Araştırma Makalesi
BibTex RIS Kaynak Göster

Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı

Yıl 2023, , 1485 - 1493, 01.12.2023
https://doi.org/10.2339/politeknik.1130886

Öz

Bu çalışmada silika içeren doğal pirinç kabuğu atıklarından karbotermal indirgeme yöntemi ile silisyum karbür (SiC) parçacıklar sentezlenmiş ve sentez SiC parçacıklar ile geopolimer (GP) matris takviye edilerek GP kompozitler üretilip mikroyapısal ve mekanik özellikleri karakterize edilmiştir. Pirinç kabuğu 700 °C’de 2 saat süreyle kalsine edilmiş ve pirinç kabuğu külü elde edilmiştir. Kül ile karbon karası C/SiO2 molar oranı 4 olacak şekilde homojenize edilmiştir. Karbotermal indirgeme işlemleri atmosfer kontrollü tüp fırında gerçekleştirilmiştir. Sonrasında, sentez SiC parçacıklar kullanılarak GP kompozitler üretilmiştir. Potasyum silikat çözeltisi ve metakaolinin mekanik karıştırıcıda karıştırılması ile elde edilen bulamaca sentez SiC parçacıklar ağırlıkça %5-15 oranında ilave edilerek karışım homojenize edilmiştir. Mekanik testler için ASTM C78/C78M-18 standardına göre eğme, ASTM C1424-10 standardına göre basma numuneleri hazırlanmış ve testleri gerçekleştirilmiştir. Sonuç olarak artan takviye miktarına bağlı eğme dayanımı artarken Weibull dağılımı geniş bir güvenirlik aralığı sergilemekte, basma dayanımı ise tersi durum gösterirken daha dar bir güvenirlik aralığı ortaya koymaktadır. Her iki durum değerlendirildiğinde %5-10 sentez SiC takviyesi çalışma penceresi olarak görülmektedir.

Destekleyen Kurum

Hitit Üniversitesi

Proje Numarası

MUH19001.19.008.

Teşekkür

Bu çalışma Hitit Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. Proje No: MUH19001.19.008.

