E., López-Ospina, H. A., Valenzuela, J. E., Oddershede, A. M., & Palominos, P. I. (2024). A method for formulating a manufacturing strategy using fuzzy DEMATEL and fuzzy VIKOR. Engineering Management Journal, 36(2), 147-163. https://doi.org/10.1080/10429247.2023.2224707
  • Raval, S. J., Kant, R., & Shankar, R. (2021). Analyzing the critical success factors influencing Lean Six Sigma implementation: fuzzy DEMATEL approach. Journal of Modelling in Management, 16(2), 728-764. https://doi.org/10.1108/JM2-07-2019-0155
  • Saroha, M., Garg, D., & Luthra, S. (2022). Identification and analysis of circular supply chain management practices for sustainability: a fuzzy-DEMATEL approach. International Journal of Productivity and Performance Management, 71(3), 722-747. https://doi.org/10.1108/IJPPM-11-2020-0613
  • Serrano, F., & Kazda, A. (2020). The future of airports post COVID-19. Journal of Air Transport Management, 1(89), 101900. https://doi.org/10.1016/j.jairtraman.2020.101900
  • Singh, J., Rana, S., Abdul Hamid, A. B., & Gupta, P. (2023). Who should hold the baton of aviation sustainability?. Social Responsibility Journal, 19(7), 1161-1177. https://doi.org/10.1108/SRJ-05-2021-0181
  • Sun, X., Wandelt, S., & Zhang, A. (2023). A data-driven analysis of the aviation recovery from the COVID-19 pandemic. Journal of Air Transport Management, 1(109), 102401. https://doi.org/10.1016/j.jairtraman.2023.102401
  • Zhu, C., Wu, J., Liu, M., Wang, L., Li, D., & Kouvelas, A. (2021). Recovery preparedness of global air transport influenced by COVID-19 pandemic: Policy intervention analysis. Transport Policy, 1(106), 54-63. https://doi.org/10.1016/j.tranpol.2021.03.009
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm Araştırma Makalesi
Yazarlar

Kağan Cenk Mızrak 0000-0003-4447-2141

Gönderilme Tarihi 28 Aralık 2024
Kabul Tarihi 29 Mart 2025
Erken Görünüm Tarihi 13 Eylül 2025
Yayımlanma Tarihi 19 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 3

Kaynak Göster

APA Mızrak, K. C. (2025). Prioritizing Growth Strategies in Aviation Sector: a Fuzzy DEMATEL Approach. Politik Ekonomik Kuram, 9(3), 921-939. https://doi.org/10.30586/pek.1608924

Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.