Derleme
BibTex RIS Kaynak Göster

Powder Metal Al Foams: Production, Types and Usage Areas

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1463820

Öz

Metallic foams, which have been extensively studied recently, are combinations of substances in gas and solid state with a porous structure of between 40% and 90%. Due to its low density and high energy absorption properties, it comes to the fore in the automotive industry, as well as in the space and defense industry. Metallic foams, which have unique properties, are materials with high strength, low thermal conductivity and high energy absorption capacity, despite their high porosity rate. Foam materials have become attractive to vehicle designers due to their lightness and energy absorbing properties, and they aim to minimize the damage that may occur in the vehicle during a collision. In addition, in today's world where energy and environment issues are important, reducing vehicle weight will reduce fuel consumption and increase efficiency while minimizing the damage to the environment. In this article, after giving general information about closed-pore Al-based metallic foam materials produced by the powder metallurgy method, detailed information is given about reinforced and unreinforced foam production, sandwich foam production, spherical foam production and metallic foam-filled profile production, which are special production methods. Additionally, general information is given about the construction of integral armor material, which is a new application, and other general applications.

Kaynakça

  • [1] Sharma, S.S., S. Yadav, A. Joshi, A. Goyal and R. Khatri, "Application of metallic foam in vehicle structure: A review". Materials Today: Proceedings, 347-353, (2022).
  • [2] Koza, E., M. Leonowicz, S. Wojciechowski and F. Simancik, "Compressive strength of aluminium foams". Materials letters, 132-135, (2004).
  • [3] Madgule, M., C. Sreenivasa and A.V. Borgaonkar, "Aluminium metal foam production methods, properties and applications-a review". Materials Today: Proceedings,: 673-679, (2023).
  • [4] Atwater, M.A., L.N. Guevara, K.A. Darling and M.A. Tschopp, "Solid state porous metal production: A review of the capabilities, characteristics, and challenges". Advanced Engineering Materials, 1700766, (2018).
  • [5] Gibson, L.J., "Mechanical behavior of metallic foams". Annual Review of Materials Science, 191-227, (2000).
  • [6] Hanssen, A.G., M. Langseth and O.S. Hopperstad, "Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler". International journal of impact engineering, 475-507, (2000).
  • [7] Schwingel, D.D., D.H.-W. Seeliger, M.C. Vecchionacci, M.D. Alwes and M.J. Dittrich, "Aluminium foam sandwich structures for space applications", 57th International Astronautical Congress, C2. 4.10, (2007).
  • [8] YU, H.-j., et al., "Sound insulation property of Al-Si closed-cell aluminum foam bare board material". Transactions of nonferrous metals society of China, 93-98, (2007).
  • [9] Peroni, L., M. Avalle and M. Peroni, "The mechanical behaviour of aluminium foam structures in different loading conditions". International journal of impact engineering, 644-658, (2008).
  • [10] Sha, J. and T. Yip, "In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading". Materials Science and Engineering: A, 91-103, (2004).
  • [11] Schwingela, D., H.-W. Seeligera, C. Vecchionaccib, D. Alwesc and J. Dittrichc, "Aluminium foam sandwich structures for space applications". Acta Astronautica: 326-330, (2007).
  • [12] Michailidis, N., F. Stergioudi and A. Tsouknidas, "Deformation and energy absorption properties of powder-metallurgy produced Al foams". Materials Science and Engineering: A, 7222-7227, (2011).
  • [13] Hangai, Y., et al., "Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys". Materials Science and Engineering: A, 597-603, (2015).
  • [14] Ghazi, A., P. Berke, C. Tiago and T. Massart, "Computed tomography based modelling of the behaviour of closed cell metallic foams using a shell approximation". Materials & Design, vol 194, 108866, (2020).
  • [15] Naeem, M.A., A. Gábora and T. Mankovits, "Influence of the manufacturing parameters on the compressive properties of closed cell aluminum foams". Periodica Polytechnica Mechanical Engineering, 172-178, (2020).
  • [16] Vesenjak, M. and Z. Ren, "Geometrical and mechanical analysis of various types of cellular metals". Ciência & Tecnologia dos Materiais, 9-13, (2016).
  • [17] Singh, S. and N. Bhatnagar, "A survey of fabrication and application of metallic foams (1925–2017)". Journal of Porous Materials, 537-554, (2018).
  • [18] Gauthier, M., L.-P. Lefebvre, Y. Thomas and M.N. Bureau, "Production of metallic foams having open porosity using a powder metallurgy approach". Materials and manufacturing processes, 793-811, (2004).
  • [19] Yalçın, N. and A. Ercil, "Döküm yöntemi ile açık gözenekli parça üretiminde gözenek boyutunun mekanik özelliklere etkisi", 2nd International Turkish World Engineering and Science Congress, Antalya, Türkiye 740-744, (2019).
  • [20] Uzun, A. and M. Turker, "The investigation of mechanical properties of B4C-reinforced AlSi7 foams". International Journal of Materials Research, 970-977, (2015).
  • [21] Kırmızı, G., H. Arık and H. Çinici, "Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites". Composites Part B: Engineering, 345-357, (2019).
  • [22] Zare, J. and H.D. Manesh, "A novel method for producing of steel tubes with Al foam core". Materials & Design, 1325-1330, (2011).
  • [23] Miyoshi, T., M. Itoh, S. Akiyama and A. Kitahara, "ALPORAS aluminum foam: production process, properties, and applications". Advanced engineering materials, 179-183, (2000).
  • [24] Yousefi, M.K., A. Kianirad and M. Vaseghi, "Simulation and investigation to the behavior of metallic foam as a bumper in automobile under impact loadings", The First International Conference on Mechanics of Advanced Materials and Equipment, (2018).
  • [25] Uzun, A., U. Gökmen, H. Cinici, H. Koruk and M. Turker, "Investigation of modal properties of AlSi7 foam produced by powder metallurgy technique". Materials Testing: 598-601, (2013).
  • [26] Türker, M., "Production of closed cell aluminum foam as armor support material", International Congress on Engineerıng Sciences and Multidisciplinary Approaches, İstanbul, Türkiye, (2021).
  • [27] Türker, M., "Aluminum based metallic foams produced via powder metallurgy process ", International Porous and Powder Materials Symposium and Exhibition, Çeşme, İzmir- Türkiye, 12-16, (2015).
  • [28] Han, M.S. and J.U. Cho, "Impact damage behavior of sandwich composite with aluminum foam core". Transactions of Nonferrous Metals Society of China, 42-46, (2014).
  • [29] Weise, J., D. Lehmhus and J. Baumeister, "Lightweight Structures Based on Aluminium Foam Granules". Lightweight Design worldwide, 6-11, (2017).
  • [30] Babcsán, N., J. Banhart and D. Leitlmeier, "Metal foams–manufacture and physics of foaming", Proceedings of the International Conference Advanced Metallic Materials, 5-15, (2003).
  • [31] Uzun, A., U. Gokmen, H. Cinici and M. Turker, "Effect of cutting parameters on the drilling of AlSi metallic foams". Material in Tehnologie/Materials and Technology, 19-24, (2017).
  • [32] Banhart, J., "Manufacture, characterisation and application of cellular metals and metal foams". Progress in materials science, 559-632, (2001).
  • [33] Gülenç, İ.T., "Patlama kaynağı ile kaynaklanmış sandviç yapıların köpürebilirliğinin araştırılması" Y.Lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2014).
  • [34] Uzun, A. and M. Turker, "Friction stir welding of foamable AlSi7 reinforced by B4C". International Journal of Materials Research, 558-565, (2016).
  • [35] Bernard, T., J. Burzer and H. Bergmann, "Mechanical properties of structures of semifinished products joined to aluminium foams". Journal of Materials Processing Technology, 20-24, (2001).
  • [36] Cambronero, L., I. Canadas, J. Ruiz-Román, M. Cisneros and F.C. Iglesias, "Weld structure of joined aluminium foams with concentrated solar energy". Journal of Materials Processing Technology, 2637-2643, (2014).
  • [37] Pelit, Y., A. Ayata, A. Kurt and M. Türker, "Toz metal Al malzemelerin köpürtme öncesi saplama kaynağı ile birleştirilmesi", 6th Int. Advanced Technologies Symposium (IATS11), Elazığ, Türkiye, 132-135, (2011).
