Araştırma Makalesi
BibTex RIS Kaynak Göster

Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

Composite materials are widely used in primary aerospace structures such as wing components and fuselage panels; however, their major disadvantage is their vulnerability to transverse impact loads that can lead to internal delamination and fibre/matrix separation.

In this study, the effect of a low-velocity impact which simulates bird impact on a honeycomb sandwich composite plates produced by a co-curing technique for a typical unmanned air vehicle (UAV) was studied both experimentally and numerically. The surface plates of the composite samples were produced from carbon fibre/epoxy prepreg material. Nomex honeycomb core material was used to make the composite sandwich structure via an autoclave process. For the bird-like impact test, the tip of the impactor was coated with thick, tough rubber to simulate a bird strike; the diameter of the impactor was 25 mm to ensure similarity with a bird called Pica nuttalli (magpie), which has a mass of 155 g and is the closest bird body to the simulations. Three different predetermined impact scenarios with kinetic energy 380 Joule, 276 Joule, and 224 Joule were applied to the samples with rubber impactors of similar density, to simulate bird impact events with different impact directions.

The impact behaviour was characterised by velocity-time, force-time, and displacement-time graphs. Different levels of damage were observed in the composite samples, but none of the sandwich test samples were perforated, and it could therefore be concluded that the unmanned air vehicle could land without risk to flight safety. This low-velocity bird-like impact was also modelled and analysed using a numerical program to verify the results, and it was concluded that the verified model could also be used for the preliminary design verification of dynamic bird-impact tests within the 10% sensitivity range.

