Bu makalede seri bağlı aşırı doldurma sistemine sahip bir dizel motor için model tahmini bazlı basınç kontrolcüsü tasarımı ve
simülasyonu sunulmuştur. Dizel motorların performans ve sürüş özellikleri geliştirmek ve volumetrik verimi arttırmak için aşırı
doldurma basıncının kontrolü kiritk bir önem arzetmektedir. Bu çalışmada ilk olarak, sistem tanıma metodu kullanılarak,
kontrolcü tasarımında kullanılacak doğrusal modeller yaratılmıştır. Motorun çalışma bölgesinde 5 ayrı bölge için doğrusal
modeller çıkarılmıştır. Çıkarılan bu modeller kullanılarak, Kontrolcü tasarımı gerçekleştirilmiştir. Kontrolcü tasarımında Kalman
filtresi ve ağırlıklandırma matrislerinin kalibre edilmesi ile sistem kısıtları belirlenmiştir. Sistem kısıtlarının belirlenmesinde
motor dinamometresinde testler gerçekleştirilmiş ve elde edilen veriler giriş ve giriş oranı kısıtlarının belirlenmesinde
kullanılmıştır. Kontrolcü tasarımı çevrimiçi eniyileme metodu baz alınarak gerçekleştirilmiştir.. Benzetimlerde, yüksek
hassasiyetli doğrusal olmayan motor modeli kullanılmıştır. Sonuçlarda, model tahmini bazlı kontrolcünün, standart PID’lere göre
daha üstün set edilen değer takibi yaptığını ve bunu sağlarken sistem kısıtlarını da dikkate aldığı gözlemlenmiştir. Kalibre
edilmesinin göreceli olarak kolay oluşu, sistem kısıtlarını tasarımda dahil etmesi ve model bazlı olması nedeniyle Otomotiv
kontrolü alanında çekici bir hale gelmiştir.
Model tahmini bazlı kontrol Sistem tanıma dizel motor kontrolü.
This paper focuses on the design and implementation of model predictive controller (MPC) for a boost pressure control of series sequential diesel engine. Boost pressure control is critical to satisfy diesel engine performance and driveability requirements as well as increasing volumetric efficieny. In this study, Control oriented linear models are generated by using system identification methods in order to be used in output prediction models. Prediction models are identified for 5 different engine operating regions to increase the accuracy of linear models. Based on state-space prediction models, Controller design is performed considering Kalman Filter tuning, constraint definitions, controller weights. Engine dynamometer testing have been performed to define input and input rate constraints. MPC design is performed for online optimization method. Nonlinear engine model is modeled in high fidelity simulation environment. Results are shown that MPC is capable of showing better setpoint tracking while satisying contraints explicitly than conventional PID (Proportional-Integral-Derivative) controllers. Relatively easy tuning, ability to handle constraints and incorporation of models makes MPC attractive to Automotive control community
Model predictive control system identification Diesel engine control
Diğer ID | JA45RH85MP |
---|---|
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2015 |
Gönderilme Tarihi | 1 Mart 2015 |
Yayımlandığı Sayı | Yıl 2015 Cilt: 18 Sayı: 1 |
Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.