Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Yielding of Two-Layer Composite Spherical Pressure Vessels

Yıl 2017, Cilt: 20 Sayı: 1, 9 - 16, 01.03.2017

Öz

The yielding of two-layer composite spherical pressure vessels under either internal or external pressure is investigated analytically
in the framework of small deformations and von Mises yield criterion. It is shown for both pressure cases that depending on the
material properties and sphere dimensions, different modes of plasticization may take place. Unlike the deformation behavior of a
single layer spherical pressure vessel, yielding may commence at the inner layer or at the outer layer or simultaneously at both
layers of the assembly.

Kaynakça

  • 1. Timoshenko S.P., Goodier J.N., “Theory of Elasticity”, 3rd ed., McGraw-Hill, New York, (1970).
  • 2. Mendelson A., “Plasticity: Theory and Application”, Macmillan, New York, (1968).
  • 3. Noda N., Hetnarski R.B., Tanigawa Y.,”Thermal Stresses”,2nd ed., Taylor and Francis, New York, (2003).
  • 4. Jiang W., “Hollow spheres subjected to sustained and variable loads”, Journal of Engineering Mechanics- ASCE, 120: 1343-1368, (1994).
  • 5. Bufler H., “The arbitrarily and periodically laminated elastic hollow sphere: Exact solutions and homogenization”, Archive of Applied Mechanics, 68: 579- 588, (1998).
  • 6. Guven U., “On stress distributions in functionally graded isotropic spheres subjected to internal pressure”, Mechanics Research Communications, 28: 277-281, (2001).
  • 7. You L.H., Zhang J.J., You X.Y., “Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials”, International Journal of Pressure Vessels and Piping, 82: 347-354, (2005).
  • 8. Eslami M.R., Babaei M.H., Poultangari R., “Thermal and mechanical stresses in a functionally graded thick sphere”, International Journal of Pressure Vessels and Piping, 82: 522-527, (2005).
  • 9. Chen Y.Z., Lin X.Y., “Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials”, Computational Materials Science, 44: 581-587, (2008).
  • 10. Fukui Y., Yamanaka N., “Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure”, The Japan Society of Mechanical Engineers, 35: 379-385, (1992).
  • 11. Horgan C.O., Chen A.M., “The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials”, Journal of Elasticity, 55: 43-59, (1999).
  • 12. Tutuncu N.,” Stress in thick-walled FGM cylinders with exponentially-varying properties”, Engineering Structures, 29: 2032-2035, (2007).
  • 13. Akis T., “Elastoplastic analysis of functionally graded spherical pressure vessels”, Computational Materials Science, 46: 545-554, (2009).
  • 14. Eraslan A.N., Akis T., “Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube”, International Journal of Pressure Vessels and Piping, 83: 635-644, (2006).
  • 15. Jahromi B.H., Farrahi G.H., Maleki M., Hashemi H.N., Vaziri A., “Residual stresses in autofrettaged vessel made of functionally graded material”, Engineering Structures, 31: 2930-2935, (2009).
  • 16. Jahromi B.H., Ajdari A., Hashemi H.N., Vaziri A., “Autofrettage of layered functionally graded metal-ceramic composite vessels”, Composite Structures, 92: 1812-1822, (2010).
  • 17. Jabbari M., Sohrabpour S., Eslami M.R., “Mechanical and thermal stress in a functionally graded hollow cylinder due to radially symmetric loads”, International Journal of Pressure Vessels and Piping, 79: 493-497, (2002).
  • 18. Eraslan A.N., “Stresses in FGM pressure tubes under non-uniform temperature distribution”, Structural Engineering and Mechanics, 26: 393-408, (2007).
  • 19. Eraslan A.N., Akis T., “Deformation analysis of elastic-plastic two layer tubes subjected to pressure: An analytical approach”, Turkish Journal of Engineering and Environmental Sciences, 28: 261-268, (2004).
  • 20. Eraslan A.N., Akis T., “Yielding of two-layered shrink-fitted composite tubes subjected to radial pressure”, Forschung im Ingenieurwesen, 69: 187-196, (2005).
  • 21. Eraslan A.N., Akis T., “Stress analysis in strain hardening two-layer composite tubes subject to cyclic loading of internal pressure”, International Journal of Advances in Applied Mathematics and Mechanics, 3: 65-76, (2015).
  • 22. Eraslan A.N., Akis T., Akis E., “Deformation analysis of two-layer composite tubes under cyclic loading of external pressure”, Journal of Basic and Applied Research International, 13: 107-119, (2016).
  • 23. Ghannad M., Zamaninejad M., “Complete closed-form solution for pressurized heterogeneous thick spherical shells”, Mechanika, 18: 508-516, (2012).
  • 24. Sonachalam M., Ranjit Babu B.G., “Optimization of composite pressure vessel”, International Journal of Science and Research, 4: 1668-1670, (2013).
  • 25. Prakash K.S.J., Mastanaiah T., “Industrial spherical pressure vessel design and analysis using FEA”, International Journal of Computational Engineering Research, 4: 32-35, (2014).
  • 26. Anani Y., Rahimi G.H., “Stress analysis of thick pressure vessels composed of functionally graded incompressible hyperelastic materials”, International Journal of Mechanical Sciences, 104: 1-7, (2015).
  • 27. Hill R., “The Mathematical Theory of Plasticity”, Clarendon Press, Oxford, (1950).

