Araştırma Makalesi
BibTex RIS Kaynak Göster

Uçak Kablolamasında Kullanılan Kalkan Sonlandırma Yaklaşımlarının Yıldırımın Dolaylı Etkilerine Karşı Değerlendirilmesi

Yıl 2024, , 1709 - 1719, 02.10.2024
https://doi.org/10.2339/politeknik.1300561

Öz

Yıldırım yüksek akım ve yüksek voltajın ani olarak boşaldığı bir doğa olayıdır. Bu doğa olayı bulutlar arasında, bulut içinde ya da bulut ile yeryüzü arasında olacak şekilde meydana gelebilmektedir. Hava araçlarına da yıldırım çarpma riski vardır. Günümüzde yıldırım çarpmasını önleyici bir sistem mevcut değildir bunun için yıldırımın etkileri azaltılmaya çalışılmaktadır. Uçaklarda kullanılan metalik malzemeler Faraday kafesi etkisi göstererek yıldırımdan kaynaklanan elektromanyetik alanların uçak içerisine girişine izin vermemektedir fakat günümüzde daha sık kullanılmaya başlayan kompozit yapılar bu konuda metallere kıyasla daha kötü performans göstermektedir. Ayrıca uçak üzerinde bulunan pencere, kapı gibi süreksizlikler Faraday kafesi üzerinde boşluklar yaratmakta ve elektromanyetik alanların uçak içerisine girişine olanak sağlamaktadır. Bu sebeple uçak üzerinde kullanılan ekipmanların yıldırımın dolaylı etkilerine karşı kalifiye olması gerekmektedir. Ekipmanları yıldırımın dolaylı etkilerine karşı korumada en sık tercih edilen metot kabloların kalkanlanmasıdır. Kalkanın koruma etkisini ve sonlandırma metotlarının bu korumaya katkısını anlamak oldukça önemlidir. Bu çalışmada, yıldırımın dolaylı etkisine karşı çeşitli ekranlama sonlandırma teknikleri incelenmiş ve 360˚ arka kabuk sonlandırma tekniğinin kullanılmasının yaklaşık 3 dB koruma sağlayarak oldukça etkili olduğu bulunmuştur. Deneylerden elde edilen sonuçlar benzetim sonuçları ve önceki çalışmalar ile karşılaştırılmış ve elde edilen sonuçların birbiri ile tutarlı olduğu görülmüştür.

