Sosyal ağ, son yıllarda bir veya daha fazla
ilişkiyle birbirine bağlanan internet kullanıcıları arasında oldukça popüler
bir iletişim aracı haline gelmiştir. Binlerce hatta milyonlarca kullanıcı,
sosyal ağ toplulukları aracılığıyla her gün yaşamın farklı yönleriyle ilgili
görüş ve deneyimlerini birbirleriyle paylaşmaktadırlar. Sosyal ağ üzerindeki üyelerden
gelen yorumların içeriğinin olumlu veya olumsuz olması, sosyal ağ grubundaki
üyeler arasında büyük bir merak uyandırabilmektedir. Sosyal ağları anlamak,
kullanıcılar arasındaki yapısal ilişki ve etkileşim kalıplarının analizini
gerektirmektedir. Bu bildiri çalışmasında, sosyal ağlarda yorum içerik tahmini
için bulanık mantık tabanlı metinsel anlam çıkarım yaklaşımının analizi
gerçekleştirilmiştir. Sosyal ağlarda üyelerin açtığı bir konuya yapılan
yorumların olumlu olması kullanıcıların bu yorumu okuma oranını artırmaktadır.
Bu kapsamda, anlamsal çıkarım yaklaşımımızda bir yorum içeriğinin olumlu veya
olumsuz olabileceği bulanık mantık yardımıyla analiz edilmektedir. Bulanık
mantık sistemindeki giriş değerlerine göre, ilgili yorumun olumlu veya olumsuz
olabileceği ile ilgili bir sonuca varılmaktadır. Elde edilen sistem
sonuçlarının büyük oranda doğru sonuçlar verdiği göz önüne alınarak, bulanık
mantık tabanlı anlamsal çıkarım yaklaşımımızın birçok sosyal ağda
kullanılabileceğini düşünmekteyiz.
[1] Kao L., Huang Y., “Social network influential users' sentiment degree measurement based on fuzzy logic,” 2016 International Conference on Fuzzy Theory and Its Applications (iFuzzy), Taichung, 1-6, (2016).
[2] Bairagi V., Tapaswi N., “Social network comment classification using fuzzy based classifier technique,” 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, 1-7, (2016).
[3] Medina J., Pakhomova K., Ramírez-Poussa E., “Interpreting and analyzing a location-based social network by fuzzy formal contexts,” 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, 1-6, (2017).
[4] Raj E. D., Babu L. D. D., “A model fuzzy inference system for online social network analysis,” 2015 International Conference on Computing and Network Communications (CoCoNet), Trivandrum, 582-588, (2015).
[5] Fan T., Liau C., Lin T., “Positional Analysis in Fuzzy Social Networks,” 2007 IEEE International Conference on Granular Computing (GRC 2007), Fremont, CA, 423-423, (2007).
[6] Ben Sassi I., Ben Yahia S., Mellouli S., “Fuzzy classification-based emotional context recognition from online social networks messages,” 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, 1-6, (2017).
[7] Brunelli M., Fedrizzi M., “A Fuzzy Approach to Social Network Analysis,” 2009 International Conference on Advances in Social Network Analysis and Mining, Athens, 225-230, (2009).
[8] Sheugh L., Alizadeh S. H., “A fuzzy aproach for determination trust threshold in recommender systems based on social network,” 2015 9th International Conference on e-Commerce in Developing Countries: With focus on e-Business (ECDC), Isfahan, 1-5, (2015).
[9] Es-Haghi M., Bastani S., “Evaluating coordination in emergency response team by using fuzzy logic through social network analysis,” 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, TX, 1-6, (2016).
[10] Dhouioui Z., Tlich H., Toujeni R., Akaichi J., “A fuzzy model for friendship prediction in healthcare social networks,” 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, 1050-1054, (2016).
[11] Ju B., “An Initial Exploration on Intelligent Contents to Social Network Research Via Fuzzy Based Data Mining,” 2012 Third World Congress on Software Engineering, Wuhan, 151-154, (2012).
[12] Nair P. S., Sarasamma S. T., “Data Mining Through Fuzzy Social Network Analysis,” NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, 251-255, (2007).
[13] Romsaiyud W., Premchaiswadi W., “Applying mining fuzzy sequential patterns technique to predict the leadership in social networks,” 2011 Ninth International Conference on ICT and Knowledge Engineering, Bangkok, 134-137, (2012).
[14] Luneva E. E., Banokin P. I., Zamyatina V. S., Ivantsov S. V., “Natural language text parsing for social network user sentiment analysis based on fuzzy sets,” 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk, 1-5, (2015).
[15] Yeh Y., Lu D., Hung J., “Combining Fuzzy Systems and Social Networking Sites Design to Alarm Clocks Using the Android System,” 2012 International Symposium on Computer, Consumer and Control, Taichung, 28-31, (2012).