Kaynakça

  • 1. Kriven, W. M., “Inorganic polysialates or geopolymers”, American Ceramic Society Bulletin, 89(49): 31-34, (2010)
  • 2. Teixerio Pinto A., Vieria, E., “Repairing of damaged stone in monuments and stone buildings”, Proceedings of World Congress Geopolymer, Advanced in Sicence and Technology, 69:164-173, France, (2005)
  • 3. Reed, M., Lokuge, W., Karunasena, W., “Fibre-reinforced geopolymer concrete with ambient curing for in situ applications”, J. Mater Sci, 49: 4297-4304, (2014)
  • 4. Gubb, T., Baranova, I., Allan, S.M., Fall, M.L., Shulman, H.S. and Kriven, W.M., “Microwave Enhanced Drying and Firing of Ceramics”, Cer. Eng. Sci. Proc., 32(10): 35-44, (2011)
  • 5. Duxson, P., Fernandez-Jimenez,A., Provis, J.L., Lukey, A., Palomo, G.C., van Deventer, J.S.J., “Geopolymer technology: the current state of the art”, J. Mater. Sci., 42: 2917-2933, (2007)
  • 6. Xu, H. and Van Deventer, J.S.L., “The Geopolymerisation of alumina-silicate minerals”, International Journal of Minerogical Progress”, 59(3): 247-266, (2000)
  • 7. Palomo, A., Glasser, F.P., “Chemically-bonded cementitious materials based on metakaolin”, British Ceramic Transaction and Journal, 91(4):107-112, (1992)
  • 8. Van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey ,G. C., “The effect of composition and temperature on the properties of fly-ash and kaolinite based geopolymers”, Chem. Eng. J., 89:63-73, (2002)
  • 9. Benal, S.A., Provis, J.L., Rose, V., Mejia de Gutierrez, R., “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends”, Cement Concrete Comp., 33:46-54, (2011)
  • 10. Detphan, S. and Chindaprasirta, P., “Preperation of fly ash and rice husk ash geopolymers”, Int. J. Miner. Mat. Mater., 33:46-54, (2011)
  • 11. Kriven, W. M., Bell, J. L. and Gordon, M., “Geopolymer refractories for the glass manufacturing industry”, Cer. Eng. and Sci. Proc., 25(1):57-79, (2004)
  • 12. Swaadle T.W., “Silicate complexes of aluminum (III) in aqueous systems” Coord. Chem. Rev., 219-221, 665-686, (2001)
  • 13. Aiello, R., Crea, F., Nastro, A., Subotic, B., Testa, F., “Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors, Chemical and Thermal Properties”, Zeolites, 767-775, (1991)
  • 14. Duxson, P.S., Mallicoat, W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S.J., “Effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 292:8-20, (2007)
  • 15. He, P., Jia, D., “Interface evolution of the Cf/Leucite composites derived from Cf/geopolymer composites”, Ceramics International, 39:1203-1208, (2013)
  • 16. Rill, E., Lowry, D. and Kriven, W.M., “Properties of basalt fiber reinforced geopolymer composites”, in Strategic Materials and Computational Design, edited by Waltraud M. Kriven, Yanchun Zhou and Miladin Radovic. Cer. Eng. Sci. Proc. 31(10):57-69, (2010)
  • 17. Musil, S.S., Kutyla, G.P. and Kriven, W.M., “The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer”, Cer. Eng. and Sci. Proc., 33(10):31-42, (2012)
  • 18. Lowry, D.R. and Kriven, W.M., “Effect of high tensile strength polypropylene chopped fiber reinforcements on the mechanical properties of sodium based geopolymer systems”, in Strategic Materials and Computational Design, edited by Waltraud M. Kriven, Yanchun Zhou and Miladin Radovic. Cer. Eng. Sci. Proc., 31(10):47-56, (2010)
  • 19. Kriven,W. M., Bell, J. L. and Gordon, M., “Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites”, Ceramic Transactions, 153: 227-250, (2003)
  • 20. He, P., Jia, D. Lin, T. Wang, M. Zhou, Y., “Effect of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites”, Ceramics International, 36:1447-1453, (2010)
  • 21. Ichikawa H. and Ishikawa, T., “Silicon carbide fibers (organometallic pyrolysis)”, Comprehensive composite materials, 1:107-145, (2000)
  • 22. Shen, X-N., Zheng, Y., Zhan, Y-Y., Cai, G-H. Xiao, Y-H., “Synthesis of porous SiC and application in the CO oxidation reaction”, Mater. Lett., 61:4766-4768, (2007)
  • 23. Yang, Y., Lin, Z-M. Li, J-T., “Synthesis of SiC by silicon and carbon combustion in air”, J. Euro. Ceram. Soc., 29:175-180, (2009)
  • 24. Yuan, J., He, P., Jia, D., Yan, S., Cai, D., Xu, L., Yang, Z., Duan, X., Wang, S., Zhou Y., “SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber”, Ceramics International, 42(4):5345-5352, (2016)
  • 25. He, P., Jia,D., Zheng, B., Yan, S., Yuan, J., Yang, Z., Duan, X., Xu, J., Wang, P., Zhou Y., “SiC fiber reinforced geopolymer composites, part 2: Continuous SiC fiber”, Ceramics International, 42(10):12239-12245, (2016)
  • 26. Bai, C., Zheng, J., Gian A. R., Colombo P., “Low-temperature fabrication of SiC/geopolymer cellular composites”, Composites Part B: Engineering, 137:23-30, (2018)
  • 27. Medri, V., Ruffini A., “Alkali-bonded SiC based foams”, Journal of the European Ceramic Society, 32(9):1907-1913, (2012)
  • 28. Medri, V., Ruffini A., “The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams”, Ceramics International, 38:3351-3359, (2012)
  • 29. Irfanita, R., Afifah. K. N., “Characteristics of commercial SiC and synthetic SiC as an aggregate in geopolymer composites” IOP Conf. Series: Materials Science and Engineering, 180:1-7, (2017)
  • 30. Liu, X., Fang, M., Liu, Y., Qian, Z., Ding, H., Huang Z., “Fe–Sialon–Ti (C,N) composites from carbothermal reduction–nitridation of low-priced minerals and their application in tap hole clay refractories”, Ceramic International, 40(7):9709-9714, (2014)
  • 31. Yang, G., Yin, Li., Fang, X., Fang, M., Liu, Y., Huang, Z., Liu, B., “Fabrication and liquid–solid, two-phase erosion wear behavior of β-sialon ceramic from pyrophyllite by carbothermal reduction and nitridation”, Ceramic International, 40:10737-10741, (2014)
  • 32. Neto, E.F., Kiminami, R.H.G.A., “Synthesis of silicon nitride by conventional and microwave carbothermal reduction and nitridation of rice hulls”, Advanced Powder Technology, 25:654-658, (2014)
  • 33. Lin, Y.L., Tsang, C.P., “The effects of starting precursors on the carbothermal synthesis of SiC powders” Ceramic International, 29(1):69-75, (2003)
  • 34. Devecerski, A,, Posarac, M., Egelja, A., Radosavljevic-Mihajlovic, A., Boskovic, S., Logar, M., Matovic, B.J., “Fabrication of SiC by carbothermal-reduction reactions of mountain leather asbestos”, Alloys Comp., 464: 270-276, (2008)
  • 35. Matovic, B., Sponjic, A., Devecerski, A., Miljkovic, M., “Fabrication of SiC by carbothermal-reduction reactions of diatomaceous earth”, J. Mater. Sci., 42:5448-5451, (2007)
  • 36. Bagci, C. and Arik, H., “Synthesis of SiC powders by carbothermal reduction of enriched brown sepiolite with carbon black,” J. Materials Engineering and Performance, 22:958-963, (2013)
  • 37. Bagci, C., “Microstructural characterisation of β-SiC powders synthesised by carbothermally reduction of Turkish diatomite”, Scientific Research and Essay, 6(3):542-51, (2011)
  • 38. Bagci, C., Kutyla, G. P., Seymour K. C., and Kriven, W. M., “Synthesis and characterization of silicon carbide powders converted from metakaolin-based geopolymers”, J. Amer. Ceram. Soc., 99(7):2521-2530, (2016)
  • 39. Bagci, C., Kutyla, G. P. and Kriven, W. M., “In situ carbothermal reduction / nitridation of geopolymer composites containing carbon nanoparticles,” Cer. Eng. and Sci. Proc., 35(10):15-28, (2014)
  • 40. Heo, U. H., Sankar, K., Kriven, W. M., Musil, S. S., “Rice husk ash as a silica source in geopolymer formulation”, Cer. Sci. Eng. Proc., 38(10):87-102, (2015)
  • 41. Jia, D., Li, Y., He, ., Fu, S., Duan, X., Sun, Z., Cai, D., Li, D., Yang, Z., Zhou Y., “In-situ formation of bulk and porous h-AlN/SiC-based ceramics from geopolymer technique”, Ceramic International, 45(18):24727-24733, (2019)
  • 42. Kriven, W.M., Kutyla, G.P., “Properties and characterization of alumina platelet reinforced geopolymer composites”, Journal of the American Ceramic Society, 103: 5178-5185, (2020)
  • 43. Medri, V., Ruffini A., “Alkali-bonded SiC based foams”, Journal of the European Ceramic Society, 32(9): 1907-1913, (2012)
  • 44. Medri, V., Ruffini A., “The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams”, Ceramics International, 38:3351-3359, (2012)
  • 45. Irfanita, R., Afifah. K. N., “Characteristics of commercial SiC and synthetic SiC as an aggregate in geopolymer composites”, IOP Conf. Series: Materials Science and Engineering, 180:1-7, Indonesia, (2017)
  • 46. Bagci, C., Kutyla, G.P, Kriven, W. M, “Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative”, Ceramics International, 43(17):14784-14790, (2017)
  • 47. Di Febo, R., Casas, L., Del Campo, Á. A., Rius, J., Vallcorba, O., Melgarejo, J. C., Capelli, C., “Recognizing and understanding silica-polymorph microcrystals in ceramic glazes”, Journal of the European Ceramic Society, 40(15):6188-6199, (2020)
  • 48. Sankar, K., Sá Ribeiro, R. A., Sá Ribeiro, M. G., & Kriven, W. M., “Potassium‐based geopolymer composites reinforced with chopped bamboo fibers”, Journal of the American Ceramic Society, 100(1):49-55, (2017)

