Derleme
BibTex RIS Kaynak Göster

Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1466579

Öz

Biyolojik olarak parçalanabilen implantların çıkarılması için ikinci bir ameliyata gerek olmaması iyileşme sürecini hızlandırırken sağlık risklerini, maliyetleri ve yara izlerini azaltmaktadır. Toksik madde bırakmadan çözünebilme kabiliyetleri ve mekanik özellikleri Magnezyum alaşımların önemini daha da artırmaktadır. Mikro cerrahideki gelişmeler ve implant üretimindeki kalite standartları göz önüne alındığında mikro frezeleme optimum üretim yöntemi olmaktadır. Mikro frezeleme ile implatın yüzey modifikasyonu sağlanarak implant başarısı artırılabilmektedir. Fakat mikro işleme makro işleme ile kıyaslandığında boyut etkisi, çapak oluşumu ve takım sapması başlıca sorunlardır. Literatür incelendiğinde magnezyum alaşımlarının mikro frezelemesinin araştırılmasının sınırlı kaldığı görülmektedir. Bu çalışmada magnezyum alaşımlarının implant uygulamalarındaki önemi ve mikro işleme de karşılaşılan sorunlar birlikte değerlendirilmiştir. Bu sayede implant uygulamalarında yüzey optimizasyonu sağlanarak mikro frezeleme uygulamalarında imalat kalitesinin ve verimliğinin artırılması amaçlanmıştır.

Etik Beyan

Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.

Teşekkür

Bu araştırma TÜBİTAK 2219 Yurt Dışı Doktora Sonrası Araştırma Burs Programı tarafından desteklenmiştir. Araştırma sürecine verdiği destekten dolayı TÜBİTAK'a teşekkür ediyoruz.