  • [38] Changdar, A. and S.S. Chakraborty, "Laser processing of metal foam-A review". Journal of Manufacturing Processes, 208-225, (2021).
  • [39] Cambronero, L., J. Ruiz-Roman, F. Corpas and J.R. Prieto, "Manufacturing of Al–Mg–Si alloy foam using calcium carbonate as foaming agent". Journal of materials processing technology, 1803-1809, (2009).
  • [40] Orłowicz, A., M. Mróz, M. Tupaj and A. Trytek, "Materials used in the automotive industry". Archives of foundry engineering, (2015).
  • [41] Onck, P., R. Van Merkerk, J.T.M. De Hosson and I. Schmidt, "Fracture of Metal Foams: In‐situ Testing and Numerical Modeling". Advanced Engineering Materials,: 429-431, (2004).
  • [42] Lehmhus, D., M. Vesenjak, S. De Schampheleire and T. Fiedler, "From stochastic foam to designed structure: Balancing cost and performance of cellular metals", Materials, (2017).
  • [43] Turker, M., "Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques", Materials Science Forum, 39-46, (2011).
  • [44] Güden, M., S. Elbir and S. Yılmaz, "Kompozit alüminyum köpüklerin hazırlanması ve mekanik özelliklerinin belirlenmesi". II. Makine Malzemesi ve İmalat Teknolojisi Sempozyumu, (2015).
  • [45] Wang, Z., et al., "Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials". Applied Thermal Engineering, 117778, (2022).
  • [46] Gao, H., C. Wang, Z. Yang and Y. Zhang, "3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework". Composites Science and Technology, 108896, (2021).
  • [47] Sreenivasa, C. and K. Shivakumar, "A review on prodution of aluminium metal foams", IOP Conference Series: Materials Science and Engineering, 012081, (2018).
  • [48] Aida, S., H. Zuhailawati and A. Anasyida, "The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder". Procedia Engineering, 290-297, (2017).
  • [49] Kovacik, J. and F. Simancik, "Comparison of zinc and aluminium foam behaviour". Metallic Materials, Vol 42, Issue 42, 79-90, (2004).
  • [50] Tianjian, L., "Ultralight porous metals: from fundamentals to applications". Acta Mechanica Sinica, 457-479, (2002).
  • [51] Liu, J., et al., "The compressive properties of closed-cell Zn-22Al foams". Materials Letters, 683-685, (2008).
  • [52] Banhart, J., "Light‐metal foams-history of innovation and technological challenges". Advanced Engineering Materials, 82-111, (2013).
  • [53] Liu, P. and K. Liang, "Review Functional materials of porous metals made by P/M, electroplating and some other techniques". Journal of materials science, 2001: 5059-5072, (2001).
  • [54] Türker, M., H. Çinici, U. Gökmen, A. Uzun and S. Sarıtaş, "Effects of foaming agent and boron carbide additions on the foamability behaviour of al based metallic foam produced by powder metallurg", Powder Metallurgy World Congress, Washington, Kiribati, 8-12 Haziran 2008, 271-277. (2008).
  • [55] Türker, M., H. Çinici, S. Günebakmaz and H. Gülen, "TM ile üretilen al esaslı metalik köpükte bor oksit ilavesinin köpürmeye etkisinin araştırılması", 13. Uluslararası Metalurji ve Malzeme Kongresi, İstanbul, Türkiye, (2006).
  • [56] Uzun, A., "Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method". Composites Part B: Engineering, 206-217, (2019).
  • [57] Çinici, H., et al., "Toz metalurjisi yöntemiyle üretilen AlSi7 köpüklerin düşük hızlı darbe enerjileri altında penetrasyon davranışının incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 395-400, (2014).
  • [58] Esmaeelzadeh, S., A. Simchi and D. Lehmhus, "Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam". Materials Science and Engineering: A, 290-299, (2006).
  • [59] Kennedy, A. and S. Asavavisitchai, "Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams". Scripta Materialia, 115-119, (2004).
  • [60] Kováčik, J., F. Simančík, J. Jerz and P. Tobolka, "Reinforced aluminium foams", International Conference in Advanced Metallic Materials, Smolenice, Slovakia (2003).
  • [61] Gergely, V. and B. Clyne, "The FORMGRIP process: foaming of reinforced metals by gas release in precursors". Advanced Engineering Materials, 175-178, (2000).
  • [62] Gergely, V., H. Degischer and T. Clyne, "Recycling of MMCs and production of metallic foams". Comprehensive composite materials, 797-820, (2000).
  • [63] Gökmen, U. and M. Türker, "Al2O3 ilavesinin alüminyum ve alumix 231 esasli metalik köpüğün köpürme özelliklerine etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol 12, (2012).
  • [64] Gergely, V. and T. Clyne, "Drainage in standing liquid metal foams: modelling and experimental observations". Acta Materialia, 3047-3058, (2004).
  • [65] Deqing, W. and S. Ziyuan, "Effect of ceramic particles on cell size and wall thickness of aluminum foam". Materials Science and Engineering: A, 45-49, (2003).
  • [66] Brunke, O., A. Hamann, S. Cox and S. Odenbach, "Experimental and numerical analysis of the drainage of aluminium foams". Journal of Physics: Condensed Matter, 6353, (2005).
  • [67] Temiz, A., A.Z. Alshemary, N. Akar and M. Yaşar, "Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis". International Journal of Metalcasting, 1871-1882, (2023).
  • [68] Ersoy, E. and Y. Özçatalbaş, "Deformation of metallic foams with closed cell at high temperatures". Int J. Mater Metall Eng, 789-792, (2015).
  • [69] Ersoy, E., Y. Özçatalbaş and E. Bahçeci, "An experimental study on hot formability of closed cell metallic foams", International Porous and Powder Materials Symposium, İzmir, Türkiye, 1-5, (2013).
  • [70] Arif, U., "Sıcak Presleme Yöntemi ile Üretilmiş Al Köpüğün Gözenek Yapısı ve Köpürme Davranışı Üzerine MgO İlavesinin Etkisi, International Multidisiplinary Congress of Eurasia, IMCOFE 16, Odessa, July 11-13 pp 613-623, (2016).
  • [71] Steen, W.M. and J. Mazumder, "Laser material processing", Springer science & business media, (2010).
  • [72] Ozan, S., M. Taskin, S. Kolukisa and M.S. Ozerdem, "Application of ANN in the prediction of the pore concentration of aluminum metal foams manufactured by powder metallurgy methods". The International Journal of Advanced Manufacturing Technology, 251-256, (2008).
  • [73] Yu, C.-J., H.H. Eifert, J. Banhart and J. Baumeister, "Metal foaming by a powder metallurgy method: Production, properties and applications". Materials Research Innovations, 181-188, (1998).
  • [74] Onck, P., R. Van Merkerk, A. Raaijmakers and J.T.M. De Hosson, "Fracture of open-and closed-cell metal foams". Journal of materials science, 5821-5828, (2005).
  • [75] Ali, H., A. Gábora, M.A. Naeem, G. Kalácska and T. Mankovits, "Effect of the manufacturing parameters on the pore size and porosity of closed-cell hybrid aluminum foams". International Review of Applied Sciences and Engineering, 230-237, (2021).
  • [76] Banhart, J., "Manufacturing routes for metallic foams". Jom, 22-27, (2000).
  • [77] Kennedy, A. and S. Asavavisithchai, "Effect of Ceramic Particle Additions on Foam Expansion and Stability in Compacted Al‐TiH2 Powder Precursors". Advanced Engineering Materials, 400-402, (2004).
  • [78] Elbir, S., S. Yilmaz, A.K. Toksoy, M. Guden and I.W. Hall, "SiC-particulate aluminum composite foams produced by powder compacts: Foaming and compression behavior". Journal of materials science, 4745-4755, (2003).
  • [79] Asavavisithchai, S. and A. Kennedy, "Effect of powder oxide content on the expansion and stability of PM-route Al foams". Journal of Colloid and Interface Science, 715-723, (2006).
  • [80] Styles, M., P. Compston and S. Kalyanasundaram, "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures". Composite Structures, 2007: 532-538, (2007).
  • [81] Banhart, J. and J. Baumeister, "Deformation characteristics of metal foams". Journal of materials science, 1431-1440, (1998).
  • [82] Ashby, M.F., et al., "Metal foams: a design guide", Elsevier, (2000).
  • [83] Guden, M. and S. Yüksel, "SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior". Journal of Materials Science, 4075-4084, (2006).
