Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri

Yıl 2019, , 393 - 398, 01.06.2019
https://doi.org/10.2339/politeknik.417761

Öz

Bu çalışmada, geleneksel Au/n-Si
Schottky Diyotların (SDs) aygıt performansının ışınlanmış PTCDA arayüzey
tabakası kullanılarak yenilikçi bir yaklaşımla iyileştirilmesi amaçlanmıştır.
Bu nedenle ilk olarak PTCDA tozları 30kGy, 60kGy ve 100kGy farklı elektron
demet (E-Demet) dozlarında ışınlanmıştır ve sonuçlar FTIR yöntemi ile analiz
edilmiştir. Işınlanmamış ve ışınlanmış PTCDA tozları n-Si alttaş üzerine
organik buharlaştırma sisteminde kaplanmıştır. Farklı dozlarda E-Demet ile
ışınlanmış ve ışınlanmamış PTCDA arayüzey tabakalı Au/PTCDA/n-Si SD’ların
Akım-Gerilim (I-V) karakteristikleri ±3V arasında oda sıcaklığında
gerçekleştirilmiştir. Aygıtların idealite faktörü(n), Schottky engel yüksekliği
(
FBo),
doğrultma oranı (DO), seri direnç (Rs) ve Şönt direnci (Rsh)
parametreleri I-V sonuçlarından hesaplanarak elde edilmiştir. 30 kGy ışınlanmış
PTCDA arayüzey tabakalı Au/PTCDA/n-Si SD aygıt performansının ışınlanmamış
PTCDA arayüzey tabakalı Au/PTCDA/n-Si SD’a göre daha iyi olduğu deneysel olarak
gözlenmiştir. Au/PTCDA/n-Si SD’un I-V karakteristiklerinin ışınlama ile oldukça
etkilendiği ve uygun ışınlama dozu ile aygıt performansının artırılabileceği
gözlemlenmiştir.  