Kaynakça

  • [1] Stelmashuk V., Deursen A. P. J. and Webster M., "Sensors for in-flight lightning detection on aircraft", 2008 International Symposium on Electromagnetic Compatibility - EMC Europe, 1-5, (2008).
  • [2] Kiçeci E. C. and Salamcı E., "Uçak - Yıldırım Etkileşimi", Avrupa Bilim ve Teknoloji Dergisi, (Özel Sayı): 177-187, (2020).
  • [3] Duan Z., "Review of aircraft lightning protection," High Voltage Engineering, 43(5): 1393-1399, (2017).
  • [4] EUROCAE ED-81, “Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning (including Amendment N°1 – 26 August 1999)”, (1996).
  • [5] MIL-STD-464D, “Electromagnetic Environmental Effects Requirements for Systems”, (2020).
  • [6] Elmas E.E., Alkan M., “Bir insansız hava aracı sisteminin tasarımı, benzetimi ve gerçekleştirilmesi”, Politeknik Dergisi, *(*): *, (*).
  • [7] Kaycı B., Demir B. E. and Demir F., “Deep learning based fault detection and diagnosis in photovoltaic system using thermal images acquired by UAV”, Politeknik Dergisi, *(*): *, (*).
  • [8] ARP5415B, “User's Manual for Certification of Aircraft Electrical/Electronic Systems Against the Indirect Effects of Lightning”, (2020).
  • [9] RTCA/DO-160G, “Environmental Conditions and Test Procedures for Airborne Equipment”, (2010).
  • [10] ARP5412B, “Aircraft Lightning Environment and Related Test Waveforms”, (2013).
  • [11] MIL-STD-461G, “Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment”, (2015).
  • [12] Laroche P., Blanchet P., Delannoy A. and Issac F., “Experimental Studies of Lightning Strike to Aircraft”, Aerospace Lab, 5, (2012).
  • [13] Grando J., Ferrıères X. and Muller D., “Code Alice: Introduction des joints résistifs et exploitation Transall”, Rapport Technique Onera, (1992).
  • [14] Gobin V., “Diffraction par les ouvertures et par des objets tridimensionnels. Application à la mesure des impédances de surface des matériaux bons conducteurs”, Thèse de doctorat de 3ème cycle de l’Université de Lille III, (1989).
  • [15] Marque J.P., Bertuol S. and Parmantıer J.P., “Modélisation et analyse de l'environnement électromagnétique induit par un foudroiement. Fonctions de transfert d'un réseau de câbles complexes”, Actes du 9ème congrès CEM, (1998).
  • [16] Parmantier J., Marque J., Bertuol S. and Thibblin U., “Modeling and Analysis of the Electromagnetic Environment on Aircraft and Helicopter Part 2: Coupling to Complex Cable Network”, SAE Technical Paper, (1999).
  • [17] Kunkel, G. M., “Shielding of Electromagnetic Waves: Theory and Practice”, Germany: Springer International Publishing, (2019).
  • [18] Chemartın L., Lalande P., Peyrou B., Chazottes A., Delalondre C., Chéron B.G. and Lago F., “The Thermo Electrical effects of Lightning on Aircraft Structure: Observation and Modeling of Thermo Electro Mechanical Damaging”, Aerospace Lab, 5, (2012).
  • [19] Bradley A. T. and R. J. Hare, "Effectiveness of shield termination techniques tested with TEM cell and bulk current injection", 2009 IEEE International Symposium on Electromagnetic Compatibility, 223-228, (2009).
  • [20] Filik K., Hajder S. and Masłowski G., "Multi-Stroke Lightning Interaction with Wiring Harness: Experimental Tests and Modelling", Energies, 14(8): 2106, (2021).
  • [21] Moupfouma F. and Luu Q. C., "An approach to model electromagnetic threat effects on aircraft wiring/equipment with respect to variations of shield termination arrangements", IEEE EMC International Symposium, 69-73, (2001).
  • [22] Bradley A. T., “TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz – Part 1”, 2008 Asia Pacific EMC Symposium, 610-613, (2008).
  • [23] Vance E.F., “Coupling to Shielded Cables”, Wiley Interscience, (1978).
  • [24] Mardiguian M., “Handbook Series on Electromagnetic Interference and Compatibility: Volume 2 – Grounding and Bonding”, Interference Control Technologies, (1998).
  • [25] Schulz R.B., Plantz V.C. and Brush D.R., “Shielding -Theory and Practice”, IEEE Transactions on Electromagnetic Compatibility, 30(3): 187-201, (1988).
  • [26] Kaiser K.L., “Electromagnetic Compatibility Handbook”, CRC Press, (2005).
  • [27] Bow K. E. and Voltz D. A., "Overall shield protects instrument cable from the effects of lightning", IEEE Transactions on Industry Applications, 30(2): 269-276, (1994).
  • [28] Morgan D., Hardwıck C.J., Haıgh S.J. and Meakıns A.J., “The interaction of lightning with aircraft and the challenges of lightning testing”, Aerospace Lab, 5: 1-10, (2012).
  • [29] ARP5416A, “Aircraft Lightning Test Methods”, (2013).
  • [30] EUROCAE ED-84A, “Aircraft Lightning Environment and Related Test Waveforms”, (2013).
  • [31] EUROCAE ED-14D, “Environmental Conditions and Test Procedures for Aircraft System”, (2006).
  • [32] Erdoğan M., Eker M. K., "Yıldırım Darbe Geriliminin Kuru Tip Transformatör Sargılarındaki Dağılımının İncelenmesi". Politeknik Dergisi, 19(1): 21-30, (2016).
  • [33] FAA AC 20-136B, “Aircraft Electrical and Electronic System Lightning Protection”, (2011).
  • [34] Heerema M.D., “Designing for electromagnetic compatibility”, HP11949Bl, (1996).
  • [35] Electrical integration manual, systems integration group, ISRO satellite centre, (2002).
  • [36] Yildiz M., “Electric energy use in aviation, perspective, and applications”, Politeknik Dergisi, 24(4): 1605-1610, (2021).
  • [37] Joffe E.B., Lock K., “Grounds for grounding: A circuit to system handbook”, John Wiley & sons, (2010).
  • [38] Bhooma G. et al., "Effectiveness of various shield termination methods of cables", 2016 International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC), 1-4, (2016).
  • [39] Ott H.W., “Electromagnetic compatibility engineering”, John Wiley & sons, (2009).
  • [40] Kara S., Alboyacı B. and Özyeşil A. "Orta Gerilim Yeraltı Güç Kablolarında Zırh Topraklama Yöntemlerinin Analizi", Politeknik Dergisi, 25(4): 1587-1594, (2022).
  • [41] MIL-B-5087B, “Military Specification: Bonding, Electrical, and Lightning Protection for Aerospace Systems”, (1964).
  • [42] IEC 62305-1:2010, “Protection against lightning – Part 1: General principles”, (2010).
  • [43] Apra M., D'Amore M., Gigliotti K., et al., "Lightning indirect effects certification of a transport aircraft by numerical simulation", IEEE Transactions on Electromagnetic Compatibility, 50(3): 513-523, (2008).
  • [44] Gao C., Song S., Guo Y., et al., "Study of numerical simulation of aircraft attachment points and lightning zoning", Chinese Journal of Radio Science, 27(4): 1238- 1243, (2012).
  • [45] Zhang T., Wu J., Qı L., "Analysis of airborne equipment lightning electromagnetic environment based on EMA3D", Journal of System Simulation, 26(6): 1350- 1354, (2014).
  • [46] Qian Y.F., Du B., Ye Z.F. and Zhang H.B., "Simulation on Transient Electromagnetic Influence of Lightning Strike for Turboprop Engine," 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), 1-7, (2019.)

Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects

Yıl 2024, , 1709 - 1719, 02.10.2024
https://doi.org/10.2339/politeknik.1300561

Öz

Lightning is a natural phenomenon where high voltages and currents suddenly discharge. It can be caused by clouds themselves, clouds between them, or clouds near the earth. Aircraft are also at risk of being struck by lightning and there is currently no way to prevent this from happening. Instead, efforts are being made to protect by reducing the effects of lightning. Metal structures in aircraft form a Faraday cage which helps in preventing lightning currents from entering the aircraft. However, composite structures, which are becoming more prevalent in the aviation sector, are less efficient in doing so compared to metals. Additionally, openings such as windows in the aircraft can break the Faraday cage and allow strong electromagnetic fields to penetrate. Hence, all equipment used on board the aircraft must be adequately qualified and lightning-proof. The most popular technique used to reduce the indirect effects of lightning on electronics is cable shielding. In this study, various shielding termination techniques for their effectiveness against indirect effect of lightning examined and It is found that utilizing a 360˚ backshell termination technique provided to be highly effective, providing protection of nearly 3 dB. The results obtained from the experiments are compared with simulation results and previous studies and it has been observed that the obtained results are consistent with each other.

Kaynakça

  • [1] Stelmashuk V., Deursen A. P. J. and Webster M., "Sensors for in-flight lightning detection on aircraft", 2008 International Symposium on Electromagnetic Compatibility - EMC Europe, 1-5, (2008).
  • [2] Kiçeci E. C. and Salamcı E., "Uçak - Yıldırım Etkileşimi", Avrupa Bilim ve Teknoloji Dergisi, (Özel Sayı): 177-187, (2020).
  • [3] Duan Z., "Review of aircraft lightning protection," High Voltage Engineering, 43(5): 1393-1399, (2017).
  • [4] EUROCAE ED-81, “Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning (including Amendment N°1 – 26 August 1999)”, (1996).
  • [5] MIL-STD-464D, “Electromagnetic Environmental Effects Requirements for Systems”, (2020).
  • [6] Elmas E.E., Alkan M., “Bir insansız hava aracı sisteminin tasarımı, benzetimi ve gerçekleştirilmesi”, Politeknik Dergisi, *(*): *, (*).
  • [7] Kaycı B., Demir B. E. and Demir F., “Deep learning based fault detection and diagnosis in photovoltaic system using thermal images acquired by UAV”, Politeknik Dergisi, *(*): *, (*).
  • [8] ARP5415B, “User's Manual for Certification of Aircraft Electrical/Electronic Systems Against the Indirect Effects of Lightning”, (2020).
  • [9] RTCA/DO-160G, “Environmental Conditions and Test Procedures for Airborne Equipment”, (2010).
  • [10] ARP5412B, “Aircraft Lightning Environment and Related Test Waveforms”, (2013).
  • [11] MIL-STD-461G, “Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment”, (2015).
  • [12] Laroche P., Blanchet P., Delannoy A. and Issac F., “Experimental Studies of Lightning Strike to Aircraft”, Aerospace Lab, 5, (2012).
  • [13] Grando J., Ferrıères X. and Muller D., “Code Alice: Introduction des joints résistifs et exploitation Transall”, Rapport Technique Onera, (1992).
  • [14] Gobin V., “Diffraction par les ouvertures et par des objets tridimensionnels. Application à la mesure des impédances de surface des matériaux bons conducteurs”, Thèse de doctorat de 3ème cycle de l’Université de Lille III, (1989).
  • [15] Marque J.P., Bertuol S. and Parmantıer J.P., “Modélisation et analyse de l'environnement électromagnétique induit par un foudroiement. Fonctions de transfert d'un réseau de câbles complexes”, Actes du 9ème congrès CEM, (1998).
  • [16] Parmantier J., Marque J., Bertuol S. and Thibblin U., “Modeling and Analysis of the Electromagnetic Environment on Aircraft and Helicopter Part 2: Coupling to Complex Cable Network”, SAE Technical Paper, (1999).
  • [17] Kunkel, G. M., “Shielding of Electromagnetic Waves: Theory and Practice”, Germany: Springer International Publishing, (2019).