Kaynakça

  • [1] www.faa.gov,‘’Wildlife-Strike-Report-1990-2022’’ (2022).
  • [2] Isabel M, Joost E, Thorsten M, et al. ‘’The bird strike challenge’’ J. Aerosp. MDPI, 7(3), 7–26, (2020).
  • [3] Aniello R, Roberta C, and Salvatore S. ‘’A brief introduction to the bird strike numerical simulation’’ Am. J. Eng. Appl. Sci., 9(4), 946–950, (2016).
  • [4] Hedayati, R., Ziaei-Rad, S. “A New Bird Model and the Effect of Bird Geometry in Impacts From Various Orientations”, Aerospace Science and Technology, vol. 28, p. 9–20, (2013).
  • [5] Saribas M. F. ,and Karadeniz S., “Numerical Investigation of Bird Strike on an Aircraft Wing Leading Edge by Smooth Particle Hydrodynamics Method,” Gazi Journal of Engineering Sciences, 8, (3): 547-566, (2022).
  • [6] Tatlier, M. S., ‘’A Numerical Investigation of a Bird Strike on the Structure of an Aircraft Wing Leading Edge’’, European Mechanical Science, 4(1): 37-40, (2020).
  • [7] James W. ‘’Impact Behavior of Low Strength Projectiles; Technical Report AFML-TR-77-134’’, Air Force Materials Laboratory: Dayton, OH, USA, (1977).
  • [8] John B, Henry T and James W. ‘’Bird Impact Forces and Pressures on Rigid and Compliant Targets; Technical Report AFFDL-TR-77-60’’ Air Force Flight NTIS. OHIO, (1976).
  • [9] Janusz C, Ewelina K and Artur G. ‘’Experimental and Numerical Investigations of Bird Models for Bird Strike Analysis’’ Energies. 15: 3699–3725, (2022).
  • [10] Liu J, Yulong L, Xiaosheng G, et al. ‘’Numerical model for bird strike on sidewall structure of an aircraft nose’’ Chinese J. Aeronaut., 27(3): 542–549, (2014).
  • [11] Michele G, Francesco M, Michele M, et al. ‘’Analysis of bird impact on a composite tailplane leading edge’’ Appl. Compos. Mater., 15: 241–257, (2008).
  • [12] Liu, J., Li, Y., Gao, X. “Bird Strike on a Flat Plate: Experiments and Numerical Simulations”, International Journal of Impact Engineering, 70: 21-37, (2014).
  • [13] Sun G, Huo X. , Wang H.,Hazel P. J.l, Li Q. ‘’On the structural parameters of honeycomb-core sandwich panels against low-velocity impact’’ Composites Part B 216: 108881, (2021).
  • [14] Mahesh V., Mahesh V., Harursampath D., ‘’Low-Velocity Impact Response of the Composite Sandwich Panels’’ Sandwich Composites, Edition1st Edition, CRC Press, 16, (2022).
  • [15] Hasilci Z., Bogoçlu M. E., ‘’Determining the effect of bird parameters on bird strikes to commercial passenger aircraft using the central composite design method’’, IJAA, 2(1): 1-8, (2021).
  • [16] Georgiadis, S., Gunnion, A.J., Thomson, R.S., Cartwright, B.K.,’’ Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge’’ Composite Structures 86(1–3): 258–68.
  • [17] Ergene B. And Yalcin B., “Finite element analyzing of the effect of crack on mechanical behavior of honeycomb and re-entrant structures”, Politeknik Dergisi, 23(4): 1015-1025, (2020).
  • [18] Sen F. and Pakdil M., ‘’Effect of Stacking Sequences on Failure Behavior of Pinned E-Glass/Epoxy Composite Plates’’, Journal of Polytechnic, 11(2): 147-151, (2008).
  • [19] Beomkeun K, Seong L, Jayone L, et al. ‘’Comparison among neo-hookean model, moone, rivlin-model, and ogden model for chloroprene rubber’’ Int. J. Precis. Eng. Manuf., 13(5): 759–764,( 2012).
  • [20] Sebastian H, Björn VDB, Yann K, et al. ‘’Rubber impact on 3D textile composites’’ Appl. Compos. Mater., 19: 275–295, (2012).
  • [21] Abrate, S., “Soft Impacts on Aerospace Structures”, Progress in Aerospace Sciences, 81: p. 1–17,( 2016).
  • [22] Dau F., Dano M.L., Kergomard Y. D., ‘’Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading,’’ Composite Structures ,153: Pages 369-379, (2016).
  • [23] Fard A. T., Khodadadi A., Liaghat G., Yao X.F., Mehrizi M.A.Z,’’ Mechanical properties and energy absorption capacity of chopped fiber reinforced natural rubber.’’ Composites Part C, 7: 100237, (2022).
  • [24] Balaban A., Kong T and Meltem T. ‘’Low Velocity Impact Behaviour of Sandwich Composite Structures with E-Glass/Epoxy Facesheets and PVC Foam’’ Procedia Struct., 18: 577–585, (2019).
  • [25] Ozsoy M. İ., ‘’Impactor Diameter and Ply Number Effects on the Impact Behavior of Carbon Fiber Composite Laminates’’, GU J Sci, Part C, 10(3): 439-454, (2022).
  • [26] Sahin Omer S., Gunes A., Karadag H. B., ‘’Effect of Impactor Mass on Dynamic Response and Retention Properties of Composite Plates under Successive Impacts’’, CBU J. of Sci., 12(1): p 27-37.
  • [27] Evran S., “Investigation of effects of fiber orientation angles on deflection behavior of cantilever laminated composite square plates”, Politeknik Dergisi, 23(3): 633-639, (2020).
  • [28] Wojciech D, Andrzej K and Angelika K. ‘’Analysis of selected parameters in numerical modeling of low-velocity impact damage in composite structures’’ Procedia Struct. 25: 19–26, (2020).
  • [29] Tim B. ‘’The Magpies: The Ecology and Behaviour of Black-Billed and Yellow-Billed Magpies’’ T & AD Poyser, London, (1991).
  • [30] Bret T and Kenneth D. ‘’Flight kinematics of black-billed magpies and pigeons over a wide range of speeds’’ J. Exp. Biol., 199: 263–280, (1996).
  • [31] Barber, John P. ; Taylor, Henry R. ; Wilbeck, J.S., ‘’Bird impact forces and pressures on rigid and compliant targets’’ University of Dayton Ohio Research Institute, (1978).
  • [32] Young‑Soo Yang, Kang‑Yul Bae, ''The Modeling and Design of a Linear Variable Differential Transformer'', IJPEM, 23: 153–162, (2022).