Kaynakça

  • [1] Sze S.M., Physics of Semiconductor Devices, John Wiley and Sons, New York, (2007).
  • [2] Aydemir U., Taşçıoğlu İ., Altındal Ş. ve Uslu İ., A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA:Zn/n-Si Schottky barrier diodes. Materials Science in Semiconductor Processing 16(6): 1865-1872 (2013).
  • [3] Ocaya, R.O, Al-Sehemi, A.G, Al-Ghamdi, A, El-Tantawy, F, Yakuphanoglu, F, Organic semiconductor photosensors. Journal Of Alloys And Compounds 702: 520-530 (2017).
  • [4] Gupta R, Misra S.C.K., Malhotra B.D., Beladakere N.N., Chandra S., Metal/semiconductive polymer Schottky device. Appl. Phys. Lett. 58: 51, (1991).
  • [5] Xu Y,, Sun H.,Noh Y.Y., Schottky Barrier in Organic Transistors. IEEE Transactions On Electron Devices 64(5): 1932-1943 (2017).
  • [6] Çakar M., N. Yıldırım, Ş. Karataş, C. Temirci, A. Turut, Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101∕ n-Si and Sn/rhodamine-101∕ p-Si Schottky barrier diodes. J. Appl. Phys, 100: 74505 (2006).
  • [7] Gupta R.K. ve Singh R.A., Electrical properties of junction between aluminium and poly(aniline)–poly(vinyl chloride) composite, Mater. Chem. Phys. 86: 279, (2004).
  • [8] Kılıçoğlu T., Aydın M.E., Topal G., Ebeoğlu M.A., Saygılı H., The effect of a novel organic compound chiral macrocyclic tetraamide-I interfacial layer on the calculation of electrical characteristics of an Al/tetraamide-I/p-Si contact. Synth. Met. 157: 540 (2007).
  • [9] Güllü Ö. ve Türüt A., Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. J. Appl. Phys. 106: 103717, (2009).
  • [10] Akkılıç K., Aydın M.E., Uzun İ., Kılıçoğlu T., The calculation of electronic parameters of an Ag/chitin/n-Si Schottky barrier diode Synth. Met., 156: 958, (2006).
  • [11] Aydın M.E., Kılıçoğlu T., Akkılıç K., Hoşgören H., The calculation of electronic parameters of an Au/β-carotene/n-Si Schottky barrier diode. Physica B 381: 113, (2006).
  • [12] Güllü Ö., Aydoğan Ş., Türüt A., Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semicond. Sci. Technol. 23: 075005 (2008).
  • [13] Kuo C.S., Wakim F.G., Sengupta S.K., Tripathy S.K., Schottky and Metal-Insulator-Semiconductor Diodes Using Poly(3-hexylthiophene) Jpn. J. Appl. Phys. 33: 2629 (1994).
  • [14] Narayanan Unni K N., Dabos-Seignon S., Nunzi J.M. Improved performance of pentacene field-effect transistors using a polyimide gate dielectric layer. Journal of Physics D: Applied Physics, 8(1): 1148 (2005).
  • [15] Faraji S, Hashimoto T, Turner M L and Majewski L A Solution-processed nanocomposite dielectrics for low voltage operated OFETs Organic Electronics, 17 :178 (2015).
  • [16] Chime A. C., Bensmida S., Chakaroun M., Lee M. W. Nkwawo H.,Fischer A. P. A., Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Organic Electronics 56: 284-290, (2018).
  • [17] Chang-Chun, L., Yan-Shin S.,Chih-Sheng W., Chia-Hao T., Shu-Tang, Y., Yi-Hao P.,Kuang-Jung C., Development of robust flexible OLED encapsulations using simulated estimations and experimental validations. Journal of Physics D: Applied Physics 45(27): 275102 (2012).
  • [18] Kampen T., Schuller A., Zahn D.R.T., Biel B., Ortega J., Perez R., Flores F., Schottky contacts on passivated GaAs(100) surfaces: barrier height and reactivity. Appl. Surf. Sci. 234: 341 (2004).
  • [19] Uslu, H, Yildirim, M, Altindal, S, Durmus, P, The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature. Radiation Physics And Chemistry, 81(4): 362-369, (2012).
  • [20] Dökme, İ. , Altindal, Ş. and Uslu, İ., The effects of temperature, radiation, and illumination on current–voltage characteristics of Au/PVA(Co, Zn‐doped)/n‐Si Schottky diodes. J. Appl. Polym. Sci., 125: 1185-1192, (2012).
  • [21] Al-Ta’ii, H., Periasamy V., Iwamoto M. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes. Applied Physics A, 124(4): 325, (2018).
  • [22] Şahin Y., Aydoğan Ş., Ekinci D., Turut A., The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation. Materials Chemistry and Physics 183: 516-523, (2016).
  • [23] Liao Y., Weber J.,Faul C.F.J, Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO2‑Selective Carbon Materials, Macromolocules, 48 (7): 2064-2073, (2015).
  • [24] Farag, AAM; Osiris, WG, Yahia, IS, Photovoltaic performance analysis of organic device based on PTCDA/n-Si heterojunction. Synthetic Metals, 161(17-18): 1805-1812, (2011).

The Electrical Properties of Au/PTCDA/n-Si Diodes with Electron Beam Irradiated PTCDA Interfacial Layer

Yıl 2019, , 393 - 398, 01.06.2019
https://doi.org/10.2339/politeknik.417761

Öz

In this work, it
is aimed to improve the device performance of traditional Au / n-Si Schottky
Diodes (SDs) with an innovative approach using the irradiated PTCDA interfacial
layer. For this reason, first PTCDA powders were irradiated with different
electron beam (E-Beam) doses of 30kGy, 60kGy and 100kGy and the results were
analyzed by FTIR method.