Kaynakça

  • [1] Niinomi, M., Nakai, M., and Hieda, J., "Development of new metallic alloys for biomedical applications", Acta Biomaterialia, 8 (11): 3888–3903, (2012).
  • [2] Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review", Progress in Materials Science, 54 (3): 397–425, (2009).
  • [3] Mutlu, İ., and Dizdar, A., "Geleneksel total kalça protezine alternatif epifiz protezinin mekanik değerlendirmesi", Politeknik Dergisi, 26 (1): 73–79, (2023).
  • [4] Kamachimudali, U., Sridhar, T.M., and Raj, B., "Corrosion of bio implants", Sadhana, 28 (3–4): 601–637, (2003).
  • [5] Hermawan, H., Ramdan, D., and P. Djuansjah, J.R., “Metals for biomedical applications, biomedical engineering - from theory to applicationsg”, InTech, (2011).
  • [6] Huang, B., Yang, M., Kou, Y., and Jiang, B., "Bioactive materials absorbable implants in sport medicine and arthroscopic surgery : A narrative review of recent development", Bioactive Materials, 31 (11): 272–283, (2024).
  • [7] Qin, Y., Wen, P., Guo, H., Xia, D., Zheng, Y., Jauer, L., Poprawe, R., Voshage, M., and Schleifenbaum, J.H., "Additive manufacturing of biodegradable metals: Current research status and future perspectives", Acta Biomaterialia, 98: 3–22, (2019).
  • [8] Zheng, Y.F., Gu, X.N., and Witte, F., "Biodegradable metals", Materials Science and Engineering: R: Reports, 77: 1–34, (2014).
  • [9] Chen, Q., and Thouas, G.A., "Metallic implant biomaterials", Materials Science and Engineering: R: Reports, 87: 1–57, (2015).
  • [10] Ulum, M.F., Arafat, A., Noviana, D., Yusop, A.H., Nasution, A.K., Abdul Kadir, M.R., and Hermawan, H., "In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications", Materials Science and Engineering: C, 36 (1): 336–344, (2014).
  • [11] Purnama, A., Hermawan, H., Couet, J., and Mantovani, D., "Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation", Acta Biomaterialia, 6 (5): 1800–1807, (2010).
  • [12] Ma, J., Zhao, N., and Zhu, D., "Endothelial cellular responses to biodegradable metal zinc", ACS Biomaterials Science & Engineering, 1 (11): 1174–1182, (2015).
  • [13] Seitz, J., Durisin, M., Goldman, J., and Drelich, J.W., "Recent advances in biodegradable metals for medical sutures: a critical review", Advanced Healthcare Materials, 4 (13): 1915–1936, (2015).
  • [14] Eddy Jai Poinern, G., Brundavanam, S., and Fawcett, D., "Biomedical magnesium alloys: A Review of material properties, surface modifications and potential as a biodegradable orthopaedic implant", American Journal of Biomedical Engineering, 2 (6): 218–240, (2013).
  • [15] Sanchez, A.H.M., Luthringer, B.J.C., Feyerabend, F., and Willumeit, R., "Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review", Acta Biomaterialia, 13: 16–31, (2015).
  • [16] Niu, J., Xiong, M., Guan, X., Zhang, J., Huang, H., Pei, J., and Yuan, G., "The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results", Corrosion Science, 113: 183–187, (2016).
  • [17] Yusop, A.H., Bakir, A.A., Shaharom, N.A., Abdul Kadir, M.R., and Hermawan, H., "Porous biodegradable metals for hard tissue scaffolds: A Review", International Journal of Biomaterials, 2012: 1–10, (2012).
  • [18] Berglund, I.S., Brar, H.S., Dolgova, N., Acharya, A.P., Keselowsky, B.G., Sarntinoranont, M., and Manuel, M. V., "Synthesis and characterization of Mg‐Ca‐Sr alloys for biodegradable orthopedic implant applications", Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B (6): 1524–1534, (2012).
  • [19] Li, H., Zheng, Y., and Qin, L., "Progress of biodegradable metals", Progress in Natural Science: Materials International, 24 (5): 414–422, (2014).
  • [20] Bauer, S., Schmuki, P., von der Mark, K., and Park, J., "Engineering biocompatible implant surfaces Part I: Materials and surfaces", Progress in Materials Science, 58 (3): 261–326, (2013).
  • [21] Sezer, N., Evis, Z., Kayhan, S.M., Tahmasebifar, A., and Koç, M., "Review of magnesium-based biomaterials and their applications", Journal of Magnesium and Alloys, 6 (1): 23–43, (2018).
  • [22] Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., and Berzina-Cimdina, L., "Biodegradable materials and metallic implants—A Review", Journal of Functional Biomaterials, 8 (4): 44, (2017).
  • [23] Sommer, D., Götzendorfer, B., Esen, C., and Hellmann, R., "Design rules for hybrid additive manufacturing combining selective laser melting and micromilling", Materials, 14 (19): 5753, (2021).
  • [24] Oliveira, D., Carla, A., Kapoor, S.G., de Oliveira Campos, F., Araujo, A.C., Jardini Munhoz, A.L., and Kapoor, S.G., "The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: A comparison of SLM and commercial workpieces", Journal of Manufacturing Processes, 60 (November): 299–307, (2020).
  • [25] Yun, Y., Dong, Z., Lee, N., Liu, Y., Xue, D., Guo, X., Kuhlmann, J., Doepke, A., Halsall, H.B., Heineman, W., Sundaramurthy, S., Schulz, M.J., Yin, Z., Shanov, V., Hurd, D., Nagy, P., Li, W., and Fox, C., "Revolutionizing biodegradable metals", Materials Today, 12 (10): 22–32, (2009).
  • [26] Zhao, D., Witte, F., Lu, F., Wang, J., Li, J., and Qin, L., "Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective", Biomaterials, 112: 287–302, (2017).
  • [27] Lu, Y., Deshmukh, S., Jones, I., and Chiu, Y.L., "Biodegradable magnesium alloys for orthopaedic applications", Biomaterials Translational, 2 (3): 214–235, (2021).
  • [28] Ang, H.Q., Abbott, T.B., Zhu, S., Gu, C., and Easton, M.A., "Proof stress measurement of die-cast magnesium alloys", Materials and Design, 112: 402–409, (2016).
  • [29] Antoniac, I., Miculescu, M., Mănescu (Păltânea), V., Stere, A., Quan, P.H., Păltânea, G., Robu, A., and Earar, K., "Magnesium-based alloys used in orthopedic surgery", Materials, 15 (3): 1148, (2022).
  • [30] Wang, J., Xu, J., Hopkins, C., Chow, D.H., and Qin, L., "Biodegradable magnesium‐based implants in orthopedics—A general review and perspectives", Advanced Science, 7 (8): (2020).
  • [31] Song, G.L., and Atrens, A., "Corrosion mechanisms of magnesium alloys", Advanced Engineering Materials, 1 (1): 11–33, (1999).
  • [32] Yamamoto, A., and Hiromoto, S., "Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro", Materials Science and Engineering C, 29 (5): 1559–1568, (2009).
  • [33] Zhang, Y., Xu, J., Ruan, Y.C., Yu, M.K., O’Laughlin, M., Wise, H., Chen, D., Tian, L., Shi, D., Wang, J., Chen, S., Feng, J.Q., Chow, D.H.K., Xie, X., Zheng, L., Huang, L., Huang, S., Leung, K., Lu, N., Zhao, L., Li, H., Zhao, D., Guo, X., Chan, K., Witte, F., Chan, H.C., Zheng, Y., and Qin, L., "Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats", Nature Medicine, 22 (10): 1160–1169, (2016).
  • [34] Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H., "In vivo corrosion of four magnesium alloys and the associated bone response", Biomaterials, 26 (17): 3557–3563, (2005).
  • [35] Kong, X., Wang, L., Li, G., Qu, X., Niu, J., Tang, T., Dai, K., Yuan, G., and Hao, Y., "Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model", Materials Science and Engineering C, 86 (July 2017): 42–47, (2018).
  • [36] Song, G., and Song, S., "A possible biodegradable magnesium implant material", Advanced Engineering Materials, 9 (4): 298–302, (2007).
  • [37] Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y., "What is going on in magnesium alloys?", Journal of Materials Science & Technology, 34 (2): 245–247, (2018).