  • [18] Chemartın L., Lalande P., Peyrou B., Chazottes A., Delalondre C., Chéron B.G. and Lago F., “The Thermo Electrical effects of Lightning on Aircraft Structure: Observation and Modeling of Thermo Electro Mechanical Damaging”, Aerospace Lab, 5, (2012).
  • [19] Bradley A. T. and R. J. Hare, "Effectiveness of shield termination techniques tested with TEM cell and bulk current injection", 2009 IEEE International Symposium on Electromagnetic Compatibility, 223-228, (2009).
  • [20] Filik K., Hajder S. and Masłowski G., "Multi-Stroke Lightning Interaction with Wiring Harness: Experimental Tests and Modelling", Energies, 14(8): 2106, (2021).
  • [21] Moupfouma F. and Luu Q. C., "An approach to model electromagnetic threat effects on aircraft wiring/equipment with respect to variations of shield termination arrangements", IEEE EMC International Symposium, 69-73, (2001).
  • [22] Bradley A. T., “TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz – Part 1”, 2008 Asia Pacific EMC Symposium, 610-613, (2008).
  • [23] Vance E.F., “Coupling to Shielded Cables”, Wiley Interscience, (1978).
  • [24] Mardiguian M., “Handbook Series on Electromagnetic Interference and Compatibility: Volume 2 – Grounding and Bonding”, Interference Control Technologies, (1998).
  • [25] Schulz R.B., Plantz V.C. and Brush D.R., “Shielding -Theory and Practice”, IEEE Transactions on Electromagnetic Compatibility, 30(3): 187-201, (1988).
  • [26] Kaiser K.L., “Electromagnetic Compatibility Handbook”, CRC Press, (2005).
  • [27] Bow K. E. and Voltz D. A., "Overall shield protects instrument cable from the effects of lightning", IEEE Transactions on Industry Applications, 30(2): 269-276, (1994).
  • [28] Morgan D., Hardwıck C.J., Haıgh S.J. and Meakıns A.J., “The interaction of lightning with aircraft and the challenges of lightning testing”, Aerospace Lab, 5: 1-10, (2012).
  • [29] ARP5416A, “Aircraft Lightning Test Methods”, (2013).
  • [30] EUROCAE ED-84A, “Aircraft Lightning Environment and Related Test Waveforms”, (2013).
  • [31] EUROCAE ED-14D, “Environmental Conditions and Test Procedures for Aircraft System”, (2006).
  • [32] Erdoğan M., Eker M. K., "Yıldırım Darbe Geriliminin Kuru Tip Transformatör Sargılarındaki Dağılımının İncelenmesi". Politeknik Dergisi, 19(1): 21-30, (2016).
  • [33] FAA AC 20-136B, “Aircraft Electrical and Electronic System Lightning Protection”, (2011).
  • [34] Heerema M.D., “Designing for electromagnetic compatibility”, HP11949Bl, (1996).
  • [35] Electrical integration manual, systems integration group, ISRO satellite centre, (2002).
  • [36] Yildiz M., “Electric energy use in aviation, perspective, and applications”, Politeknik Dergisi, 24(4): 1605-1610, (2021).
  • [37] Joffe E.B., Lock K., “Grounds for grounding: A circuit to system handbook”, John Wiley & sons, (2010).
  • [38] Bhooma G. et al., "Effectiveness of various shield termination methods of cables", 2016 International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC), 1-4, (2016).
  • [39] Ott H.W., “Electromagnetic compatibility engineering”, John Wiley & sons, (2009).
  • [40] Kara S., Alboyacı B. and Özyeşil A. "Orta Gerilim Yeraltı Güç Kablolarında Zırh Topraklama Yöntemlerinin Analizi", Politeknik Dergisi, 25(4): 1587-1594, (2022).
  • [41] MIL-B-5087B, “Military Specification: Bonding, Electrical, and Lightning Protection for Aerospace Systems”, (1964).
  • [42] IEC 62305-1:2010, “Protection against lightning – Part 1: General principles”, (2010).
  • [43] Apra M., D'Amore M., Gigliotti K., et al., "Lightning indirect effects certification of a transport aircraft by numerical simulation", IEEE Transactions on Electromagnetic Compatibility, 50(3): 513-523, (2008).
  • [44] Gao C., Song S., Guo Y., et al., "Study of numerical simulation of aircraft attachment points and lightning zoning", Chinese Journal of Radio Science, 27(4): 1238- 1243, (2012).
  • [45] Zhang T., Wu J., Qı L., "Analysis of airborne equipment lightning electromagnetic environment based on EMA3D", Journal of System Simulation, 26(6): 1350- 1354, (2014).
  • [46] Qian Y.F., Du B., Ye Z.F. and Zhang H.B., "Simulation on Transient Electromagnetic Influence of Lightning Strike for Turboprop Engine," 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), 1-7, (2019.)
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Emre Atalay 0000-0002-0856-9520