On the Yielding of Two-Layer Composite Spherical Pressure Vessels

Yıl 2017, Cilt: 20 Sayı: 1, 9 - 16, 01.03.2017

Öz

The yielding of two-layer composite spherical pressure vessels under either internal or external pressure is investigated analytically

in the framework of small deformations and von Mises yield criterion. It is shown for both pressure cases that depending on the

material properties and sphere dimensions, different modes of plasticization may take place. Unlike the deformation behavior of a

single layer spherical pressure vessel, yielding may commence at the inner layer or at the outer layer or simultaneously at both

layers of the assembly.

Kaynakça

  • 1. Timoshenko S.P., Goodier J.N., “Theory of Elasticity”, 3rd ed., McGraw-Hill, New York, (1970).
  • 2. Mendelson A., “Plasticity: Theory and Application”, Macmillan, New York, (1968).
  • 3. Noda N., Hetnarski R.B., Tanigawa Y.,”Thermal Stresses”,2nd ed., Taylor and Francis, New York, (2003).
  • 4. Jiang W., “Hollow spheres subjected to sustained and variable loads”, Journal of Engineering Mechanics- ASCE, 120: 1343-1368, (1994).
  • 5. Bufler H., “The arbitrarily and periodically laminated elastic hollow sphere: Exact solutions and homogenization”, Archive of Applied Mechanics, 68: 579- 588, (1998).
  • 6. Guven U., “On stress distributions in functionally graded isotropic spheres subjected to internal pressure”, Mechanics Research Communications, 28: 277-281, (2001).
  • 7. You L.H., Zhang J.J., You X.Y., “Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials”, International Journal of Pressure Vessels and Piping, 82: 347-354, (2005).
  • 8. Eslami M.R., Babaei M.H., Poultangari R., “Thermal and mechanical stresses in a functionally graded thick sphere”, International Journal of Pressure Vessels and Piping, 82: 522-527, (2005).
  • 9. Chen Y.Z., Lin X.Y., “Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials”, Computational Materials Science, 44: 581-587, (2008).
  • 10. Fukui Y., Yamanaka N., “Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure”, The Japan Society of Mechanical Engineers, 35: 379-385, (1992).
  • 11. Horgan C.O., Chen A.M., “The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials”, Journal of Elasticity, 55: 43-59, (1999).
  • 12. Tutuncu N.,” Stress in thick-walled FGM cylinders with exponentially-varying properties”, Engineering Structures, 29: 2032-2035, (2007).
  • 13. Akis T., “Elastoplastic analysis of functionally graded spherical pressure vessels”, Computational Materials Science, 46: 545-554, (2009).
  • 14. Eraslan A.N., Akis T., “Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube”, International Journal of Pressure Vessels and Piping, 83: 635-644, (2006).
  • 15. Jahromi B.H., Farrahi G.H., Maleki M., Hashemi H.N., Vaziri A., “Residual stresses in autofrettaged vessel made of functionally graded material”, Engineering Structures, 31: 2930-2935, (2009).
  • 16. Jahromi B.H., Ajdari A., Hashemi H.N., Vaziri A., “Autofrettage of layered functionally graded metal-ceramic composite vessels”, Composite Structures, 92: 1812-1822, (2010).
  • 17. Jabbari M., Sohrabpour S., Eslami M.R., “Mechanical and thermal stress in a functionally graded hollow cylinder due to radially symmetric loads”, International Journal of Pressure Vessels and Piping, 79: 493-497, (2002).