  • [38] Ding, Y., Wen, C., Hodgson, P., and Li, Y., "Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review", J. Mater. Chem. B, 2 (14): 1912–1933, (2014).
  • [39] Jia, B., Yang, H., Han, Y., Zhang, Z., Qu, X., Zhuang, Y., Wu, Q., Zheng, Y., and Dai, K., "In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications", Acta Biomaterialia, 108: 358–372, (2020).
  • [40] Biber, R., Pauser, J., Geßlein, M., and Bail, H.J., "Magnesium-Based absorbable metal screws for intra-articular fracture fixation", Case Reports in Orthopedics, 2016: 1–4, (2016).
  • [41] Naujokat, H., Seitz, J.M., Açil, Y., Damm, T., Möller, I., Gülses, A., and Wiltfang, J., "Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs", Acta Biomaterialia, 62: 434–445, (2017).
  • [42] Han, H.S., Loffredo, S., Jun, I., Edwards, J., Kim, Y.C., Seok, H.K., Witte, F., Mantovani, D., and Glyn-Jones, S., "Current status and outlook on the clinical translation of biodegradable metals", Materials Today, 23 (March): 57–71, (2019).
  • [43] Seetharaman, S., Jayalakshmi, S., Arvind Singh, R., and Gupta, M., "The potential of magnesium-based materials for engineering and biomedical applications", Journal of the Indian Institute of Science, 102 (1): 421–437, (2022).
  • [44] Liu, D., Yang, D., Li, X., and Hu, S., "Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review", Journal of Materials Research and Technology, 8 (1): 1538–1549, (2019).
  • [45] Waizy, H., Diekmann, J., Weizbauer, A., Reifenrath, J., Bartsch, I., Neubert, V., Schavan, R., and Windhagen, H., "In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months", Journal of Biomaterials Applications, 28 (5): 667–675, (2014).
  • [46] Liu, J., Liu, B., Min, S., Yin, B., Peng, B., Yu, Z., Wang, C., Ma, X., Wen, P., Tian, Y., and Zheng, Y., "Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation", Bioactive Materials, 16 (February): 301–319, (2022).
  • [47] Sun, Y., Wu, H., Wang, W., Zan, R., Peng, H., Zhang, S., and Zhang, X., "Bioactive materials translational status of biomedical Mg devices in China", Bioactive Materials, 4 (November 2019): 358–365, (2020).
  • [48] Sealy, M.P., Guo, Y.B., Liu, J.F., and Li, C., "Pulsed laser cutting of magnesium-calcium for biodegradable stents", Procedia CIRP, 42 (Isem Xviii): 67–72, (2016).
  • [49] Sealy, M.P., Guo, Y.B., Caslaru, R.C., Sharkins, J., and Feldman, D., "Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants", International Journal of Fatigue, 82: 428–436, (2016).
  • [50] Edelmann, A., Riedel, L., and Hellmann, R., "Realization of a dental framework by 3D printing in material cobalt-chromium with superior precision and fitting accuracy", Materials, 13 (23): 5390, (2020).
  • [51] Merklein, M., Junker, D., Schaub, A., and Neubauer, F., "Hybrid additive manufacturing technologies – An analysis regarding potentials and applications", Physics Procedia, 83: 549–559, (2016).
  • [52] Allwood, J.M., Childs, T.H.C., Clare, A.T., De Silva, A.K.M., Dhokia, V., Hutchings, I.M., Leach, R.K., Leal-Ayala, D.R., Lowth, S., Majewski, C.E., Marzano, A., Mehnen, J., Nassehi, A., Ozturk, E., Raffles, M.H., Roy, R., Shyha, I., and Turner, S., "Manufacturing at double the speed", Journal of Materials Processing Technology, 229: 729–757, (2016).
  • [53] Greco, S., Kieren-Ehses, S., Kirsch, B., and Aurich, J.C., "Micro milling of additively manufactured AISI 316L: impact of the layerwise microstructure on the process results", The International Journal of Advanced Manufacturing Technology, 112 (1–2): 361–373, (2021).
  • [54] Bruschi, S., Tristo, G., Rysava, Z., Bariani, P.F., Umbrello, D., and De Chiffre, L., "Environmentally clean micromilling of electron beam melted Ti6Al4V", Journal of Cleaner Production, 133: 932–941, (2016).
  • [55] Bartolo, P., Kruth, J.-P., Silva, J., Levy, G., Malshe, A., Rajurkar, K., Mitsuishi, M., Ciurana, J., and Leu, M., "Biomedical production of implants by additive electro-chemical and physical processes", CIRP Annals, 61 (2): 635–655, (2012).
  • [56] Demir, A.G., Previtali, B., Ge, Q., Vedani, M., Wu, W., Migliavacca, F., Petrini, L., Biffi, C.A., and Bestetti, M., "Biodegradable magnesium coronary stents: material, design and fabrication", International Journal of Computer Integrated Manufacturing, 27 (10): 936–945, (2014).
  • [57] Demir, A.G., Maressa, P., and Previtali, B., "Fibre laser texturing for surface functionalization", Physics Procedia, 41: 759–768, (2013).
  • [58] Cappellini, C., Malandruccolo, A., Abeni, A., and Attanasio, A., "A feasibility study of promoting osseointegration surface roughness by micro-milling of Ti-6Al-4V biomedical alloy", The International Journal of Advanced Manufacturing Technology, 126 (7–8): 3053–3067, (2023).
  • [59] Trueba, P., Navarro, C., Rodríguez-Ortiz, J.A., Beltrán, A.M., García-García, F.J., and Torres, Y., "Fabrication and characterization of superficially modified porous dental implants", Surface and Coatings Technology, 408 (December 2020): 126796, (2021).
  • [60] Jain, A., and Bajpai, V., "Alteration in Ti6Al4V implant surface properties with micro textures density", Surface Engineering, 38 (2): 174–182, (2022).
  • [61] Kumar, S.P.L., and Avinash, D., "Experimental biocompatibility investigations of Ti–6Al–7Nb alloy in micromilling operation in terms of corrosion behavior and surface characteristics study", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (9): 1–11, (2019).
  • [62] Szewczenko, J., Marciniak, J., Kajzer, W., and Kajzer, A., "Evaluation of corrosion resistance of titanium alloys used for medical implants", Archives of Metallurgy and Materials, 61 (2): 695–700, (2016).
  • [63] Chehroudi, B., McDonnell, D., and Brunette, D.M., "The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing", Journal of Biomedical Materials Research, 34 (3): 279–290, (1997).
  • [64] Chandra, G., and Pandey, A., "Biodegradable bone implants in orthopedic applications: a review", Biocybernetics and Biomedical Engineering, 40 (2): 596–610, (2020).
  • [65] Vadiraj, A., and Kamaraj, M., "Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys", Tribology International, 40 (1): 82–88, (2007).
  • [66] Wang, H., and Shi, Z., "In vitro biodegradation behavior of magnesium and magnesium alloy", Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98B (2): 203–209, (2011).
  • [67] Wan, Y., Wang, T., Wang, Z., Jin, Y., and Liu, Z., "Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation", The International Journal of Advanced Manufacturing Technology, 98 (1–4): 29–35, (2018).
  • [68] Buser, D., Nydegger, T., Oxland, T., Cochran, D.L., Schenk, R.K., Hirt, H.P., Snétivy, D., and Nolte, L.P., "Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs", Journal of Biomedical Materials Research, 45 (2): 75–83, (1999).
  • [69] Denkena, B., Lucas, A., Thorey, F., Waizy, H., Angrisani, N., and Meyer-Lindenberg, A., “Biocompatible magnesium alloys as degradable implant materials - machining induced surface and subsurface properties and implant performance, special issues on magnesium alloys” InTech, (2011).
  • [70] Klocke, F., Schwade, M., Klink, A., and Kopp, A., "EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications", Procedia Engineering, 19: 190–195, (2011).
  • [71] Virtanen, S., “Degradation of titanium and its alloys, Degradation of implant materials. Springer, New York, (2012).