The Use of Rice Husk Ash-Based SiC Particles as Reinforcement in Geopolymer Composites

Yıl 2023, , 1485 - 1493, 01.12.2023
https://doi.org/10.2339/politeknik.1130886

Öz

In this study, silicon carbide (SiC) particles were synthesized from natural rice husk wastes containing silica by carbothermal reduction method, and GP composites were produced by reinforcing the synthesis SiC particles with geopolymer (GP) matrix and their microstructural and mechanical properties were characterized. Rice husk was calcined at 700 °C for 2 hours and rice husk ash was obtained. It was homogenized for 10 minutes with a molar ratio of carbon black at C/SiO2 of 4. Carbothermal reduction processes were carried out in an atmosphere-controlled tube furnace. After that GP composites were produced using synthesis SiC particles. Potassium silicate solution and metakaolin were mixed in a mechanical mixer. Synthesis SiC were added to the slurry prepared in this way at a rate of 5-15% by weight, and the mixture was homogenized. For mechanical tests, bending specimens according to ASTM C78/C78M-18 standard and compression specimens according to ASTM C1424-10 standard prepared and three-point bending and compression tests were performed. As a result, as the bending strength increases due to the increasing amount of reinforcement, the Weibull distribution exhibits a wide confidence interval, while the compressive strength shows a narrower confidence interval, while the opposite situation is observed. When both situations are assessed, 5-10% synthesis SiC supplementation is seen as the working window.