  • [84] Wadley, H.N., "Cellular metals manufacturing". Advanced engineering materials, 726-733, (2002).
  • [85] Montanini, R., "Measurement of strain rate sensitivity of aluminium foams for energy dissipation". International Journal of Mechanical Sciences, 26-42, (2005).
  • [86] Körner, C. and R.F. Singer, "Processing of metal foams-challenges and opportunities". Advanced Engineering Materials, 159-165, (2000).
  • [87] Banhart, J. and D. Weaire, "On the road again: metal foams find favor". Physics Today, 37-42, (2002).
  • [88] Pelit, Y. and M. Türker, "Mekanik Alaşımlanmış Al2O3 Takviyeli AlSi7Mg0,6 Esaslı Tozlardan Metalik Köpük Üretimi ve Özelliklerinin İncelenmesi," 6th Internatıonal Powder Metallurgy Conference & Exhibition, Ankara, 776-780, (2011).
  • [89] Proa-Flores, P., G. Mendoza-Suarez and R. Drew, "Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method". Journal of Materials Science, 455-464, (2012).
  • [90] Kriszt, B. and H. Degischer, "Handbook of cellular metals: Production, processing, applications". Weinheim: Wiley-VCH, (2002).
  • [91] Yu, S., Y. Luo and J. Liu, "Effects of strain rate and SiC particle on the compressive property of SiCp/AlSi9Mg composite foams". Materials Science and Engineering: A, 394-399, (2008).
  • [92] Türker, M., "Al Foams Reinforced With B4C And SiC Particles: Production Process, Characterization, Properties and Applications", International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications;Exhibition (ICMATSE 2020), Gazi University, Ankara, Türkiye, (2020).
  • [93] Gökmen, U., H. Çinici, Y. Özçatalbaş and M. Türker, "Investigaton of the effect of Al2O3 addition on the foamability behaviour of aluminum based metallic foam produced by PM technique", 5th International Powder Metallurgy Conference, Sakarya, Türkiye, (2008).
  • [94] Bahçeci, E., Y. Özçatalbaş and M. Türker, "TM yöntemiyle AlSiMg alaşımı metalik köpük üretimi için geliştirilen preform malzeme üretim sürecinin karekterizasyonu", 6th International Powder Metallurgy Conference Exhibition, Ankara, Türkiye, 797-801, (2011).
  • [95] Matijasevic, B. and J. Banhart, "Improvement of aluminium foam technology by tailoring of blowing agent". Scripta Materialia, 503-508, (2006).
  • [96] Kim, A., K. Tunvir, S.-H. Nahm and S.-S. Cho, "Time–temperature superposition for foaming kinetics of Al-alloy foams". Journal of Materials Processing Technology, 450-456, (2008).
  • [97] Turker, M., Y. Ozcatalbas, H. Cinici, U. Gokmen and A. Uzun, "Effect of Foaming Agent on The Structure and Morphology of Al and Alumix 231 Foams Produced by Powder Metallurgy", Materials Science Forum, 297-302, (2011).
  • [98] Banhart, J., "Manufacturing routes for metallic foams". The journal of the Minerals, Metals & Materials Society, (2012).
  • [99] Baumgärtner, F., I. Duarte and J. Banhart, "Industrialization of powder compact toaming process". Advanced Engineering Materials, 168-174, (2000).
  • [100] Mudge, A. and K. Morsi, "Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs)". Metals, 120, (2024).
  • [101] Banhart, J., "Metallic foams: challenges and opportunities". Eurofoam, 13-20, (2000).
  • [102] Shiomi, M., S. Imagama, K. Osakada and R. Matsumoto, "Fabrication of aluminium foams from powder by hot extrusion and foaming". Journal of Materials Processing Technology, 1203-1208, (2010).
  • [103] Uzun, A., E. Asikuzun, U. Gokmen and H. Cinici, "Vickers Microhardness Studies on B 4 C Reinforced/Unreinforced Foamable Aluminium Composites". Transactions of the Indian Institute of Metals, 327-337, (2018).
  • [104] Pen, S.I., A. Karakterizacija, D.I. Penilnega and T.H. Kot, "Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents". Materiali in Tehnologije, 943-947, (2014).
  • [105] Schaeffler, P., W. Rajner, D. Claar, T. Trendelenburg and H. Nishimura, "Production, properties, and applications of Alulight® closed-cell aluminum foams", Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies, 151-156, (2005).
  • [106] Stanzick, H., et al., "Process Control in Aluminum Foam Production Using Real‐Time X‐ray Radioscopy". Advanced Engineering Materials, 814-823, (2002).
  • [107] Babcsán, N., F.G. Moreno and J. Banhart, "Metal foams-high temperature colloids: part II: in situ analysis of metal foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254-263, (2007).
  • [108] Yang, D., et al., "Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process". Journal of Materials Science & Technology, 361-368, (2015).
  • [109] Abo sbia, A.E.S. and A. Uzun, "Production of MWCNT-Reinforced Aluminum Foams Via Powder Space-Holder Technique and Investigation of their Mechanical Properties". Transactions of the Indian Institute of Metals, 2241-2253, (2022).
  • [110] Türker M., "Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi ", Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 1-6, 13-15 Mayıs (2009).
  • [111] Gökmen, U., Y. Özçatalbaş and M. Türker, "Al2O3 Takviyeli Metalik Köpüğe Köpürme Sıcaklığı ve Köpürtücü Madde Miktarının Etkisinin Araştırılması", 5. Uluslararası Toz Metalurjisi Konferansı, Ankara, Türkiye, (2008).
  • [112] Davies, G. and S. Zhen, "Metallic foams: their production, properties and applications". Journal of Materials science, 1899-1911, (1983).
  • [113] Chai, G., et al., "Strengthening mechanism of porous aluminum foam by micro-arc discharge". Tribology International, 109169, (2024).
  • [114] Shao, W., X. Yang, C. Hu and Y. Zheng, "Compression, Energy Absorption, and Electromagnetic Shielding Properties of Carbon Nanotubes/Al Composite Foams". Advanced Engineering Materials, 2201240, (2023).
  • [115] Michailidis, N., F. Stergioudi, A. Tsouknidas and E. Pavlidou, "Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material". Materials Science and Engineering: A, 1662-1667, (2011).
  • [116] Liu, S., et al., "Fatigue of an Aluminum Foam Sandwich Formed by Powder Metallurgy". Materials, 1226, (2023).
  • [117] Banhart, J. and H.W. Seeliger, "Aluminium foam sandwich panels: manufacture, metallurgy and applications". Advanced Engineering Materials, 793-802, (2008).
  • [118] Banhart, J., H. Stanzick, L. Helfen, T. Baumbach and K. Nijhof, "Real-time x-ray investigation of aluminium foam sandwich production ". Advanced Engineering Materials, 1-10, (2001).
  • [119] Magnucka-Blandzi, E. and K. Magnucki, "Effective design of a sandwich beam with a metal foam core". Thin-Walled Structures, 432-438, (2007).
  • [120] Contorno, D., L. Filice, L. Fratini and F. Micari, "Forming of aluminum foam sandwich panels: Numerical simulations and experimental tests". Journal of Materials Processing Technology, 364-367, (2006).
  • [121] Hommel, P., D. Roth and H. Binz, "Deficits in the application of aluminum foam sandwich: An industrial perspective", Proceedings of the design society: Design conference, 927-936, (2020).
  • [122] Simancik, F., "Metallic foams-ultra light materials for structural applications". Inżynieria Materiałowa, 823-828, (2001).
  • [123] Stöbener, K., J. Baumeister, D. Lehmhus, H. Stanzick and V. Zöllmer, "Composites based on metallic foams: phenomenology; production; properties and principles", Proc (Nov. 2003), International Conference “Advanced Metallic Materials, (2003).
  • [124] Mohan, K., Y.T. Hon, S. Idapalapati and H.P. Seow, "Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending". Materials Science and Engineering: A, 292-301, (2005).
  • [125] Çinici, H. and M. Türker, "Effect of Foaming Duration and Temperature on the Foamability Behaviour of AlSi7Mg0. 6 Sandwich", PM2010 World Congress-Foams Porous Materials, Italy, (2010).
  • [126] Bucher, T., S. Cardenas, R. Verma, W. Li and Y. Lawrence Yao, "Laser forming of sandwich panels with metal foam cores". Journal of Manufacturing Science and Engineering, 111015, (2018).