  • [72] Lauro, C.H., Ribeiro Filho, S.L.M., Brandão, L.C., and Davim, J.P., "Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting", Measurement: Journal of the International Measurement Confederation, 93: 529–540, (2016).
  • [73] Roushan, A., Srinivas Rao, U., Patra, K., and Sahoo, P., "Multi-characteristics optimization in micro-milling of Ti6Al4V alloy", Journal of Physics: Conference Series, 1950 (1): 012046, (2021).
  • [74] Jain, A., Kumari, N., Jagadevan, S., and Bajpai, V., "Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling", Surfaces and Interfaces, 21 (September): 100714, (2020).
  • [75] Pandey, L.M., and Hasan, A., “Nanoscale engineering of biomaterials: properties and applications”, Springer Nature Singapore, Singapore, (2022).
  • [76] O’Toole, L., Kang, C.W., and Fang, F.Z., "Precision micro-milling process: state of the art", Advances in Manufacturing, 9 (2): 173–205, (2021).
  • [77] Chrzanowski, W., "Corrosion study of Ti6Al7Nb alloy after thermal , anodic and alkali surface treatments", Journal of Achievements in Materials and Manufacturing Engineering, 31 (2): 203–211, (2008).
  • [78] Babík, O., Czán, A., Holubják, J., Kameník, R., and Pilc, J., "Non-destructive analysis of basic surface characteristics of titanium dental implants made by miniature machining", Technological Engineering, 13 (2): 28–30, (2016).
  • [79] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., and Chandrashekarappa, M.P.G., "Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of Mg13Sn alloy", Micromachines, 14 (8): 1590, (2023).
  • [80] Li, J., Zhou, P., Attarilar, S., and Shi, H., " Innovative surface modification procedures to achieve micro/nano-graded ti-based biomedical alloys and implants", Coatings, 11(6): 647, (2021).
  • [81] Erwin, N., Sur, D., and Basim, G.B., "Remediation of machining medium effect on biocompatibility of titanium-based dental implants by chemical mechanical nano-structuring", Journal of Materials Research, 37 (16): 2686–2697, (2022).
  • [82] Byrne, G., Dornfeld, D., and Denkena, B., "Advancing cutting technology", CIRP Annals, 52 (2): 483–507, (2003).
  • [83] Filiz, S., Xie, L., Weiss, L.E., and Ozdoganlar, O.B., "Micromilling of microbarbs for medical implants", International Journal of Machine Tools and Manufacture, 48 (3–4): 459–472, (2008).
  • [84] Liu, H., Sun, Y., Geng, Y., and Shan, D., "Experimental research of milling force and surface quality for TC4 titanium alloy of micro-milling", The International Journal of Advanced Manufacturing Technology, 79 (1–4): 705–716, (2015).
  • [85] Davis, J. Materials for medical devices, ASM Handbook Series, (2012).
  • [86] Ratner, B.D., and Bryant, S.J., "Biomaterials: Where we have been and where we are going", Annual Review of Biomedical Engineering, 6 (1): 41–75, (2004).
  • [87] Shen, N., and Ding, H., "Thermo-mechanical coupled analysis of laser-assisted mechanical micromilling of difficult-to-machine metal alloys used for bio-implant", International Journal of Precision Engineering and Manufacturing, 14 (10): 1677–1685, (2013).
  • [88] Huo, D., and Cheng, K. “Overview of Micro Cutting, Micro‐Cutting”,Cheng, K., and Huo, D., Wiley, Chichester, (2013).
  • [89] Chae, J., Park, S.S., and Freiheit, T., "Investigation of micro-cutting operations", International Journal of Machine Tools and Manufacture, 46 (3–4): 313–332, (2006).
  • [90] Wang, G., Wan, Y., Ren, B., and Liu, Z., "Bioactivity of micropatterned TiO 2 nanotubes fabricated by micro-milling and anodic oxidation", Materials Science and Engineering C, 95 (June 2018): 114–121, (2019).
  • [91] Jain, A., and Bajpai, V., "Mechanical micro-texturing and characterization on Ti6Al4V for the improvement of surface properties", Surface and Coatings Technology, 380 (July): 125087, (2019).
  • [92] Janssen, P.J.M., Hoefnagels, J.P.M., de Keijser, T.H., and Geers, M.G.D., "Processing induced size effects in plastic yielding upon miniaturisation", Journal of the Mechanics and Physics of Solids, 56 (8): 2687–2706, (2008).
  • [93] Jin, X., and Altintas, Y., "Slip-line field model of micro-cutting process with round tool edge effect", Journal of Materials Processing Technology, 211 (3): 339–355, (2011).
  • [94] Leo Kumar, S.P., Jerald, J., Kumanan, S., and Prabakaran, R., "A review on current research aspects in tool-based micromachining processes", Materials and Manufacturing Processes, 29 (11–12): 1291–1337, (2014).
  • [95] Asad, A.B.M.A., Masaki, T., Rahman, M., Lim, H.S., and Wong, Y.S., "Tool-based micro-machining", Journal of Materials Processing Technology, 192–193: 204–211, (2007).
  • [96] Sun, Y., Gong, Y.D., Wen, X.L., Yin, G.Q., and Meng, F.T., "Micro milling characteristics of LS-WEDM fabricated helical and corrugated micro end mill", International Journal of Mechanical Sciences, 167 (October 2019): 105277, (2020).
  • [97] Chen, N., Li, L., Wu, J., Qian, J., He, N., and Reynaerts, D., "Research on the ploughing force in micro milling of soft-brittle crystals", International Journal of Mechanical Sciences, 155 (November 2018): 315–322, (2019).
  • [98] Boswell, B., Islam, M.N., and Davies, I.J., "A review of micro-mechanical cutting", The International Journal of Advanced Manufacturing Technology, 94 (1–4): 789–806, (2018).
  • [99] Koç, M., and Özel, T., “Fundamentals of micro-manufacturing, Micro‐Manufacturing: Design and manufacturing of micro‐products”, Wiley, U.S.A, (2011).
  • [100] Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., and Young, E.W.K., "Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices", Lab on a Chip, 15 (11): 2364–2378, (2015).
  • [101] Piljek, P., Keran, Z., and Math, M., "Micromachining", Interdisciplinary Description of Complex Systems, 12 (1): 1–27, (2014).
  • [102] Dimov, S. S., Matthews, C. W., Glanfield, A., and Dorrington, P., “A roadmapping study in multi-material micro manufacture”, In 4M 2006-Second International Conference on Multi-Material Micro Manufacture, pp: xi-xxv, Elsevier, (2006).
  • [103] Bilgin, M., "AZ31B magnezyum alaşiminin sürtünmeli delme işlemi üzerine deneysel çalişma Experimental study on the friction drilling process of AZ31B magnesium alloy", Politeknik Dergisi, 24 (4): 1655–1666, (2021).
  • [104] Aktüz, B., "“A comparative study on wear and machinability behaviors of AM20, AJ21 and AS21 magnesium alloys", Politeknik Dergisi, 26 (1): 243–248, (2023).
  • [105] Balázs, B.Z., Geier, N., Takács, M., and Davim, J.P., "A review on micro-milling: recent advances and future trends", The International Journal of Advanced Manufacturing Technology, 112 (3–4): 655–684, (2021).
  • [106] Pu, Z., Outeiro, J.C., Batista, A.C., Dillon, O.W., Puleo, D.A., and Jawahir, I.S., "Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components", International Journal of Machine Tools and Manufacture, 56: 17–27, (2012).
  • [107] Sunil, B.R., Ganesh, K. V., Pavan, P., Vadapalli, G., Swarnalatha, C., Swapna, P., Bindukumar, P., and Pradeep Kumar Reddy, G., "Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling", Journal of Magnesium and Alloys, 4 (1): 15–21, (2016).
  • [108] Wang, F., Cheng, X., Liu, Y., Yang, X., and Meng, F., "micromilling simulation for the hard-to-cut material", Procedia Engineering, 174: 693–699, (2017).