Proje Numarası

MUH19001.19.008.

Kaynakça

  • 1. Kriven, W. M., “Inorganic polysialates or geopolymers”, American Ceramic Society Bulletin, 89(49): 31-34, (2010)
  • 2. Teixerio Pinto A., Vieria, E., “Repairing of damaged stone in monuments and stone buildings”, Proceedings of World Congress Geopolymer, Advanced in Sicence and Technology, 69:164-173, France, (2005)
  • 3. Reed, M., Lokuge, W., Karunasena, W., “Fibre-reinforced geopolymer concrete with ambient curing for in situ applications”, J. Mater Sci, 49: 4297-4304, (2014)
  • 4. Gubb, T., Baranova, I., Allan, S.M., Fall, M.L., Shulman, H.S. and Kriven, W.M., “Microwave Enhanced Drying and Firing of Ceramics”, Cer. Eng. Sci. Proc., 32(10): 35-44, (2011)
  • 5. Duxson, P., Fernandez-Jimenez,A., Provis, J.L., Lukey, A., Palomo, G.C., van Deventer, J.S.J., “Geopolymer technology: the current state of the art”, J. Mater. Sci., 42: 2917-2933, (2007)
  • 6. Xu, H. and Van Deventer, J.S.L., “The Geopolymerisation of alumina-silicate minerals”, International Journal of Minerogical Progress”, 59(3): 247-266, (2000)
  • 7. Palomo, A., Glasser, F.P., “Chemically-bonded cementitious materials based on metakaolin”, British Ceramic Transaction and Journal, 91(4):107-112, (1992)
  • 8. Van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey ,G. C., “The effect of composition and temperature on the properties of fly-ash and kaolinite based geopolymers”, Chem. Eng. J., 89:63-73, (2002)
  • 9. Benal, S.A., Provis, J.L., Rose, V., Mejia de Gutierrez, R., “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends”, Cement Concrete Comp., 33:46-54, (2011)
  • 10. Detphan, S. and Chindaprasirta, P., “Preperation of fly ash and rice husk ash geopolymers”, Int. J. Miner. Mat. Mater., 33:46-54, (2011)
  • 11. Kriven, W. M., Bell, J. L. and Gordon, M., “Geopolymer refractories for the glass manufacturing industry”, Cer. Eng. and Sci. Proc., 25(1):57-79, (2004)
  • 12. Swaadle T.W., “Silicate complexes of aluminum (III) in aqueous systems” Coord. Chem. Rev., 219-221, 665-686, (2001)
  • 13. Aiello, R., Crea, F., Nastro, A., Subotic, B., Testa, F., “Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors, Chemical and Thermal Properties”, Zeolites, 767-775, (1991)
  • 14. Duxson, P.S., Mallicoat, W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S.J., “Effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 292:8-20, (2007)
  • 15. He, P., Jia, D., “Interface evolution of the Cf/Leucite composites derived from Cf/geopolymer composites”, Ceramics International, 39:1203-1208, (2013)
  • 16. Rill, E., Lowry, D. and Kriven, W.M., “Properties of basalt fiber reinforced geopolymer composites”, in Strategic Materials and Computational Design, edited by Waltraud M. Kriven, Yanchun Zhou and Miladin Radovic. Cer. Eng. Sci. Proc. 31(10):57-69, (2010)
  • 17. Musil, S.S., Kutyla, G.P. and Kriven, W.M., “The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer”, Cer. Eng. and Sci. Proc., 33(10):31-42, (2012)
  • 18. Lowry, D.R. and Kriven, W.M., “Effect of high tensile strength polypropylene chopped fiber reinforcements on the mechanical properties of sodium based geopolymer systems”, in Strategic Materials and Computational Design, edited by Waltraud M. Kriven, Yanchun Zhou and Miladin Radovic. Cer. Eng. Sci. Proc., 31(10):47-56, (2010)
  • 19. Kriven,W. M., Bell, J. L. and Gordon, M., “Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites”, Ceramic Transactions, 153: 227-250, (2003)
  • 20. He, P., Jia, D. Lin, T. Wang, M. Zhou, Y., “Effect of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites”, Ceramics International, 36:1447-1453, (2010)
  • 21. Ichikawa H. and Ishikawa, T., “Silicon carbide fibers (organometallic pyrolysis)”, Comprehensive composite materials, 1:107-145, (2000)
  • 22. Shen, X-N., Zheng, Y., Zhan, Y-Y., Cai, G-H. Xiao, Y-H., “Synthesis of porous SiC and application in the CO oxidation reaction”, Mater. Lett., 61:4766-4768, (2007)
  • 23. Yang, Y., Lin, Z-M. Li, J-T., “Synthesis of SiC by silicon and carbon combustion in air”, J. Euro. Ceram. Soc., 29:175-180, (2009)
  • 24. Yuan, J., He, P., Jia, D., Yan, S., Cai, D., Xu, L., Yang, Z., Duan, X., Wang, S., Zhou Y., “SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber”, Ceramics International, 42(4):5345-5352, (2016)
  • 25. He, P., Jia,D., Zheng, B., Yan, S., Yuan, J., Yang, Z., Duan, X., Xu, J., Wang, P., Zhou Y., “SiC fiber reinforced geopolymer composites, part 2: Continuous SiC fiber”, Ceramics International, 42(10):12239-12245, (2016)