  • [127] Hanssen, A., Y. Girard, L. Olovsson, T. Berstad and M. Langseth, "A numerical model for bird strike of aluminium foam-based sandwich panels". International journal of impact engineering, 1127-1144, (2006).
  • [128] Uzun, A. and M. Turker, "The effect of production parameters on the foaming behavior of spherical-shaped aluminum foam". Materials Research, 311-315, (2014).
  • [129] Vesenjak, M., M. Borovinšek, T. Fiedler, Y. Higa and Z. Ren, "Structural characterisation of advanced pore morphology (APM) foam elements". Materials letters, 201-203, (2013).
  • [130] Ulbin, M., et al., "Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements". Materials Letters, 416-419, (2014).
  • [131] Stöbener, K., J. Baumeister, G. Rausch and M. Rausch, "Forming metal foams by simpler methods for cheaper solutions". Metal Powder Report, 12-16, (2005).
  • [132] Kovačič, A. and Z. Ren, "On the porosity of advanced pore morphology structures". Composite Structures, 235-244, (2016).
  • [133] Wang, F., Y. Bian, L. Wang and W. Huang, "Foaming Behavior of Microsized Aluminum Foam Using Hot Rolling Precursor". Metals, 928, (2023).
  • [134] Stöbener, K., D. Lehmhus, M. Avalle, L. Peroni and M. Busse, "Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing". International Journal of Solids and Structures, 5627-5641, (2008).
  • [135] Stöbener, K. and G. Rausch, "Aluminium foam–polymer composites: processing and characteristics". Journal of Materials Science, 1506-1511, (2009).
  • [136] Kovačič, A., N. Novak, M. Vesenjak, P.D. Dubrovski and Z. Ren, "Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures". Archives of Civil and Mechanical Engineering, 1198-1206, (2018).
  • [137] Sulong, M., M. Vesenjak, I. Belova, G. Murch and T. Fiedler, "Compressive properties of Advanced Pore Morphology (APM) foam elements". Materials Science and Engineering: A, 498-504, (2014).
  • [138] Rausch, G., K. Stöbener and D. Bassan, "Improving structural crashworthiness using metallic and organic foams". International Conference on Porous Metals and Metal Foaming Technology (MetFoam), (2005).
  • [139] Arif, U., "Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 1273-1281, (2020).
  • [140] Wang, E., R. Yao, Q. Li, X. Hu and G. Sun, "Lightweight metallic cellular materials: a systematic review on mechanical characteristics and engineering applications". International Journal of Mechanical Sciences, 108795, (2023).
  • [141] Sánchez de la Muela, A., L. Cambronero and I. Ruiz-Bustinza, "Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble”". Rev. Metal, 2020: 159, (2020).
  • [142] Weise, J., A.F. Queiroz Barbosa, O. Yezerska, D. Lehmhus and J. Baumeister, "Mechanical Behavior of Particulate Aluminium‐Epoxy Hybrid Foams Based on Cold‐Setting Polymers". Advanced Engineering Materials, 1700090, (2017).
  • [143] Borovinsek, M., et al., "Analysis of advanced pore morphology (APM) foam elements using compressive testing and time-lapse computed microtomography". Materials, 5897, (2021).
  • [144] Vopalensky, M., et al., "Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading". Materials, 7256, (2021).
  • [145] Uzun, A. and M. Türker, "Toz metalurjisi yöntemi ile üretilen alüminyum esaslı küresel şekilli metalik köpükte SiC ilavesinin köpürmeye etkisi", 5th International Powder Metallurgy Conference, Ankara, Türkiye, (2008).
  • [146] Salehi, M., S. Mirbagheri and A.J. Ramiani, "Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading". Transactions of Nonferrous Metals Society of China, 92-110, (2021).
  • [147] Uzun, A., H. Karakoc, U. Gokmen, H. Cinici and M. Turker, "Investigation of mechanical properties of tubular aluminum foams". International Journal of Materials Research, 996-1004, (2016).
  • [148] Crupi, V. and R. Montanini, "Aluminium foam sandwiches collapse modes under static and dynamic three-point bending". International Journal of Impact Engineering, 509-521, (2007).
  • [149] Banhart, J., "Metal foams-from fundamental research to applications". Frontiers in the Design of Materials, (2007).
  • [150] Lefebvre, L.P., J. Banhart and D.C. Dunand, "Porous metals and metallic foams: current status and recent developments". Advanced engineering materials, 775-787, (2008).
  • [151] Seitzberger, M., et al., "Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam". International Journal of Solids and Structures, 4125-4147, (2000).
  • [152] Olurin, O., N.A. Fleck and M.F. Ashby, "Deformation and fracture of aluminium foams". Materials Science and Engineering: A, 136-146, (2000).
  • [153] Yao, R., et al., "On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects". Thin-Walled Structures, 110734, (2023).
  • [154] Claar, T.D., et al., "Ultra-lightweight aluminum foam materials for automotive applications". SAE transactions, 98-106, (2000).
  • [155] Wang, D., S. Zhang, C. Wang and C. Zhang, "Structure-material-performance integration lightweight optimisation design for frontal bumper system". International journal of crashworthiness, 311-327, (2018).
  • [156] Baumeister, J., J. Weise, E. Hirtz, K. Höhne and J. Hohe, "Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles: Anwendung von Aluminium‐Hybridschaum‐Sandwichen in Batteriegehäusen von Elektrofahrzeugen". Materialwissenschaft und Werkstofftechnik, 1099-1107, (2014).
  • [157] Heyhat, M.M., S. Mousavi and M. Siavashi, "Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle". Journal of Energy Storage, 101235, (2020).
  • [158] Banhart, J., "Industrialisation of aluminium foam technology", Proceedings of the ninth International Conference on aluminium alloys, 764-770, (2004).
  • [159] Banhart, J. and H. Seeliger, "Aluminium Foam Sandwich Panels: Metallurgy, Manufacture and Applications, Porous Metals and Metallic Foams", Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, 3-6, (2007).
  • [160] Seeliger, H.W., "Aluminium foam sandwich (AFS) ready for market introduction". Advanced Engineering Materials, 448-451, (2004).
  • [161] Pinnoji, P.K., N. Bourdet, P. Mahajan and R. Willinger, "New motorcycle helmets with metal foam shell", IRCOBI Conference Proceedings, Bern, Switzerland, (2008).
  • [162] Pinnoji, P.K., P. Mahajan, N. Bourdet, C. Deck and R.m. Willinger, "Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling". International Journal of Impact Engineering, 274-284, (2010).
  • [163] Carruthers, J., et al., "The design and prototyping of a lightweight crashworthy rail vehicle driver's cab", 9th World Congress on Railway Research, (2011).
  • [164] Kornei, K., "New Aluminum ‘Foam’Makes Trains Stronger, Lighter, and Safer". Wired. com. https://www. wired. com/2014/12/aluminum-foam-trains, (2014).
  • [165] García-Moreno, F., "Commercial applications of metal foams: Their properties and production". Materials, 85, (2016).
  • [166] Neugebauer, R. and T. Hipke, "Machine tools with metal foams". Advanced Engineering Materials, 858-863, (2006).
  • [167] Gökmen, U., "Toz metalurjisi yöntemi ile Al esaslı parçacık takviyeli metalik köpük üretimi", Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2009).

Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1463820

Öz

Son zamanlarda üzerinde yoğun çalışmalar yapılan metalik köpükler %40 ila %90 arasında gözenekli yapıya sahip, gaz ve katı halde bulunan maddelerin bileşimidir. Düşük yoğunluk ve yüksek enerji sönümleme özelliklerinden dolayı başta otomotiv sektörü olmak üzere uzay ve savunma sanayinde ön plana çıkmaktadır. Benzersiz özelliklere sahip olan metalik köpükler yüksek gözeneklilik oranına rağmen, yüksek mukavemet, düşük ısıl iletkenlik ve yüksek enerji emme kapasitesine sahip malzemelerdir. Köpük malzemeler hafif olmalarının yanısıra enerji sönümleme özelliğinden dolayı, araç tasarımcıları için cazip hale gelmiş ve çarpışma sırasında araçta meydana gelebilecek hasarın minimuma indirmesi amaçlanmıştır. Ayrıca enerji ve çevre konusunun önemli olduğu günümüzde araç ağırlığının azaltılması, yakıt tüketimini azalmasına ve aynı zamanda verimliliğin artırmasına sebep olurken çevreye verilen zararı da en aza indirecektir. Bu makalede toz metalurjisi yöntemi ile üretilen kapalı gözenekli Al esaslı metalik köpük malzemeler hakkında genel bilgi verildikten sonra, özel üretim yöntemlerinden takviyeli ve takviyesiz köpük üretimi, sandviç köpük üretimi, küresel köpük üretimi ve metalik köpük dolu profil üretimi hakkında geniş bilgi verilmiştir. Ayrıca yeni bir uygulama olan, integral zırh malzemesi yapımı ve diğer uygulamalar hakkında genel bilgi verilmiştir.