KOMPOZİT GÖVDELİ HAVA ARAÇLARINA DÜŞÜK HIZLI KUŞ ÇARPMASININ PERFORMANSA ETKİSİ

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

Bu çalışmada, bir hava aracının kalkış ve inişlerinde meydana gelebilecek kuş çarpma olaylarında bal peteği (honeycomb) yapılı kompozit yapıların hasar davranışı hakkında deneysel ve sayısal çalışmayı öngören bir araştırma sunulmaktadır. Hava araçlarında sıklıkla kullanılan kompozit malzemelerin düşük hızlı çarpma sonucunda perfore olmaması yani hava aracı içine ulaşmaması beklenmektedir. Kompozit malzemede düşük hızlı çarpma davranışını ve meydana gelen hasar tiplerini incelemek amacıyla 75mm x 75 mm ölçülerindeki bal peteği yapılı kompozit numunelerin yüzey plakaları prepreg karbon fiber malzemeden üretilmiştir. Kompozit malzemenin alt ve üst yüzey plakaları eşit kalınlıktadır. Kuş çarpmasını kısmen simüle edecek impektör uç kısmı 25 mm çapında ve kuş çarpma deneylerinde kullanılan impektör geometrisine uygun şekilde küresel kauçuk malzemeden imal edilmiştir. Kauçuk impektör ile kompozit malzemeye 380 joule, 276 joule ve 224 joule’ lük üç farklı düzeyde enerji seviyesi uygulanmıştır. Numune yüzeylerinde gözlemlenen hasarlar, hız-zaman, kuvvet-zaman, deplasman-zaman, enerji-zaman ve deplasman-enerji grafikleri ile karakterize edilmiştir. İnsansız hava aracına, 165 gram ağırlığındaki saksağan kuşunun 68 m/sn hızı ile çarpması sonucunda perforasyon oluşumu gözlemlenmemiştir. Bu duruma bağlı olarak, uçuş emniyetini riske etmeden hava aracının güvenli şekilde iniş yapabileceği değerlendirilmektedir. Ansys sayısal modelleme programı kullanarak yapılan sayısal analizlerle deneysel sonuçlar mukayese edilmiş ve hasar yüzeyleri incelenmiştir. Deneysel ve sayısal çalışmaların sonucunda birbirine yakın neticeler elde edilmiştir. Elde edilen model %10 maksimum sapma ile statik ve dinamik testlerin ön tasarım doğrulamasında kullanılabilecektir.