  • 26. Bai, C., Zheng, J., Gian A. R., Colombo P., “Low-temperature fabrication of SiC/geopolymer cellular composites”, Composites Part B: Engineering, 137:23-30, (2018)
  • 27. Medri, V., Ruffini A., “Alkali-bonded SiC based foams”, Journal of the European Ceramic Society, 32(9):1907-1913, (2012)
  • 28. Medri, V., Ruffini A., “The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams”, Ceramics International, 38:3351-3359, (2012)
  • 29. Irfanita, R., Afifah. K. N., “Characteristics of commercial SiC and synthetic SiC as an aggregate in geopolymer composites” IOP Conf. Series: Materials Science and Engineering, 180:1-7, (2017)
  • 30. Liu, X., Fang, M., Liu, Y., Qian, Z., Ding, H., Huang Z., “Fe–Sialon–Ti (C,N) composites from carbothermal reduction–nitridation of low-priced minerals and their application in tap hole clay refractories”, Ceramic International, 40(7):9709-9714, (2014)
  • 31. Yang, G., Yin, Li., Fang, X., Fang, M., Liu, Y., Huang, Z., Liu, B., “Fabrication and liquid–solid, two-phase erosion wear behavior of β-sialon ceramic from pyrophyllite by carbothermal reduction and nitridation”, Ceramic International, 40:10737-10741, (2014)
  • 32. Neto, E.F., Kiminami, R.H.G.A., “Synthesis of silicon nitride by conventional and microwave carbothermal reduction and nitridation of rice hulls”, Advanced Powder Technology, 25:654-658, (2014)
  • 33. Lin, Y.L., Tsang, C.P., “The effects of starting precursors on the carbothermal synthesis of SiC powders” Ceramic International, 29(1):69-75, (2003)
  • 34. Devecerski, A,, Posarac, M., Egelja, A., Radosavljevic-Mihajlovic, A., Boskovic, S., Logar, M., Matovic, B.J., “Fabrication of SiC by carbothermal-reduction reactions of mountain leather asbestos”, Alloys Comp., 464: 270-276, (2008)
  • 35. Matovic, B., Sponjic, A., Devecerski, A., Miljkovic, M., “Fabrication of SiC by carbothermal-reduction reactions of diatomaceous earth”, J. Mater. Sci., 42:5448-5451, (2007)
  • 36. Bagci, C. and Arik, H., “Synthesis of SiC powders by carbothermal reduction of enriched brown sepiolite with carbon black,” J. Materials Engineering and Performance, 22:958-963, (2013)
  • 37. Bagci, C., “Microstructural characterisation of β-SiC powders synthesised by carbothermally reduction of Turkish diatomite”, Scientific Research and Essay, 6(3):542-51, (2011)
  • 38. Bagci, C., Kutyla, G. P., Seymour K. C., and Kriven, W. M., “Synthesis and characterization of silicon carbide powders converted from metakaolin-based geopolymers”, J. Amer. Ceram. Soc., 99(7):2521-2530, (2016)
  • 39. Bagci, C., Kutyla, G. P. and Kriven, W. M., “In situ carbothermal reduction / nitridation of geopolymer composites containing carbon nanoparticles,” Cer. Eng. and Sci. Proc., 35(10):15-28, (2014)
  • 40. Heo, U. H., Sankar, K., Kriven, W. M., Musil, S. S., “Rice husk ash as a silica source in geopolymer formulation”, Cer. Sci. Eng. Proc., 38(10):87-102, (2015)
  • 41. Jia, D., Li, Y., He, ., Fu, S., Duan, X., Sun, Z., Cai, D., Li, D., Yang, Z., Zhou Y., “In-situ formation of bulk and porous h-AlN/SiC-based ceramics from geopolymer technique”, Ceramic International, 45(18):24727-24733, (2019)
  • 42. Kriven, W.M., Kutyla, G.P., “Properties and characterization of alumina platelet reinforced geopolymer composites”, Journal of the American Ceramic Society, 103: 5178-5185, (2020)
  • 43. Medri, V., Ruffini A., “Alkali-bonded SiC based foams”, Journal of the European Ceramic Society, 32(9): 1907-1913, (2012)
  • 44. Medri, V., Ruffini A., “The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams”, Ceramics International, 38:3351-3359, (2012)
  • 45. Irfanita, R., Afifah. K. N., “Characteristics of commercial SiC and synthetic SiC as an aggregate in geopolymer composites”, IOP Conf. Series: Materials Science and Engineering, 180:1-7, Indonesia, (2017)
  • 46. Bagci, C., Kutyla, G.P, Kriven, W. M, “Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative”, Ceramics International, 43(17):14784-14790, (2017)
  • 47. Di Febo, R., Casas, L., Del Campo, Á. A., Rius, J., Vallcorba, O., Melgarejo, J. C., Capelli, C., “Recognizing and understanding silica-polymorph microcrystals in ceramic glazes”, Journal of the European Ceramic Society, 40(15):6188-6199, (2020)
  • 48. Sankar, K., Sá Ribeiro, R. A., Sá Ribeiro, M. G., & Kriven, W. M., “Potassium‐based geopolymer composites reinforced with chopped bamboo fibers”, Journal of the American Ceramic Society, 100(1):49-55, (2017)
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Cengiz Bagcı 0000-0001-9931-0778