Kaynakça

  • [1] Sharma, S.S., S. Yadav, A. Joshi, A. Goyal and R. Khatri, "Application of metallic foam in vehicle structure: A review". Materials Today: Proceedings, 347-353, (2022).
  • [2] Koza, E., M. Leonowicz, S. Wojciechowski and F. Simancik, "Compressive strength of aluminium foams". Materials letters, 132-135, (2004).
  • [3] Madgule, M., C. Sreenivasa and A.V. Borgaonkar, "Aluminium metal foam production methods, properties and applications-a review". Materials Today: Proceedings,: 673-679, (2023).
  • [4] Atwater, M.A., L.N. Guevara, K.A. Darling and M.A. Tschopp, "Solid state porous metal production: A review of the capabilities, characteristics, and challenges". Advanced Engineering Materials, 1700766, (2018).
  • [5] Gibson, L.J., "Mechanical behavior of metallic foams". Annual Review of Materials Science, 191-227, (2000).
  • [6] Hanssen, A.G., M. Langseth and O.S. Hopperstad, "Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler". International journal of impact engineering, 475-507, (2000).
  • [7] Schwingel, D.D., D.H.-W. Seeliger, M.C. Vecchionacci, M.D. Alwes and M.J. Dittrich, "Aluminium foam sandwich structures for space applications", 57th International Astronautical Congress, C2. 4.10, (2007).
  • [8] YU, H.-j., et al., "Sound insulation property of Al-Si closed-cell aluminum foam bare board material". Transactions of nonferrous metals society of China, 93-98, (2007).
  • [9] Peroni, L., M. Avalle and M. Peroni, "The mechanical behaviour of aluminium foam structures in different loading conditions". International journal of impact engineering, 644-658, (2008).
  • [10] Sha, J. and T. Yip, "In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading". Materials Science and Engineering: A, 91-103, (2004).
  • [11] Schwingela, D., H.-W. Seeligera, C. Vecchionaccib, D. Alwesc and J. Dittrichc, "Aluminium foam sandwich structures for space applications". Acta Astronautica: 326-330, (2007).
  • [12] Michailidis, N., F. Stergioudi and A. Tsouknidas, "Deformation and energy absorption properties of powder-metallurgy produced Al foams". Materials Science and Engineering: A, 7222-7227, (2011).
  • [13] Hangai, Y., et al., "Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys". Materials Science and Engineering: A, 597-603, (2015).
  • [14] Ghazi, A., P. Berke, C. Tiago and T. Massart, "Computed tomography based modelling of the behaviour of closed cell metallic foams using a shell approximation". Materials & Design, vol 194, 108866, (2020).
  • [15] Naeem, M.A., A. Gábora and T. Mankovits, "Influence of the manufacturing parameters on the compressive properties of closed cell aluminum foams". Periodica Polytechnica Mechanical Engineering, 172-178, (2020).
  • [16] Vesenjak, M. and Z. Ren, "Geometrical and mechanical analysis of various types of cellular metals". Ciência & Tecnologia dos Materiais, 9-13, (2016).
  • [17] Singh, S. and N. Bhatnagar, "A survey of fabrication and application of metallic foams (1925–2017)". Journal of Porous Materials, 537-554, (2018).
  • [18] Gauthier, M., L.-P. Lefebvre, Y. Thomas and M.N. Bureau, "Production of metallic foams having open porosity using a powder metallurgy approach". Materials and manufacturing processes, 793-811, (2004).
  • [19] Yalçın, N. and A. Ercil, "Döküm yöntemi ile açık gözenekli parça üretiminde gözenek boyutunun mekanik özelliklere etkisi", 2nd International Turkish World Engineering and Science Congress, Antalya, Türkiye 740-744, (2019).
  • [20] Uzun, A. and M. Turker, "The investigation of mechanical properties of B4C-reinforced AlSi7 foams". International Journal of Materials Research, 970-977, (2015).
  • [21] Kırmızı, G., H. Arık and H. Çinici, "Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites". Composites Part B: Engineering, 345-357, (2019).
  • [22] Zare, J. and H.D. Manesh, "A novel method for producing of steel tubes with Al foam core". Materials & Design, 1325-1330, (2011).
  • [23] Miyoshi, T., M. Itoh, S. Akiyama and A. Kitahara, "ALPORAS aluminum foam: production process, properties, and applications". Advanced engineering materials, 179-183, (2000).
  • [24] Yousefi, M.K., A. Kianirad and M. Vaseghi, "Simulation and investigation to the behavior of metallic foam as a bumper in automobile under impact loadings", The First International Conference on Mechanics of Advanced Materials and Equipment, (2018).
  • [25] Uzun, A., U. Gökmen, H. Cinici, H. Koruk and M. Turker, "Investigation of modal properties of AlSi7 foam produced by powder metallurgy technique". Materials Testing: 598-601, (2013).
  • [26] Türker, M., "Production of closed cell aluminum foam as armor support material", International Congress on Engineerıng Sciences and Multidisciplinary Approaches, İstanbul, Türkiye, (2021).
  • [27] Türker, M., "Aluminum based metallic foams produced via powder metallurgy process ", International Porous and Powder Materials Symposium and Exhibition, Çeşme, İzmir- Türkiye, 12-16, (2015).
  • [28] Han, M.S. and J.U. Cho, "Impact damage behavior of sandwich composite with aluminum foam core". Transactions of Nonferrous Metals Society of China, 42-46, (2014).
  • [29] Weise, J., D. Lehmhus and J. Baumeister, "Lightweight Structures Based on Aluminium Foam Granules". Lightweight Design worldwide, 6-11, (2017).
  • [30] Babcsán, N., J. Banhart and D. Leitlmeier, "Metal foams–manufacture and physics of foaming", Proceedings of the International Conference Advanced Metallic Materials, 5-15, (2003).
  • [31] Uzun, A., U. Gokmen, H. Cinici and M. Turker, "Effect of cutting parameters on the drilling of AlSi metallic foams". Material in Tehnologie/Materials and Technology, 19-24, (2017).
  • [32] Banhart, J., "Manufacture, characterisation and application of cellular metals and metal foams". Progress in materials science, 559-632, (2001).
  • [33] Gülenç, İ.T., "Patlama kaynağı ile kaynaklanmış sandviç yapıların köpürebilirliğinin araştırılması" Y.Lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2014).
  • [34] Uzun, A. and M. Turker, "Friction stir welding of foamable AlSi7 reinforced by B4C". International Journal of Materials Research, 558-565, (2016).
  • [35] Bernard, T., J. Burzer and H. Bergmann, "Mechanical properties of structures of semifinished products joined to aluminium foams". Journal of Materials Processing Technology, 20-24, (2001).
  • [36] Cambronero, L., I. Canadas, J. Ruiz-Román, M. Cisneros and F.C. Iglesias, "Weld structure of joined aluminium foams with concentrated solar energy". Journal of Materials Processing Technology, 2637-2643, (2014).
  • [37] Pelit, Y., A. Ayata, A. Kurt and M. Türker, "Toz metal Al malzemelerin köpürtme öncesi saplama kaynağı ile birleştirilmesi", 6th Int. Advanced Technologies Symposium (IATS11), Elazığ, Türkiye, 132-135, (2011).
  • [38] Changdar, A. and S.S. Chakraborty, "Laser processing of metal foam-A review". Journal of Manufacturing Processes, 208-225, (2021).
  • [39] Cambronero, L., J. Ruiz-Roman, F. Corpas and J.R. Prieto, "Manufacturing of Al–Mg–Si alloy foam using calcium carbonate as foaming agent". Journal of materials processing technology, 1803-1809, (2009).