Ahmet Turgut Tuncer 0000-0003-1067-1820

Erken Görünüm Tarihi 2 Ekim 2023
Yayımlanma Tarihi 2 Ekim 2024
Gönderilme Tarihi 22 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Atalay, E., & Tuncer, A. T. (2024). Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects. Politeknik Dergisi, 27(5), 1709-1719. https://doi.org/10.2339/politeknik.1300561
AMA Atalay E, Tuncer AT. Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects. Politeknik Dergisi. Ekim 2024;27(5):1709-1719. doi:10.2339/politeknik.1300561
Chicago Atalay, Emre, ve Ahmet Turgut Tuncer. “Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects”. Politeknik Dergisi 27, sy. 5 (Ekim 2024): 1709-19. https://doi.org/10.2339/politeknik.1300561.
EndNote Atalay E, Tuncer AT (01 Ekim 2024) Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects. Politeknik Dergisi 27 5 1709–1719.
IEEE E. Atalay ve A. T. Tuncer, “Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects”, Politeknik Dergisi, c. 27, sy. 5, ss. 1709–1719, 2024, doi: 10.2339/politeknik.1300561.
ISNAD Atalay, Emre - Tuncer, Ahmet Turgut. “Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects”. Politeknik Dergisi 27/5 (Ekim 2024), 1709-1719. https://doi.org/10.2339/politeknik.1300561.
JAMA Atalay E, Tuncer AT. Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects. Politeknik Dergisi. 2024;27:1709–1719.
MLA Atalay, Emre ve Ahmet Turgut Tuncer. “Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects”. Politeknik Dergisi, c. 27, sy. 5, 2024, ss. 1709-1, doi:10.2339/politeknik.1300561.
Vancouver Atalay E, Tuncer AT. Assessing the Shield Termination Approaches in Aircraft Wiring to Against the Lightning Indirect Effects. Politeknik Dergisi. 2024;27(5):1709-1.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.