Kubilay Karacif 0000-0001-7180-7897

Bülent Alkan 0000-0003-1048-7986

Halil Arık 0000-0001-6521-7399

Proje Numarası MUH19001.19.008.
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 14 Haziran 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bagcı, C., Karacif, K., Alkan, B., Arık, H. (2023). Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı. Politeknik Dergisi, 26(4), 1485-1493. https://doi.org/10.2339/politeknik.1130886
AMA Bagcı C, Karacif K, Alkan B, Arık H. Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı. Politeknik Dergisi. Aralık 2023;26(4):1485-1493. doi:10.2339/politeknik.1130886
Chicago Bagcı, Cengiz, Kubilay Karacif, Bülent Alkan, ve Halil Arık. “Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı”. Politeknik Dergisi 26, sy. 4 (Aralık 2023): 1485-93. https://doi.org/10.2339/politeknik.1130886.
EndNote Bagcı C, Karacif K, Alkan B, Arık H (01 Aralık 2023) Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı. Politeknik Dergisi 26 4 1485–1493.
IEEE C. Bagcı, K. Karacif, B. Alkan, ve H. Arık, “Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı”, Politeknik Dergisi, c. 26, sy. 4, ss. 1485–1493, 2023, doi: 10.2339/politeknik.1130886.
ISNAD Bagcı, Cengiz vd. “Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı”. Politeknik Dergisi 26/4 (Aralık 2023), 1485-1493. https://doi.org/10.2339/politeknik.1130886.
JAMA Bagcı C, Karacif K, Alkan B, Arık H. Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı. Politeknik Dergisi. 2023;26:1485–1493.
MLA Bagcı, Cengiz vd. “Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı”. Politeknik Dergisi, c. 26, sy. 4, 2023, ss. 1485-93, doi:10.2339/politeknik.1130886.
Vancouver Bagcı C, Karacif K, Alkan B, Arık H. Pirinç Kabuğu Külü Esaslı SiC Parçacıkların Geopolimer Kompozitlerde Takviye Elemanı Olarak Kullanımı. Politeknik Dergisi. 2023;26(4):1485-93.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.