  • [40] Orłowicz, A., M. Mróz, M. Tupaj and A. Trytek, "Materials used in the automotive industry". Archives of foundry engineering, (2015).
  • [41] Onck, P., R. Van Merkerk, J.T.M. De Hosson and I. Schmidt, "Fracture of Metal Foams: In‐situ Testing and Numerical Modeling". Advanced Engineering Materials,: 429-431, (2004).
  • [42] Lehmhus, D., M. Vesenjak, S. De Schampheleire and T. Fiedler, "From stochastic foam to designed structure: Balancing cost and performance of cellular metals", Materials, (2017).
  • [43] Turker, M., "Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques", Materials Science Forum, 39-46, (2011).
  • [44] Güden, M., S. Elbir and S. Yılmaz, "Kompozit alüminyum köpüklerin hazırlanması ve mekanik özelliklerinin belirlenmesi". II. Makine Malzemesi ve İmalat Teknolojisi Sempozyumu, (2015).
  • [45] Wang, Z., et al., "Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials". Applied Thermal Engineering, 117778, (2022).
  • [46] Gao, H., C. Wang, Z. Yang and Y. Zhang, "3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework". Composites Science and Technology, 108896, (2021).
  • [47] Sreenivasa, C. and K. Shivakumar, "A review on prodution of aluminium metal foams", IOP Conference Series: Materials Science and Engineering, 012081, (2018).
  • [48] Aida, S., H. Zuhailawati and A. Anasyida, "The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder". Procedia Engineering, 290-297, (2017).
  • [49] Kovacik, J. and F. Simancik, "Comparison of zinc and aluminium foam behaviour". Metallic Materials, Vol 42, Issue 42, 79-90, (2004).
  • [50] Tianjian, L., "Ultralight porous metals: from fundamentals to applications". Acta Mechanica Sinica, 457-479, (2002).
  • [51] Liu, J., et al., "The compressive properties of closed-cell Zn-22Al foams". Materials Letters, 683-685, (2008).
  • [52] Banhart, J., "Light‐metal foams-history of innovation and technological challenges". Advanced Engineering Materials, 82-111, (2013).
  • [53] Liu, P. and K. Liang, "Review Functional materials of porous metals made by P/M, electroplating and some other techniques". Journal of materials science, 2001: 5059-5072, (2001).
  • [54] Türker, M., H. Çinici, U. Gökmen, A. Uzun and S. Sarıtaş, "Effects of foaming agent and boron carbide additions on the foamability behaviour of al based metallic foam produced by powder metallurg", Powder Metallurgy World Congress, Washington, Kiribati, 8-12 Haziran 2008, 271-277. (2008).
  • [55] Türker, M., H. Çinici, S. Günebakmaz and H. Gülen, "TM ile üretilen al esaslı metalik köpükte bor oksit ilavesinin köpürmeye etkisinin araştırılması", 13. Uluslararası Metalurji ve Malzeme Kongresi, İstanbul, Türkiye, (2006).
  • [56] Uzun, A., "Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method". Composites Part B: Engineering, 206-217, (2019).
  • [57] Çinici, H., et al., "Toz metalurjisi yöntemiyle üretilen AlSi7 köpüklerin düşük hızlı darbe enerjileri altında penetrasyon davranışının incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 395-400, (2014).
  • [58] Esmaeelzadeh, S., A. Simchi and D. Lehmhus, "Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam". Materials Science and Engineering: A, 290-299, (2006).
  • [59] Kennedy, A. and S. Asavavisitchai, "Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams". Scripta Materialia, 115-119, (2004).
  • [60] Kováčik, J., F. Simančík, J. Jerz and P. Tobolka, "Reinforced aluminium foams", International Conference in Advanced Metallic Materials, Smolenice, Slovakia (2003).
  • [61] Gergely, V. and B. Clyne, "The FORMGRIP process: foaming of reinforced metals by gas release in precursors". Advanced Engineering Materials, 175-178, (2000).
  • [62] Gergely, V., H. Degischer and T. Clyne, "Recycling of MMCs and production of metallic foams". Comprehensive composite materials, 797-820, (2000).
  • [63] Gökmen, U. and M. Türker, "Al2O3 ilavesinin alüminyum ve alumix 231 esasli metalik köpüğün köpürme özelliklerine etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol 12, (2012).
  • [64] Gergely, V. and T. Clyne, "Drainage in standing liquid metal foams: modelling and experimental observations". Acta Materialia, 3047-3058, (2004).
  • [65] Deqing, W. and S. Ziyuan, "Effect of ceramic particles on cell size and wall thickness of aluminum foam". Materials Science and Engineering: A, 45-49, (2003).
  • [66] Brunke, O., A. Hamann, S. Cox and S. Odenbach, "Experimental and numerical analysis of the drainage of aluminium foams". Journal of Physics: Condensed Matter, 6353, (2005).
  • [67] Temiz, A., A.Z. Alshemary, N. Akar and M. Yaşar, "Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis". International Journal of Metalcasting, 1871-1882, (2023).
  • [68] Ersoy, E. and Y. Özçatalbaş, "Deformation of metallic foams with closed cell at high temperatures". Int J. Mater Metall Eng, 789-792, (2015).
  • [69] Ersoy, E., Y. Özçatalbaş and E. Bahçeci, "An experimental study on hot formability of closed cell metallic foams", International Porous and Powder Materials Symposium, İzmir, Türkiye, 1-5, (2013).
  • [70] Arif, U., "Sıcak Presleme Yöntemi ile Üretilmiş Al Köpüğün Gözenek Yapısı ve Köpürme Davranışı Üzerine MgO İlavesinin Etkisi, International Multidisiplinary Congress of Eurasia, IMCOFE 16, Odessa, July 11-13 pp 613-623, (2016).
  • [71] Steen, W.M. and J. Mazumder, "Laser material processing", Springer science & business media, (2010).
  • [72] Ozan, S., M. Taskin, S. Kolukisa and M.S. Ozerdem, "Application of ANN in the prediction of the pore concentration of aluminum metal foams manufactured by powder metallurgy methods". The International Journal of Advanced Manufacturing Technology, 251-256, (2008).
  • [73] Yu, C.-J., H.H. Eifert, J. Banhart and J. Baumeister, "Metal foaming by a powder metallurgy method: Production, properties and applications". Materials Research Innovations, 181-188, (1998).
  • [74] Onck, P., R. Van Merkerk, A. Raaijmakers and J.T.M. De Hosson, "Fracture of open-and closed-cell metal foams". Journal of materials science, 5821-5828, (2005).
  • [75] Ali, H., A. Gábora, M.A. Naeem, G. Kalácska and T. Mankovits, "Effect of the manufacturing parameters on the pore size and porosity of closed-cell hybrid aluminum foams". International Review of Applied Sciences and Engineering, 230-237, (2021).
  • [76] Banhart, J., "Manufacturing routes for metallic foams". Jom, 22-27, (2000).
  • [77] Kennedy, A. and S. Asavavisithchai, "Effect of Ceramic Particle Additions on Foam Expansion and Stability in Compacted Al‐TiH2 Powder Precursors". Advanced Engineering Materials, 400-402, (2004).
  • [78] Elbir, S., S. Yilmaz, A.K. Toksoy, M. Guden and I.W. Hall, "SiC-particulate aluminum composite foams produced by powder compacts: Foaming and compression behavior". Journal of materials science, 4745-4755, (2003).
  • [79] Asavavisithchai, S. and A. Kennedy, "Effect of powder oxide content on the expansion and stability of PM-route Al foams". Journal of Colloid and Interface Science, 715-723, (2006).
  • [80] Styles, M., P. Compston and S. Kalyanasundaram, "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures". Composite Structures, 2007: 532-538, (2007).
  • [81] Banhart, J. and J. Baumeister, "Deformation characteristics of metal foams". Journal of materials science, 1431-1440, (1998).
  • [82] Ashby, M.F., et al., "Metal foams: a design guide", Elsevier, (2000).
  • [83] Guden, M. and S. Yüksel, "SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior". Journal of Materials Science, 4075-4084, (2006).
  • [84] Wadley, H.N., "Cellular metals manufacturing". Advanced engineering materials, 726-733, (2002).
  • [85] Montanini, R., "Measurement of strain rate sensitivity of aluminium foams for energy dissipation". International Journal of Mechanical Sciences, 26-42, (2005).
  • [86] Körner, C. and R.F. Singer, "Processing of metal foams-challenges and opportunities". Advanced Engineering Materials, 159-165, (2000).