Kaynakça

  • [1] www.faa.gov,‘’Wildlife-Strike-Report-1990-2022’’ (2022).
  • [2] Isabel M, Joost E, Thorsten M, et al. ‘’The bird strike challenge’’ J. Aerosp. MDPI, 7(3), 7–26, (2020).
  • [3] Aniello R, Roberta C, and Salvatore S. ‘’A brief introduction to the bird strike numerical simulation’’ Am. J. Eng. Appl. Sci., 9(4), 946–950, (2016).
  • [4] Hedayati, R., Ziaei-Rad, S. “A New Bird Model and the Effect of Bird Geometry in Impacts From Various Orientations”, Aerospace Science and Technology, vol. 28, p. 9–20, (2013).
  • [5] Saribas M. F. ,and Karadeniz S., “Numerical Investigation of Bird Strike on an Aircraft Wing Leading Edge by Smooth Particle Hydrodynamics Method,” Gazi Journal of Engineering Sciences, 8, (3): 547-566, (2022).
  • [6] Tatlier, M. S., ‘’A Numerical Investigation of a Bird Strike on the Structure of an Aircraft Wing Leading Edge’’, European Mechanical Science, 4(1): 37-40, (2020).
  • [7] James W. ‘’Impact Behavior of Low Strength Projectiles; Technical Report AFML-TR-77-134’’, Air Force Materials Laboratory: Dayton, OH, USA, (1977).
  • [8] John B, Henry T and James W. ‘’Bird Impact Forces and Pressures on Rigid and Compliant Targets; Technical Report AFFDL-TR-77-60’’ Air Force Flight NTIS. OHIO, (1976).
  • [9] Janusz C, Ewelina K and Artur G. ‘’Experimental and Numerical Investigations of Bird Models for Bird Strike Analysis’’ Energies. 15: 3699–3725, (2022).
  • [10] Liu J, Yulong L, Xiaosheng G, et al. ‘’Numerical model for bird strike on sidewall structure of an aircraft nose’’ Chinese J. Aeronaut., 27(3): 542–549, (2014).
  • [11] Michele G, Francesco M, Michele M, et al. ‘’Analysis of bird impact on a composite tailplane leading edge’’ Appl. Compos. Mater., 15: 241–257, (2008).
  • [12] Liu, J., Li, Y., Gao, X. “Bird Strike on a Flat Plate: Experiments and Numerical Simulations”, International Journal of Impact Engineering, 70: 21-37, (2014).
  • [13] Sun G, Huo X. , Wang H.,Hazel P. J.l, Li Q. ‘’On the structural parameters of honeycomb-core sandwich panels against low-velocity impact’’ Composites Part B 216: 108881, (2021).
  • [14] Mahesh V., Mahesh V., Harursampath D., ‘’Low-Velocity Impact Response of the Composite Sandwich Panels’’ Sandwich Composites, Edition1st Edition, CRC Press, 16, (2022).
  • [15] Hasilci Z., Bogoçlu M. E., ‘’Determining the effect of bird parameters on bird strikes to commercial passenger aircraft using the central composite design method’’, IJAA, 2(1): 1-8, (2021).
  • [16] Georgiadis, S., Gunnion, A.J., Thomson, R.S., Cartwright, B.K.,’’ Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge’’ Composite Structures 86(1–3): 258–68.
  • [17] Ergene B. And Yalcin B., “Finite element analyzing of the effect of crack on mechanical behavior of honeycomb and re-entrant structures”, Politeknik Dergisi, 23(4): 1015-1025, (2020).
  • [18] Sen F. and Pakdil M., ‘’Effect of Stacking Sequences on Failure Behavior of Pinned E-Glass/Epoxy Composite Plates’’, Journal of Polytechnic, 11(2): 147-151, (2008).
  • [19] Beomkeun K, Seong L, Jayone L, et al. ‘’Comparison among neo-hookean model, moone, rivlin-model, and ogden model for chloroprene rubber’’ Int. J. Precis. Eng. Manuf., 13(5): 759–764,( 2012).
  • [20] Sebastian H, Björn VDB, Yann K, et al. ‘’Rubber impact on 3D textile composites’’ Appl. Compos. Mater., 19: 275–295, (2012).
  • [21] Abrate, S., “Soft Impacts on Aerospace Structures”, Progress in Aerospace Sciences, 81: p. 1–17,( 2016).
  • [22] Dau F., Dano M.L., Kergomard Y. D., ‘’Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading,’’ Composite Structures ,153: Pages 369-379, (2016).
  • [23] Fard A. T., Khodadadi A., Liaghat G., Yao X.F., Mehrizi M.A.Z,’’ Mechanical properties and energy absorption capacity of chopped fiber reinforced natural rubber.’’ Composites Part C, 7: 100237, (2022).
  • [24] Balaban A., Kong T and Meltem T. ‘’Low Velocity Impact Behaviour of Sandwich Composite Structures with E-Glass/Epoxy Facesheets and PVC Foam’’ Procedia Struct., 18: 577–585, (2019).
  • [25] Ozsoy M. İ., ‘’Impactor Diameter and Ply Number Effects on the Impact Behavior of Carbon Fiber Composite Laminates’’, GU J Sci, Part C, 10(3): 439-454, (2022).
  • [26] Sahin Omer S., Gunes A., Karadag H. B., ‘’Effect of Impactor Mass on Dynamic Response and Retention Properties of Composite Plates under Successive Impacts’’, CBU J. of Sci., 12(1): p 27-37.
  • [27] Evran S., “Investigation of effects of fiber orientation angles on deflection behavior of cantilever laminated composite square plates”, Politeknik Dergisi, 23(3): 633-639, (2020).
  • [28] Wojciech D, Andrzej K and Angelika K. ‘’Analysis of selected parameters in numerical modeling of low-velocity impact damage in composite structures’’ Procedia Struct. 25: 19–26, (2020).
  • [29] Tim B. ‘’The Magpies: The Ecology and Behaviour of Black-Billed and Yellow-Billed Magpies’’ T & AD Poyser, London, (1991).
  • [30] Bret T and Kenneth D. ‘’Flight kinematics of black-billed magpies and pigeons over a wide range of speeds’’ J. Exp. Biol., 199: 263–280, (1996).
  • [31] Barber, John P. ; Taylor, Henry R. ; Wilbeck, J.S., ‘’Bird impact forces and pressures on rigid and compliant targets’’ University of Dayton Ohio Research Institute, (1978).
  • [32] Young‑Soo Yang, Kang‑Yul Bae, ''The Modeling and Design of a Linear Variable Differential Transformer'', IJPEM, 23: 153–162, (2022).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Faruk Elaldı 0000-0003-0592-6868

Erken Görünüm Tarihi 11 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 27 Şubat 2024
Kabul Tarihi 16 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Elaldı, F. (2024). Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure. Politeknik Dergisi1-1.
AMA Elaldı F. Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure. Politeknik Dergisi. Published online 01 Temmuz 2024:1-1.
Chicago Elaldı, Faruk. “Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure”. Politeknik Dergisi, Temmuz (Temmuz 2024), 1-1.
EndNote Elaldı F (01 Temmuz 2024) Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure. Politeknik Dergisi 1–1.
IEEE F. Elaldı, “Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure”, Politeknik Dergisi, ss. 1–1, Temmuz 2024.
ISNAD Elaldı, Faruk. “Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure”. Politeknik Dergisi. Temmuz 2024. 1-1.
JAMA Elaldı F. Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure. Politeknik Dergisi. 2024;:1–1.
MLA Elaldı, Faruk. “Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure”. Politeknik Dergisi, 2024, ss. 1-1.
Vancouver Elaldı F. Low Velocity Bird-Like Impact Behavior on Honeycomb Composite Structure. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.