  • [109] Aramcharoen, A., Mativenga, P.T., Yang, S., Cooke, K.E., and Teer, D.G., "Evaluation and selection of hard coatings for micro milling of hardened tool steel", International Journal of Machine Tools and Manufacture, 48 (14): 1578–1584, (2008).
  • [110] Kumar, P., Bajpai, V., and Singh, R., "Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling", Manufacturing Letters, 11: 12–16, (2017).
  • [111] Sahoo, P., Patra, K., Szalay, T., and Dyakonov, A.A., "Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters", The International Journal of Advanced Manufacturing Technology, 106 (11–12): 4675–4691, (2020).
  • [112] Balázs, B.Z., and Takács, M., "Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel", The International Journal of Advanced Manufacturing Technology, 106 (11–12): 5289–5305, (2020).
  • [113] Gao, S., Pang, S., Jiao, L., Yan, P., Luo, Z., Yi, J., and Wang, X., "Research on specific cutting energy and parameter optimization in micro-milling of heat-resistant stainless steel", The International Journal of Advanced Manufacturing Technology, 89 (1–4): 191–205, (2017).
  • [114] Dib, M.H.M., Duduch, J.G., and Jasinevicius, R.G., "Minimum chip thickness determination by means of cutting force signal in micro endmilling", Precision Engineering, 51 (July 2017): 244–262, (2018).
  • [115] De Oliveira, F.B., Rodrigues, A.R., Coelho, R.T., and De Souza, A.F., "Size effect and minimum chip thickness in micromilling", International Journal of Machine Tools and Manufacture, 89: 39–54, (2015).
  • [116] Wojciechowski, S., Matuszak, M., Powałka, B., Madajewski, M., Maruda, R.W., and Królczyk, G.M., "Prediction of cutting forces during micro end milling considering chip thickness accumulation", International Journal of Machine Tools and Manufacture, 147 (2019): 103466, (2019).
  • [117] Hajiahmadi, S., "Burr size investigation in micro milling of stainless steel 316L", International Journal of Lightweight Materials and Manufacture, 2 (4): 296–304, (2019).
  • [118] Zhang, T., Liu, Z., and Xu, C., "Influence of size effect on burr formation in micro cutting", The International Journal of Advanced Manufacturing Technology, 68 (9–12): 1911–1917, (2013).
  • [119] Biermann, D., and Kahnis, P., "Analysis and simulation of size effects in micromilling", Production Engineering, 4 (1): 25–34, (2010).
  • [120] Aramcharoen, A., and Mativenga, P.T., "Size effect and tool geometry in micromilling of tool steel", Precision Engineering, 33 (4): 402–407, (2009).
  • [121] de Oliveira, D., Gomes, M.C., de Oliveira, G.V., dos Santos, A.G., and da Silva, M.B., "Experimental and computational contribution to chip geometry evaluation when micromilling Inconel 718", Wear, 476 (September 2020): 203658, (2021).
  • [122] Kim, J.-D., and Kim, D.S., "Theoretical analysis of micro-cutting characteristics in ultra-precision machining", Journal of Materials Processing Technology, 49 (3–4): 387–398, (1995).
  • [123] Lee, K., and Dornfeld, D.A., "Micro-burr formation and minimization through process control", Precision Engineering, 29 (2): 246–252, (2005).
  • [124] Özel, T., Liu, X., and Dhanorker, A., "Modelling and simulation of micro-milling process", 4th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Çeşme/Türkiye, 21–23, (2007).
  • [125] Chen, N., Li, H.N., Wu, J., Li, Z., Li, L., Liu, G., and He, N., "Advances in micro milling: From tool fabrication to process outcomes", International Journal of Machine Tools and Manufacture, 160 (November 2020): 103670, (2021).
  • [126] Fang, B., Yuan, Z., Li, D., and Gao, L., "Effect of ultrasonic vibration on finished quality in ultrasonic vibration assisted micromilling of Inconel718", Chinese Journal of Aeronautics, 34 (6): 209–219, (2021).
  • [127] Alting, L., Kimura, F., Hansen, H.N., and Bissacco, G., "Micro engineering", CIRP Annals, 52 (2): 635–657, (2003).
  • [128] Teng, X., Huo, D., Shyha, I., Chen, W., and Wong, E., "An experimental study on tool wear behaviour in micro milling of nano Mg/Ti metal matrix composites", The International Journal of Advanced Manufacturing Technology, 96 (5–8): 2127–2140, (2018).
  • [129] Trent E.M., and Wright P.K. “Metal cutting”, Butterworth-Heinemann, Boston, (2004).
  • [130] Bissacco, G., Hansen, H.N., and De Chiffre, L., "Micromilling of hardened tool steel for mould making applications", Journal of Materials Processing Technology, 167 (2–3): 201–207, (2005).
  • [131] Chen, W., Zheng, L., Teng, X., Yang, K., and Huo, D., "Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling", The International Journal of Advanced Manufacturing Technology, 105 (11): 4539–4549, (2019).
  • [132] Li, P., Oosterling, J.A.J., Hoogstrate, A.M., Langen, H.H., and Munnig Schmidt, R.H., "Design of micro square endmills for hard milling applications", The International Journal of Advanced Manufacturing Technology, 57 (9–12): 859–870, (2011).
  • [133] Tansel, I., Rodriguez, O., Trujillo, M., Paz, E., and Li, W., "Micro-end-milling—I. Wear and breakage", International Journal of Machine Tools and Manufacture, 38 (12): 1419–1436, (1998).
  • [134] Malekian, M., Mostofa, M.G., Park, S.S., and Jun, M.B.G., "Modeling of minimum uncut chip thickness in micro machining of aluminum", Journal of Materials Processing Technology, 212 (3): 553–559, (2012).
  • [135] Yuan, Z.J., Zhou, M., and Dong, S., "Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining", Journal of Materials Processing Technology, 62 (4): 327–330, (1996).
  • [136] Liu, J., Li, J., and Xu, C., "Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review", CIRP Journal of Manufacturing Science and Technology, 7 (2): 55–70, (2014).
  • [137] Anand, R.S., and Patra, K., "Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates", CIRP Journal of Manufacturing Science and Technology, 16: 55–63, (2017).
  • [138] Weule, H., Hüntrup, V., and Tritschler, H., "Micro-cutting of steel to meet new requirements in miniaturization", CIRP Annals, 50 (1): 61–64, (2001).
  • [139] Sooraj, V.S., and Mathew, J., "An experimental investigation on the machining characteristics of microscale end milling", The International Journal of Advanced Manufacturing Technology, 56 (9–12): 951–958, (2011).
  • [140] H. Tschätsch, “Applied machining technology”, Springer Berlin Heidelberg, Berlin, (2009).
  • [141] Uhlmann, E., Oberschmidt, D., Kuche, Y., and Löwenstein, A., "Cutting edge preparation of micro milling tools", Procedia CIRP, 14: 349–354, (2014).
  • [142] Shaw, M.C., "The size effect in metal cutting", Sadhana, 28 (5): 875–896, (2003).
  • [143] Câmara, M.A., Rubio, J.C.C., Abrão, A.M., and Davim, J.P., "State of the art on micromilling of materials, a review", Journal of Materials Science & Technology, 28 (8): 673–685, (2012).
  • [144] Liu, K., and Melkote, S.N., "Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process", International Journal of Mechanical Sciences, 49 (5): 650–660, (2007).
  • [145] Silva, L.C., and da Silva, M.B., "Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel", Precision Engineering, 60 (July): 178–188, (2019).
  • [146] Chern, G.-L., Wu, Y.-J.E., Cheng, J.-C., and Yao, J.-C., "Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM", Precision Engineering, 31 (2): 122–129, (2007).
  • [147] Yadav, R., Chakladar, N.D., and Paul, S., "Micro-milling of Ti-6Al-4 V with controlled burr formation", International Journal of Mechanical Sciences, 231 (July): 107582, (2022).