  • [87] Banhart, J. and D. Weaire, "On the road again: metal foams find favor". Physics Today, 37-42, (2002).
  • [88] Pelit, Y. and M. Türker, "Mekanik Alaşımlanmış Al2O3 Takviyeli AlSi7Mg0,6 Esaslı Tozlardan Metalik Köpük Üretimi ve Özelliklerinin İncelenmesi," 6th Internatıonal Powder Metallurgy Conference & Exhibition, Ankara, 776-780, (2011).
  • [89] Proa-Flores, P., G. Mendoza-Suarez and R. Drew, "Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method". Journal of Materials Science, 455-464, (2012).
  • [90] Kriszt, B. and H. Degischer, "Handbook of cellular metals: Production, processing, applications". Weinheim: Wiley-VCH, (2002).
  • [91] Yu, S., Y. Luo and J. Liu, "Effects of strain rate and SiC particle on the compressive property of SiCp/AlSi9Mg composite foams". Materials Science and Engineering: A, 394-399, (2008).
  • [92] Türker, M., "Al Foams Reinforced With B4C And SiC Particles: Production Process, Characterization, Properties and Applications", International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications;Exhibition (ICMATSE 2020), Gazi University, Ankara, Türkiye, (2020).
  • [93] Gökmen, U., H. Çinici, Y. Özçatalbaş and M. Türker, "Investigaton of the effect of Al2O3 addition on the foamability behaviour of aluminum based metallic foam produced by PM technique", 5th International Powder Metallurgy Conference, Sakarya, Türkiye, (2008).
  • [94] Bahçeci, E., Y. Özçatalbaş and M. Türker, "TM yöntemiyle AlSiMg alaşımı metalik köpük üretimi için geliştirilen preform malzeme üretim sürecinin karekterizasyonu", 6th International Powder Metallurgy Conference Exhibition, Ankara, Türkiye, 797-801, (2011).
  • [95] Matijasevic, B. and J. Banhart, "Improvement of aluminium foam technology by tailoring of blowing agent". Scripta Materialia, 503-508, (2006).
  • [96] Kim, A., K. Tunvir, S.-H. Nahm and S.-S. Cho, "Time–temperature superposition for foaming kinetics of Al-alloy foams". Journal of Materials Processing Technology, 450-456, (2008).
  • [97] Turker, M., Y. Ozcatalbas, H. Cinici, U. Gokmen and A. Uzun, "Effect of Foaming Agent on The Structure and Morphology of Al and Alumix 231 Foams Produced by Powder Metallurgy", Materials Science Forum, 297-302, (2011).
  • [98] Banhart, J., "Manufacturing routes for metallic foams". The journal of the Minerals, Metals & Materials Society, (2012).
  • [99] Baumgärtner, F., I. Duarte and J. Banhart, "Industrialization of powder compact toaming process". Advanced Engineering Materials, 168-174, (2000).
  • [100] Mudge, A. and K. Morsi, "Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs)". Metals, 120, (2024).
  • [101] Banhart, J., "Metallic foams: challenges and opportunities". Eurofoam, 13-20, (2000).
  • [102] Shiomi, M., S. Imagama, K. Osakada and R. Matsumoto, "Fabrication of aluminium foams from powder by hot extrusion and foaming". Journal of Materials Processing Technology, 1203-1208, (2010).
  • [103] Uzun, A., E. Asikuzun, U. Gokmen and H. Cinici, "Vickers Microhardness Studies on B 4 C Reinforced/Unreinforced Foamable Aluminium Composites". Transactions of the Indian Institute of Metals, 327-337, (2018).
  • [104] Pen, S.I., A. Karakterizacija, D.I. Penilnega and T.H. Kot, "Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents". Materiali in Tehnologije, 943-947, (2014).
  • [105] Schaeffler, P., W. Rajner, D. Claar, T. Trendelenburg and H. Nishimura, "Production, properties, and applications of Alulight® closed-cell aluminum foams", Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies, 151-156, (2005).
  • [106] Stanzick, H., et al., "Process Control in Aluminum Foam Production Using Real‐Time X‐ray Radioscopy". Advanced Engineering Materials, 814-823, (2002).
  • [107] Babcsán, N., F.G. Moreno and J. Banhart, "Metal foams-high temperature colloids: part II: in situ analysis of metal foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254-263, (2007).
  • [108] Yang, D., et al., "Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process". Journal of Materials Science & Technology, 361-368, (2015).
  • [109] Abo sbia, A.E.S. and A. Uzun, "Production of MWCNT-Reinforced Aluminum Foams Via Powder Space-Holder Technique and Investigation of their Mechanical Properties". Transactions of the Indian Institute of Metals, 2241-2253, (2022).
  • [110] Türker M., "Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi ", Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye, 1-6, 13-15 Mayıs (2009).
  • [111] Gökmen, U., Y. Özçatalbaş and M. Türker, "Al2O3 Takviyeli Metalik Köpüğe Köpürme Sıcaklığı ve Köpürtücü Madde Miktarının Etkisinin Araştırılması", 5. Uluslararası Toz Metalurjisi Konferansı, Ankara, Türkiye, (2008).
  • [112] Davies, G. and S. Zhen, "Metallic foams: their production, properties and applications". Journal of Materials science, 1899-1911, (1983).
  • [113] Chai, G., et al., "Strengthening mechanism of porous aluminum foam by micro-arc discharge". Tribology International, 109169, (2024).
  • [114] Shao, W., X. Yang, C. Hu and Y. Zheng, "Compression, Energy Absorption, and Electromagnetic Shielding Properties of Carbon Nanotubes/Al Composite Foams". Advanced Engineering Materials, 2201240, (2023).
  • [115] Michailidis, N., F. Stergioudi, A. Tsouknidas and E. Pavlidou, "Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material". Materials Science and Engineering: A, 1662-1667, (2011).
  • [116] Liu, S., et al., "Fatigue of an Aluminum Foam Sandwich Formed by Powder Metallurgy". Materials, 1226, (2023).
  • [117] Banhart, J. and H.W. Seeliger, "Aluminium foam sandwich panels: manufacture, metallurgy and applications". Advanced Engineering Materials, 793-802, (2008).
  • [118] Banhart, J., H. Stanzick, L. Helfen, T. Baumbach and K. Nijhof, "Real-time x-ray investigation of aluminium foam sandwich production ". Advanced Engineering Materials, 1-10, (2001).
  • [119] Magnucka-Blandzi, E. and K. Magnucki, "Effective design of a sandwich beam with a metal foam core". Thin-Walled Structures, 432-438, (2007).
  • [120] Contorno, D., L. Filice, L. Fratini and F. Micari, "Forming of aluminum foam sandwich panels: Numerical simulations and experimental tests". Journal of Materials Processing Technology, 364-367, (2006).
  • [121] Hommel, P., D. Roth and H. Binz, "Deficits in the application of aluminum foam sandwich: An industrial perspective", Proceedings of the design society: Design conference, 927-936, (2020).
  • [122] Simancik, F., "Metallic foams-ultra light materials for structural applications". Inżynieria Materiałowa, 823-828, (2001).
  • [123] Stöbener, K., J. Baumeister, D. Lehmhus, H. Stanzick and V. Zöllmer, "Composites based on metallic foams: phenomenology; production; properties and principles", Proc (Nov. 2003), International Conference “Advanced Metallic Materials, (2003).
  • [124] Mohan, K., Y.T. Hon, S. Idapalapati and H.P. Seow, "Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending". Materials Science and Engineering: A, 292-301, (2005).
  • [125] Çinici, H. and M. Türker, "Effect of Foaming Duration and Temperature on the Foamability Behaviour of AlSi7Mg0. 6 Sandwich", PM2010 World Congress-Foams Porous Materials, Italy, (2010).
  • [126] Bucher, T., S. Cardenas, R. Verma, W. Li and Y. Lawrence Yao, "Laser forming of sandwich panels with metal foam cores". Journal of Manufacturing Science and Engineering, 111015, (2018).
  • [127] Hanssen, A., Y. Girard, L. Olovsson, T. Berstad and M. Langseth, "A numerical model for bird strike of aluminium foam-based sandwich panels". International journal of impact engineering, 1127-1144, (2006).
  • [128] Uzun, A. and M. Turker, "The effect of production parameters on the foaming behavior of spherical-shaped aluminum foam". Materials Research, 311-315, (2014).