  • 18. Eraslan A.N., “Stresses in FGM pressure tubes under non-uniform temperature distribution”, Structural Engineering and Mechanics, 26: 393-408, (2007).
  • 19. Eraslan A.N., Akis T., “Deformation analysis of elastic-plastic two layer tubes subjected to pressure: An analytical approach”, Turkish Journal of Engineering and Environmental Sciences, 28: 261-268, (2004).
  • 20. Eraslan A.N., Akis T., “Yielding of two-layered shrink-fitted composite tubes subjected to radial pressure”, Forschung im Ingenieurwesen, 69: 187-196, (2005).
  • 21. Eraslan A.N., Akis T., “Stress analysis in strain hardening two-layer composite tubes subject to cyclic loading of internal pressure”, International Journal of Advances in Applied Mathematics and Mechanics, 3: 65-76, (2015).
  • 22. Eraslan A.N., Akis T., Akis E., “Deformation analysis of two-layer composite tubes under cyclic loading of external pressure”, Journal of Basic and Applied Research International, 13: 107-119, (2016).
  • 23. Ghannad M., Zamaninejad M., “Complete closed-form solution for pressurized heterogeneous thick spherical shells”, Mechanika, 18: 508-516, (2012).
  • 24. Sonachalam M., Ranjit Babu B.G., “Optimization of composite pressure vessel”, International Journal of Science and Research, 4: 1668-1670, (2013).
  • 25. Prakash K.S.J., Mastanaiah T., “Industrial spherical pressure vessel design and analysis using FEA”, International Journal of Computational Engineering Research, 4: 32-35, (2014).
  • 26. Anani Y., Rahimi G.H., “Stress analysis of thick pressure vessels composed of functionally graded incompressible hyperelastic materials”, International Journal of Mechanical Sciences, 104: 1-7, (2015).
  • 27. Hill R., “The Mathematical Theory of Plasticity”, Clarendon Press, Oxford, (1950).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tolga Akış

Yayımlanma Tarihi 1 Mart 2017
Gönderilme Tarihi 23 Ocak 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 20 Sayı: 1

Kaynak Göster

APA Akış, T. (2017). On the Yielding of Two-Layer Composite Spherical Pressure Vessels. Politeknik Dergisi, 20(1), 9-16.
AMA Akış T. On the Yielding of Two-Layer Composite Spherical Pressure Vessels. Politeknik Dergisi. Mart 2017;20(1):9-16.
Chicago Akış, Tolga. “On the Yielding of Two-Layer Composite Spherical Pressure Vessels”. Politeknik Dergisi 20, sy. 1 (Mart 2017): 9-16.
EndNote Akış T (01 Mart 2017) On the Yielding of Two-Layer Composite Spherical Pressure Vessels. Politeknik Dergisi 20 1 9–16.
IEEE T. Akış, “On the Yielding of Two-Layer Composite Spherical Pressure Vessels”, Politeknik Dergisi, c. 20, sy. 1, ss. 9–16, 2017.
ISNAD Akış, Tolga. “On the Yielding of Two-Layer Composite Spherical Pressure Vessels”. Politeknik Dergisi 20/1 (Mart 2017), 9-16.
JAMA Akış T. On the Yielding of Two-Layer Composite Spherical Pressure Vessels. Politeknik Dergisi. 2017;20:9–16.
MLA Akış, Tolga. “On the Yielding of Two-Layer Composite Spherical Pressure Vessels”. Politeknik Dergisi, c. 20, sy. 1, 2017, ss. 9-16.
Vancouver Akış T. On the Yielding of Two-Layer Composite Spherical Pressure Vessels. Politeknik Dergisi. 2017;20(1):9-16.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.