[16] Lesani M., Bagheri S., “Fuzzy Trust Inference in Trust Graphs and its Application in Semantic Web Social Networks,” 2006 World Automation Congress, Budapest, 1-6, (2006).
[17] Yavanoğlu U., Sağıroğlu Ş., Çolak İ., “Sosyal Ağlarda Bilgi Güvenliği Tehditleri ve Alınması Gereken Önlemler”, Politeknik Dergisi, 15: 15-27, (2012).
Analysis of Fuzzy Logic based Textual Meaning Inference Approach for Comment Content Estimation in Social Networks
In recent years,
social networking has become a very popular communication tool among internet
users connected by one or more relationships. Thousands or even millions of
users share their experiences and opinions on different aspects of life
everyday through social networking communities. The positive or negative content
of the comments posted by the members of the social network can arouse great
interest among the members of the social network group. Understanding social
networks requires the analysis of structural relationships and interaction
patterns between users. In this paper, an analysis of fuzzy logic based textual
meaning inference analysis was performed for the estimation of content in
social networks. The positive comments made by the members on the social
networks have the positive effect for the users to read comments. In this
context, our semantic inference approach is analyzed with the help of fuzzy
logic where the content of comment can be positive or negative. According to
the input values in the fuzzy logic system, the relevant interpretation can be
positive or negative. Considering that the results of the obtained system
yields highly accurate results, we think that our fuzzy logic based semantic
inference approach can be used in many social networks.
[1] Kao L., Huang Y., “Social network influential users' sentiment degree measurement based on fuzzy logic,” 2016 International Conference on Fuzzy Theory and Its Applications (iFuzzy), Taichung, 1-6, (2016).
[2] Bairagi V., Tapaswi N., “Social network comment classification using fuzzy based classifier technique,” 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, 1-7, (2016).
[3] Medina J., Pakhomova K., Ramírez-Poussa E., “Interpreting and analyzing a location-based social network by fuzzy formal contexts,” 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, 1-6, (2017).
[4] Raj E. D., Babu L. D. D., “A model fuzzy inference system for online social network analysis,” 2015 International Conference on Computing and Network Communications (CoCoNet), Trivandrum, 582-588, (2015).
[5] Fan T., Liau C., Lin T., “Positional Analysis in Fuzzy Social Networks,” 2007 IEEE International Conference on Granular Computing (GRC 2007), Fremont, CA, 423-423, (2007).
[6] Ben Sassi I., Ben Yahia S., Mellouli S., “Fuzzy classification-based emotional context recognition from online social networks messages,” 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, 1-6, (2017).
[7] Brunelli M., Fedrizzi M., “A Fuzzy Approach to Social Network Analysis,” 2009 International Conference on Advances in Social Network Analysis and Mining, Athens, 225-230, (2009).
[8] Sheugh L., Alizadeh S. H., “A fuzzy aproach for determination trust threshold in recommender systems based on social network,” 2015 9th International Conference on e-Commerce in Developing Countries: With focus on e-Business (ECDC), Isfahan, 1-5, (2015).
[9] Es-Haghi M., Bastani S., “Evaluating coordination in emergency response team by using fuzzy logic through social network analysis,” 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, TX, 1-6, (2016).
[10] Dhouioui Z., Tlich H., Toujeni R., Akaichi J., “A fuzzy model for friendship prediction in healthcare social networks,” 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, 1050-1054, (2016).
[11] Ju B., “An Initial Exploration on Intelligent Contents to Social Network Research Via Fuzzy Based Data Mining,” 2012 Third World Congress on Software Engineering, Wuhan, 151-154, (2012).
[12] Nair P. S., Sarasamma S. T., “Data Mining Through Fuzzy Social Network Analysis,” NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, 251-255, (2007).
[13] Romsaiyud W., Premchaiswadi W., “Applying mining fuzzy sequential patterns technique to predict the leadership in social networks,” 2011 Ninth International Conference on ICT and Knowledge Engineering, Bangkok, 134-137, (2012).
[14] Luneva E. E., Banokin P. I., Zamyatina V. S., Ivantsov S. V., “Natural language text parsing for social network user sentiment analysis based on fuzzy sets,” 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk, 1-5, (2015).
[15] Yeh Y., Lu D., Hung J., “Combining Fuzzy Systems and Social Networking Sites Design to Alarm Clocks Using the Android System,” 2012 International Symposium on Computer, Consumer and Control, Taichung, 28-31, (2012).
[16] Lesani M., Bagheri S., “Fuzzy Trust Inference in Trust Graphs and its Application in Semantic Web Social Networks,” 2006 World Automation Congress, Budapest, 1-6, (2006).
[17] Yavanoğlu U., Sağıroğlu Ş., Çolak İ., “Sosyal Ağlarda Bilgi Güvenliği Tehditleri ve Alınması Gereken Önlemler”, Politeknik Dergisi, 15: 15-27, (2012).