  • [129] Vesenjak, M., M. Borovinšek, T. Fiedler, Y. Higa and Z. Ren, "Structural characterisation of advanced pore morphology (APM) foam elements". Materials letters, 201-203, (2013).
  • [130] Ulbin, M., et al., "Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements". Materials Letters, 416-419, (2014).
  • [131] Stöbener, K., J. Baumeister, G. Rausch and M. Rausch, "Forming metal foams by simpler methods for cheaper solutions". Metal Powder Report, 12-16, (2005).
  • [132] Kovačič, A. and Z. Ren, "On the porosity of advanced pore morphology structures". Composite Structures, 235-244, (2016).
  • [133] Wang, F., Y. Bian, L. Wang and W. Huang, "Foaming Behavior of Microsized Aluminum Foam Using Hot Rolling Precursor". Metals, 928, (2023).
  • [134] Stöbener, K., D. Lehmhus, M. Avalle, L. Peroni and M. Busse, "Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing". International Journal of Solids and Structures, 5627-5641, (2008).
  • [135] Stöbener, K. and G. Rausch, "Aluminium foam–polymer composites: processing and characteristics". Journal of Materials Science, 1506-1511, (2009).
  • [136] Kovačič, A., N. Novak, M. Vesenjak, P.D. Dubrovski and Z. Ren, "Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures". Archives of Civil and Mechanical Engineering, 1198-1206, (2018).
  • [137] Sulong, M., M. Vesenjak, I. Belova, G. Murch and T. Fiedler, "Compressive properties of Advanced Pore Morphology (APM) foam elements". Materials Science and Engineering: A, 498-504, (2014).
  • [138] Rausch, G., K. Stöbener and D. Bassan, "Improving structural crashworthiness using metallic and organic foams". International Conference on Porous Metals and Metal Foaming Technology (MetFoam), (2005).
  • [139] Arif, U., "Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 1273-1281, (2020).
  • [140] Wang, E., R. Yao, Q. Li, X. Hu and G. Sun, "Lightweight metallic cellular materials: a systematic review on mechanical characteristics and engineering applications". International Journal of Mechanical Sciences, 108795, (2023).
  • [141] Sánchez de la Muela, A., L. Cambronero and I. Ruiz-Bustinza, "Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble”". Rev. Metal, 2020: 159, (2020).
  • [142] Weise, J., A.F. Queiroz Barbosa, O. Yezerska, D. Lehmhus and J. Baumeister, "Mechanical Behavior of Particulate Aluminium‐Epoxy Hybrid Foams Based on Cold‐Setting Polymers". Advanced Engineering Materials, 1700090, (2017).
  • [143] Borovinsek, M., et al., "Analysis of advanced pore morphology (APM) foam elements using compressive testing and time-lapse computed microtomography". Materials, 5897, (2021).
  • [144] Vopalensky, M., et al., "Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading". Materials, 7256, (2021).
  • [145] Uzun, A. and M. Türker, "Toz metalurjisi yöntemi ile üretilen alüminyum esaslı küresel şekilli metalik köpükte SiC ilavesinin köpürmeye etkisi", 5th International Powder Metallurgy Conference, Ankara, Türkiye, (2008).
  • [146] Salehi, M., S. Mirbagheri and A.J. Ramiani, "Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading". Transactions of Nonferrous Metals Society of China, 92-110, (2021).
  • [147] Uzun, A., H. Karakoc, U. Gokmen, H. Cinici and M. Turker, "Investigation of mechanical properties of tubular aluminum foams". International Journal of Materials Research, 996-1004, (2016).
  • [148] Crupi, V. and R. Montanini, "Aluminium foam sandwiches collapse modes under static and dynamic three-point bending". International Journal of Impact Engineering, 509-521, (2007).
  • [149] Banhart, J., "Metal foams-from fundamental research to applications". Frontiers in the Design of Materials, (2007).
  • [150] Lefebvre, L.P., J. Banhart and D.C. Dunand, "Porous metals and metallic foams: current status and recent developments". Advanced engineering materials, 775-787, (2008).
  • [151] Seitzberger, M., et al., "Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam". International Journal of Solids and Structures, 4125-4147, (2000).
  • [152] Olurin, O., N.A. Fleck and M.F. Ashby, "Deformation and fracture of aluminium foams". Materials Science and Engineering: A, 136-146, (2000).
  • [153] Yao, R., et al., "On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects". Thin-Walled Structures, 110734, (2023).
  • [154] Claar, T.D., et al., "Ultra-lightweight aluminum foam materials for automotive applications". SAE transactions, 98-106, (2000).
  • [155] Wang, D., S. Zhang, C. Wang and C. Zhang, "Structure-material-performance integration lightweight optimisation design for frontal bumper system". International journal of crashworthiness, 311-327, (2018).
  • [156] Baumeister, J., J. Weise, E. Hirtz, K. Höhne and J. Hohe, "Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles: Anwendung von Aluminium‐Hybridschaum‐Sandwichen in Batteriegehäusen von Elektrofahrzeugen". Materialwissenschaft und Werkstofftechnik, 1099-1107, (2014).
  • [157] Heyhat, M.M., S. Mousavi and M. Siavashi, "Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle". Journal of Energy Storage, 101235, (2020).
  • [158] Banhart, J., "Industrialisation of aluminium foam technology", Proceedings of the ninth International Conference on aluminium alloys, 764-770, (2004).
  • [159] Banhart, J. and H. Seeliger, "Aluminium Foam Sandwich Panels: Metallurgy, Manufacture and Applications, Porous Metals and Metallic Foams", Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, 3-6, (2007).
  • [160] Seeliger, H.W., "Aluminium foam sandwich (AFS) ready for market introduction". Advanced Engineering Materials, 448-451, (2004).
  • [161] Pinnoji, P.K., N. Bourdet, P. Mahajan and R. Willinger, "New motorcycle helmets with metal foam shell", IRCOBI Conference Proceedings, Bern, Switzerland, (2008).
  • [162] Pinnoji, P.K., P. Mahajan, N. Bourdet, C. Deck and R.m. Willinger, "Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling". International Journal of Impact Engineering, 274-284, (2010).
  • [163] Carruthers, J., et al., "The design and prototyping of a lightweight crashworthy rail vehicle driver's cab", 9th World Congress on Railway Research, (2011).
  • [164] Kornei, K., "New Aluminum ‘Foam’Makes Trains Stronger, Lighter, and Safer". Wired. com. https://www. wired. com/2014/12/aluminum-foam-trains, (2014).
  • [165] García-Moreno, F., "Commercial applications of metal foams: Their properties and production". Materials, 85, (2016).
  • [166] Neugebauer, R. and T. Hipke, "Machine tools with metal foams". Advanced Engineering Materials, 858-863, (2006).
  • [167] Gökmen, U., "Toz metalurjisi yöntemi ile Al esaslı parçacık takviyeli metalik köpük üretimi", Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2009).
Toplam 167 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toz Metalurjisi
Bölüm Derleme Makalesi
Yazarlar

Mehmet Türker 0000-0001-7028-0587

Erken Görünüm Tarihi 6 Ağustos 2024
Yayımlanma Tarihi
Gönderilme Tarihi 2 Nisan 2024
Kabul Tarihi 31 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Türker, M. (2024). Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1463820
AMA Türker M. Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi. Published online 01 Ağustos 2024:1-1. doi:10.2339/politeknik.1463820
Chicago Türker, Mehmet. “Toz Metal Al Köpükler: Üretimi, Çeşitleri Ve Kullanım Alanları”. Politeknik Dergisi, Ağustos (Ağustos 2024), 1-1. https://doi.org/10.2339/politeknik.1463820.
EndNote Türker M (01 Ağustos 2024) Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi 1–1.
IEEE M. Türker, “Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları”, Politeknik Dergisi, ss. 1–1, Ağustos 2024, doi: 10.2339/politeknik.1463820.
ISNAD Türker, Mehmet. “Toz Metal Al Köpükler: Üretimi, Çeşitleri Ve Kullanım Alanları”. Politeknik Dergisi. Ağustos 2024. 1-1. https://doi.org/10.2339/politeknik.1463820.
JAMA Türker M. Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi. 2024;:1–1.
MLA Türker, Mehmet. “Toz Metal Al Köpükler: Üretimi, Çeşitleri Ve Kullanım Alanları”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1463820.
Vancouver Türker M. Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.