Unirradiated and irradiated PTCDA powders with E-Beam were evaporated on n-Si
substrate via organic evaporator. Current-Voltage (I-V) characteristics of
unirradiated and irradiated Au/PTCDA/n-Si SDs with PTCDA interfacial layers
irradiated with different E-Beam doses of 30kGy, 60kGy and 100kGy were carried
out between ±3V at room temperature. The ideality factor (n), Schottky barrier
height (
FBo),
rectification ratio (DO), series resistance (Rs) and shunt
resistance (Rsh) of devices were calculated from current-voltage
(I-V) results. It is experimentally seen that performance of Au/PTCDA/n-Si SD
irradiated with 30 kGy has better results when we compared unirradiated
Au/PTCDA/n-Si SD. It has been observed that the I-V characteristics of the
Au/PTCDA/n-Si SD are highly influenced by irradiation and the device
performance can be improved with appropriate irradiation dose.

Kaynakça

  • [1] Sze S.M., Physics of Semiconductor Devices, John Wiley and Sons, New York, (2007).
  • [2] Aydemir U., Taşçıoğlu İ., Altındal Ş. ve Uslu İ., A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA:Zn/n-Si Schottky barrier diodes. Materials Science in Semiconductor Processing 16(6): 1865-1872 (2013).
  • [3] Ocaya, R.O, Al-Sehemi, A.G, Al-Ghamdi, A, El-Tantawy, F, Yakuphanoglu, F, Organic semiconductor photosensors. Journal Of Alloys And Compounds 702: 520-530 (2017).
  • [4] Gupta R, Misra S.C.K., Malhotra B.D., Beladakere N.N., Chandra S., Metal/semiconductive polymer Schottky device. Appl. Phys. Lett. 58: 51, (1991).
  • [5] Xu Y,, Sun H.,Noh Y.Y., Schottky Barrier in Organic Transistors. IEEE Transactions On Electron Devices 64(5): 1932-1943 (2017).
  • [6] Çakar M., N. Yıldırım, Ş. Karataş, C. Temirci, A. Turut, Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101∕ n-Si and Sn/rhodamine-101∕ p-Si Schottky barrier diodes. J. Appl. Phys, 100: 74505 (2006).
  • [7] Gupta R.K. ve Singh R.A., Electrical properties of junction between aluminium and poly(aniline)–poly(vinyl chloride) composite, Mater. Chem. Phys. 86: 279, (2004).
  • [8] Kılıçoğlu T., Aydın M.E., Topal G., Ebeoğlu M.A., Saygılı H., The effect of a novel organic compound chiral macrocyclic tetraamide-I interfacial layer on the calculation of electrical characteristics of an Al/tetraamide-I/p-Si contact. Synth. Met. 157: 540 (2007).
  • [9] Güllü Ö. ve Türüt A., Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. J. Appl. Phys. 106: 103717, (2009).
  • [10] Akkılıç K., Aydın M.E., Uzun İ., Kılıçoğlu T., The calculation of electronic parameters of an Ag/chitin/n-Si Schottky barrier diode Synth. Met., 156: 958, (2006).
  • [11] Aydın M.E., Kılıçoğlu T., Akkılıç K., Hoşgören H., The calculation of electronic parameters of an Au/β-carotene/n-Si Schottky barrier diode. Physica B 381: 113, (2006).
  • [12] Güllü Ö., Aydoğan Ş., Türüt A., Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semicond. Sci. Technol. 23: 075005 (2008).
  • [13] Kuo C.S., Wakim F.G., Sengupta S.K., Tripathy S.K., Schottky and Metal-Insulator-Semiconductor Diodes Using Poly(3-hexylthiophene) Jpn. J. Appl. Phys. 33: 2629 (1994).
  • [14] Narayanan Unni K N., Dabos-Seignon S., Nunzi J.M. Improved performance of pentacene field-effect transistors using a polyimide gate dielectric layer. Journal of Physics D: Applied Physics, 8(1): 1148 (2005).
  • [15] Faraji S, Hashimoto T, Turner M L and Majewski L A Solution-processed nanocomposite dielectrics for low voltage operated OFETs Organic Electronics, 17 :178 (2015).
  • [16] Chime A. C., Bensmida S., Chakaroun M., Lee M. W. Nkwawo H.,Fischer A. P. A., Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Organic Electronics 56: 284-290, (2018).
  • [17] Chang-Chun, L., Yan-Shin S.,Chih-Sheng W., Chia-Hao T., Shu-Tang, Y., Yi-Hao P.,Kuang-Jung C., Development of robust flexible OLED encapsulations using simulated estimations and experimental validations. Journal of Physics D: Applied Physics 45(27): 275102 (2012).
  • [18] Kampen T., Schuller A., Zahn D.R.T., Biel B., Ortega J., Perez R., Flores F., Schottky contacts on passivated GaAs(100) surfaces: barrier height and reactivity. Appl. Surf. Sci. 234: 341 (2004).
  • [19] Uslu, H, Yildirim, M, Altindal, S, Durmus, P, The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature. Radiation Physics And Chemistry, 81(4): 362-369, (2012).
  • [20] Dökme, İ. , Altindal, Ş. and Uslu, İ., The effects of temperature, radiation, and illumination on current–voltage characteristics of Au/PVA(Co, Zn‐doped)/n‐Si Schottky diodes. J. Appl. Polym. Sci., 125: 1185-1192, (2012).
  • [21] Al-Ta’ii, H., Periasamy V., Iwamoto M. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes. Applied Physics A, 124(4): 325, (2018).
  • [22] Şahin Y., Aydoğan Ş., Ekinci D., Turut A., The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation. Materials Chemistry and Physics 183: 516-523, (2016).
  • [23] Liao Y., Weber J.,Faul C.F.J, Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO2‑Selective Carbon Materials, Macromolocules, 48 (7): 2064-2073, (2015).
  • [24] Farag, AAM; Osiris, WG, Yahia, IS, Photovoltaic performance analysis of organic device based on PTCDA/n-Si heterojunction. Synthetic Metals, 161(17-18): 1805-1812, (2011).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Umut Aydemir