  • [148] Kumar, P., Kumar, M., Bajpai, V., and Singh, N.K., "Recent advances in characterization, modeling and control of burr formation in micro-milling", Manufacturing Letters, 13: 1–5, (2017).
  • [149] Schaller, T., Bohn, L., Mayer, J., and Schubert, K., "Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills", Precision Engineering, 23 (4): 229–235, (1999).
  • [150] Fang, F.Z., and Liu, Y.C., "On minimum exit-burr in micro cutting", Journal of Micromechanics and Microengineering, 14 (7): 984–988, (2004).
  • [151] Filiz, S., Conley, C.M., Wasserman, M.B., and Ozdoganlar, O.B., "An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills", International Journal of Machine Tools and Manufacture, 47 (7–8): 1088–1100, (2007).
  • [152] Zhang, X., Yu, T., Wang, W., and Zhao, J., "Improved analytical prediction of burr formation in micro end milling", International Journal of Mechanical Sciences, 151 (December 2018): 461–470, (2019).
  • [153] Kou, Z., Wan, Y., Cai, Y., Liang, X., and Liu, Z., "Burr controlling in micro milling with supporting material method", Procedia Manufacturing, 1: 501–511, (2015).
  • [154] Yadav, R., Chakladar, N.D., and Paul, S., "Modelling and experimental validation of burr control in micro milling of metals", Materials Today Communications, 35 (March): 106205, (2023).
  • [155] Chen, Y., Wang, T., and Zhang, G., "Research on parameter optimization of micro-milling al7075 based on edge-size-effect", Micromachines, 11 (2): 197, (2020).
  • [156] Schmidt, J., and Tritschler, H., "Micro cutting of steel", Microsystem Technologies, 10 (3): 167–174, (2004).
  • [157] Attanasio, A., Gelfi, M., Pola, A., Ceretti, E., and Giardini, C., "Influence of material microstructures in micromilling of Ti6Al4V alloy", Materials, 6 (9): 4268–4283, (2013).
  • [158] Wan, M., Ye, X.Y., Wen, D.Y., and Zhang, W.H., "Modeling of machining-induced residual stresses", Journal of Materials Science, 54 (1): 1–35, (2019).
  • [159] Lekkala, R., Bajpai, V., Singh, R.K., and Joshi, S.S., "Characterization and modeling of burr formation in micro-end milling", Precision Engineering, 35 (4): 625–637, (2011).
  • [160] Uhlmann, E., Piltz, S., and Schauer, K., "Micro milling of sintered tungsten–copper composite materials", Journal of Materials Processing Technology, 167 (2–3): 402–407, (2005).
  • [161] K, V., and Mathew, J., "Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness", Wear, 424–425 (February): 165–182, (2019).
  • [162] Swain, N., Venkatesh, V., Kumar, P., Srinivas, G., Ravishankar, S., and Barshilia, H.C., "An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills", CIRP Journal of Manufacturing Science and Technology, 16: 34–42, (2017).
  • [163] Gilbin, A., Fontaine, M., Michel, G., Thibaud, S., and Picard, P., "Capability of tungsten carbide micro-mills to machine hardened tool steel", International Journal of Precision Engineering and Manufacturing, 14 (1): 23–28, (2013).
  • [164] Piquard, R., D’Acunto, A., Laheurte, P., and Dudzinski, D., "Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation", Precision Engineering, 38 (2): 356–364, (2014).
  • [165] Biermann, D., and Steiner, M., "Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10", Procedia CIRP, 3 (1): 97–102, (2012).
  • [166] Uhlmann, E., Oberschmidt, D., Löwenstein, A., and Kuche, Y., "Influence of cutting edge preparation on the performance of micro milling tools", Procedia CIRP, 46: 214–217, (2016).
  • [167] Vogler, M.P., DeVor, R.E., and Kapoor, S.G., "On the modeling and analysis of machining performance in micro-endmilling, Part I: Surface generation", Journal of Manufacturing Science and Engineering, 126 (4): 685–694, (2004).
  • [168] Aslantas, K., Hopa, H.E., Percin, M., Ucun, İ., and Çicek, A., "Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy", Precision Engineering, 45: 55–66, (2016).
  • [169] Ahmadi, M., Karpat, Y., Acar, O., and Kalay, Y.E., "Microstructure effects on process outputs in micro scale milling of heat treated Ti6Al4V titanium alloys", Journal of Materials Processing Technology, 252 (September 2017): 333–347, (2018).
  • [170] Wang, Y., Zou, B., Wang, J., Wu, Y., and Huang, C., "Effect of the progressive tool wear on surface topography and chip formation in micro-milling of Ti–6Al–4V using Ti(C7N3)-based cermet micro-mill", Tribology International, 141 (August 2019): 105900, (2020).
  • [171] Yang, K., Liang, Y., Zheng, K., Bai, Q., and Chen, W., "Tool edge radius effect on cutting temperature in micro-end-milling process", The International Journal of Advanced Manufacturing Technology, 52 (9–12): 905–912, (2011).
  • [172] Zhu, K., and Yu, X., "The monitoring of micro milling tool wear conditions by wear area estimation", Mechanical Systems and Signal Processing, 93: 80–91, (2017).
  • [173] Mian, A.J., Driver, N., and Mativenga, P.T., "Identification of factors that dominate size effect in micro-machining", International Journal of Machine Tools and Manufacture, 51 (5): 383–394, (2011).
  • [174] Mamedov, A., and Lazoglu, I., "Thermal analysis of micro milling titanium alloy Ti-6Al-4V", Journal of Materials Processing Technology, 229: 659–667, (2016).
  • [175] Wissmiller, D.L., and Pfefferkorn, F.E., "Technical paper: Micro end mill tool temperature measurement and prediction", Journal of Manufacturing Processes, 11 (1): 45–53, (2009).
  • [176] Geier, N., Davim, J.P., and Szalay, T., "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review", Composites Part A: Applied Science and Manufacturing, 125 (February): 105552, (2019).
  • [177] Geier, N., and Szalay, T., "Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)", Measurement: Journal of the International Measurement Confederation, 110: 319–334, (2017).
  • [178] A. Masrani, “Identification of internal process parameters of micro milling considering machined surface”, Bilkent University, Master's thesis, (2022).
  • [179] Teng, X., Huo, D., Wong, E., Meenashisundaram, G., and Gupta, M., "Micro-machinability of nanoparticle-reinforced Mg-based MMCs: an experimental investigation", International Journal of Advanced Manufacturing Technology, 87 (5–8): 2165–2178, (2016).
  • [180] Teng, X., Huo, D., Wong, W.L.E., Sankaranarayanan, S., and Gupta, M., “Machinability investigation in micro-milling of Mg ased MMCs with nano-sized particles, Magnesium Technology 2017”, Solanki, K.N., Orlov, D., Singh, A., and Neelameggham, N.R., Springer, Cham, (2017).
  • [181] Simoneau, A., Ng, E., and Elbestawi, M.A., "Chip formation during microscale cutting of a medium carbon steel", International Journal of Machine Tools and Manufacture, 46 (5): 467–481, (2006).
  • [182] Yun, H.T., Heo, S., Lee, M.K., Min, B.K., and Lee, S.J., "Ploughing detection in micromilling processes using the cutting force signal", International Journal of Machine Tools and Manufacture, 51 (5): 377–382, (2011).
  • [183] Lai, X., Li, H., Li, C., Lin, Z., and Ni, J., "Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness", International Journal of Machine Tools and Manufacture, 48 (1): 1–14, (2008).
  • [184] Kieren-Ehses, S., Böhme, L., Morales-Rivas, L., Lösch, J., Kirsch, B., Kerscher, E., Kopnarski, M., and Aurich, J.C., "The influence of the crystallographic orientation when micro machining commercially pure titanium: A size effect", Precision Engineering, 72 (April): 158–171, (2021).
