Blair et al. [7] introduced the notion of bicontact manifold in the context of Hermitian geometry. Bande and Hadjar [1] studied on this notion under the name of contact pairs. These type of structures have important properties and their geometry is some different from classical contact structures. In this paper, we study on some semi-symmetry properties of the normal contact pair manifolds. We prove that a Ricci semi-symmetric (or concircularly Ricci semi-symmetric) normal metric contact pair manifold is a generalized quasi-Einstein manifold. Also, we classify normal metric contact pair manifolds as a generalized quasi-Einstein manifold with certain semi-symmetry conditions and for the concircular curvature tensor , the Riemannian curvature tensor , and an arbitrary vector field .
Contact metric pair bicontact curvature properties symmetry conditions
Blair et al. [7] introduced the notion of bicontact manifold in the context of Hermitian geometry. Bande and Hadjar [1] studied on this notion under the name of contact pairs. These type of structures have important properties and their geometry is some different from classical contact structures. In this paper, we study on some semi-symmetry properties of the normal contact pair manifolds. We prove that a Ricci semi-symmetric (or concircularly Ricci semi-symmetric) normal metric contact pair manifold is a generalized quasi-Einstein manifold. Also, we classify normal metric contact pair manifolds as a generalized quasi-Einstein manifold with certain semi-symmetry conditions and for the concircular curvature tensor , the Riemannian curvature tensor , and an arbitrary vector field .
Contact metric pair bicontact curvature properties symmetry conditions
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2021 |
Gönderilme Tarihi | 14 Temmuz 2020 |
Yayımlandığı Sayı | Yıl 2021 |
Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.