Yayımlanma Tarihi 1 Haziran 2019
Gönderilme Tarihi 16 Ocak 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Aydemir, U. (2019). Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri. Politeknik Dergisi, 22(2), 393-398. https://doi.org/10.2339/politeknik.417761
AMA Aydemir U. Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri. Politeknik Dergisi. Haziran 2019;22(2):393-398. doi:10.2339/politeknik.417761
Chicago Aydemir, Umut. “Elektron Demet Ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/N-Si Diyotların Elektriksel Özellikleri”. Politeknik Dergisi 22, sy. 2 (Haziran 2019): 393-98. https://doi.org/10.2339/politeknik.417761.
EndNote Aydemir U (01 Haziran 2019) Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri. Politeknik Dergisi 22 2 393–398.
IEEE U. Aydemir, “Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri”, Politeknik Dergisi, c. 22, sy. 2, ss. 393–398, 2019, doi: 10.2339/politeknik.417761.
ISNAD Aydemir, Umut. “Elektron Demet Ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/N-Si Diyotların Elektriksel Özellikleri”. Politeknik Dergisi 22/2 (Haziran 2019), 393-398. https://doi.org/10.2339/politeknik.417761.
JAMA Aydemir U. Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri. Politeknik Dergisi. 2019;22:393–398.
MLA Aydemir, Umut. “Elektron Demet Ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/N-Si Diyotların Elektriksel Özellikleri”. Politeknik Dergisi, c. 22, sy. 2, 2019, ss. 393-8, doi:10.2339/politeknik.417761.
Vancouver Aydemir U. Elektron Demet ile Işınlanmış PTCDA Arayüzey Tabakalı Au/PTCDA/n-Si Diyotların Elektriksel Özellikleri. Politeknik Dergisi. 2019;22(2):393-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.