  • [185] Tansel, I., Nedbouyan, A., Trujillo, M., and Tansel, B., "Micro-end-milling—II. extending tool life with a smart workpiece holder (SWH)", International Journal of Machine Tools and Manufacture, 38 (12): 1437–1448, (1998).
  • [186] Liu, J., Li, J., and Xu, C., "Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements", Journal of Micro and Nano-Manufacturing, 1 (1): 1–10, (2013).
  • [187] Afazov, S.M., Zdebski, D., Ratchev, S.M., Segal, J., and Liu, S., "Effects of micro-milling conditions on the cutting forces and process stability", Journal of Materials Processing Technology, 213 (5): 671–684, (2013).
  • [188] Wu, X., Li, L., He, N., Yao, C., and Zhao, M., "Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting", Precision Engineering, 45: 359–364, (2016).
  • [189] Lu, X., Wang, F., Jia, Z., Si, L., Zhang, C., and Liang, S.Y., "A modified analytical cutting force prediction model under the tool flank wear effect in micro-milling nickel-based superalloy", The International Journal of Advanced Manufacturing Technology, 91 (9–12): 3709–3716, (2017).
  • [190] Mittal, R.K., Kulkarni, S.S., and Singh, R.K., "Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V", Journal of Manufacturing Processes, 28: 413–421, (2017).
  • [191] Pratap, T., Patra, K., and Dyakonov, A.A., "Modeling cutting force in micro-milling of Ti-6Al-4V titanium alloy", Procedia Engineering, 129: 134–139, (2015).
  • [192] Sun, Q., Cheng, X., Liu, Y., Yang, X., and Li, Y., "Modeling and simulation for micromilling mechanisms", Procedia Engineering, 174: 760–766, (2017).
  • [193] Takács, M., Balázs, B.Z., and Jáuregui, J.C., "Dynamical aspects of micro milling process”, IN-TECH 2017 , Proceedings of International Conference on Innovative Technologies, 181-184, (2017).
  • [194] Singh, K.K., Kartik, V., and Singh, R., "Via velocity and chip load dependent cutting coef fi cients", International Journal of Machine Tools and Manufacture, 96: 56–66, (2015).
  • [195] Moges, T.M., Desai, K.A., and Rao, P.V.M., "Modeling of cutting force, tool deflection, and surface error in micro-milling operation", The International Journal of Advanced Manufacturing Technology, 98 (9–12): 2865–2881, (2018).
  • [196] Uriarte, L., Herrero, A., Zatarain, M., Santiso, G., Lopéz de Lacalle, L.N., Lamikiz, A., and Albizuri, J., "Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter", Precision Engineering, 31 (1): 1–12, (2007).
  • [197] Singh, K.K., and Singh, R., "Chatter stability prediction in high-speed micromilling of Ti6Al4V via finite element based microend mill dynamics", Advances in Manufacturing, 6 (1): 95–106, (2018).
  • [198] Ma, L., Howard, I., Pang, M., Wang, Z., and Su, J., "Experimental investigation of cutting vibration during micro-end-milling of the straight groove", Micromachines, 11 (5): 494, (2020).
  • [199] Yilmaz, E.E., Budak, E., and Özgüven, H.N., "Modeling and measurement of micro end mill dynamics using inverse stability approach", Procedia CIRP, 46: 242–245, (2016).
  • [200] Zhang, X., Yu, T., and Wang, W., "Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out", International Journal of Mechanical Sciences, 124–133, (2018).
  • [201] Baschin, A., Kahnis, P., and Biermann, D., "Dynamikanalyse des mikrofräsprozesses - einfluss von werkzeugschwingungen auf die qualität von mikrostrukturen", Materialwissenschaft und Werkstofftechnik, 39 (9): 616–621, (2008).
  • [202] Wang, D., Wang, X., Liu, Z., Gao, P., Ji, Y., Löser, M., and Ihlenfeldt, S., "Surface location error prediction and stability analysis of micro-milling with variation of tool overhang length", The International Journal of Advanced Manufacturing Technology, 99 (1–4): 919–936, (2018).
  • [203] Biermann, D., and Baschin, A., "Influence of cutting edge geometry and cutting edge radius on the stability of micromilling processes", Production Engineering, 3 (4–5): 375–380, (2009).
  • [204] Richter, L.E., Carlos, A., and Beber, D.M. “Machining”, ASM International, (1989).
  • [205] Weinert, K., Inasaki, I., Sutherland, J.W., and Wakabayashi, T., "Dry machining and minimum quantity lubrication", CIRP Annals - Manufacturing Technology, 53 (2): 511–537, (2004).
  • [206] Zhao, N., Hou, J., and Zhu, S., "Chip ignition in research on high-speed face milling AM50A magnesium alloy", 2nd International Conference on Mechanic Automation and Control Engineering, MACE 2011 - Proceedings, 1102–1105, (2011).
  • [207] Akyuz, B., "Influence of Al content on machinability of AZ series Mg alloys", Transactions of Nonferrous Metals Society of China, 23 (8): 2243–2249, (2013).
  • [208] Luxfer, “Machining magnesium,” Luxfer Machining Magnesium. [Online]. Available: https://www.luxfermeltechnologies.com/wp-content/uploads/2021/07/Luxfer-MEL-Technologies-DS-254-Machining-Magnesium.pdf
  • [209] Catherine, L.D.K., and Hamid, D.A., "Mechanical properties and machinability of magnesium alloy AZ31 and AZ91 - A Comparative review", IOP Conference Series: Materials Science and Engineering, 1062 (1): 0–6, (2021).
  • [210] Gül, C., Albayrak, S., Çömez, N., and Durmuş, H., "WE43 Magnezyum alaşiminin soğuk sprey kaplama yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 kaplanmasi ve aşinma davranişlarinin incelenmesi", Politeknik Dergisi, 25 (4): 1791–1798, (2022).
  • [211] Kulekci, M.K., "Magnesium and its alloys applications in automotive industry", Int J Adv Manuf Technol, 39: 851–865, (2008).
  • [212] Villeta, M., Rubio, E.M., Sáenz De Pipaón, J.M., and Sebastián, M.A., "Surface finish optimization of magnesium pieces obtained by dry turning based on taguchi techniquesand statistical tests", Materials and Manufacturing Processes, 26 (12): 1503–1510, (2011).
  • [213] Geng, H., “Manufacturing engineering handbook. 2nd ed”, McGraw-Hill Education, New York, (2016).
  • [214] Pang, S., Zhao, W., Qiu, T., Liu, W., Jiao, L., and Wang, X., "Study on surface quality and mechanical properties of micro-milling WE43 magnesium alloy cardiovascular stent", Journal of Manufacturing Processes, 101 (February): 1080–1090, (2023).
  • [215] Ay, M., Etyemez, A., and Aydin, U., "Milling of magnesium alloy with micro cutting tools", International Journal of Innovative Research and Reviews, 3 (1): 30–34, (2019).
  • [216] Etyemez, A., and Aydin, U., "Investigation of the effects of machining parameters on surface integrity in micromachining", Open Chemistry, 20 (1): 212–224, (2022).
  • [217] Suneesh, E., and Sivapragash, M., "Multi-response optimisation of micro-milling performance while machining a novel magnesium alloy and its alumina composites", Measurement, 168 (March 2020): 108345, (2021).
  • [218] Li, J., Liu, J., and Xu, C., "Machinability study of SiC nano-particles reinforced magnesium nanocomposites during micro-milling processes", ASME 2010 International Manufacturing Science and Engineering Conference, Volume 2, 391–398, (2010).
  • [219] Erçetin, A., Aslantas, K., and Özgün, Ö., "Micro-end milling of biomedical TZ54 magnesium alloy produced through powder metallurgy", Machining Science and Technology, 24 (6): 924–947, (2020).
  • [220] Tharaknath, S., and Rahamathullah, I., "Mechanical, chemical, metallurgical characteristics under HBSS solution and optimization of AZ91D-Ti functional graded composites using TOPSIS", Bulletin of the Chemical Society of Ethiopia, 37 (1): 77–89, (2022).

Evaluation of Micro Milling of Magnesium Alloys in Biodegradable Implant Production

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1466579

Öz

Biodegradable implants eliminate the need for a second surgery to remove them, thereby accelerating the healing process and reducing health risks, costs, and scarring. The ability of these implants to dissolve without leaving toxic substances, along with their favorable mechanical properties, reinforces the significance of magnesium alloys for implant applications. Considering advancements in microsurgery and quality standards in implant production, micro milling emerges as a promising production method. Surface modification of implants through micro milling can enhance implant success. However, compared to macromachining, challenges such as increased tool wear and maintaining tight tolerances persist. The literature review reveals limited research on the micro milling of magnesium alloys. This study evaluates the importance of magnesium alloys in implant applications and addresses challenges associated with micromachining them. The goal is to enhance manufacturing quality and efficiency in micro-milling applications by optimizing surface characteristics for implant applications.

Kaynakça

  • [1] Niinomi, M., Nakai, M., and Hieda, J., "Development of new metallic alloys for biomedical applications", Acta Biomaterialia, 8 (11): 3888–3903, (2012).
  • [2] Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review", Progress in Materials Science, 54 (3): 397–425, (2009).
  • [3] Mutlu, İ., and Dizdar, A., "Geleneksel total kalça protezine alternatif epifiz protezinin mekanik değerlendirmesi", Politeknik Dergisi, 26 (1): 73–79, (2023).
  • [4] Kamachimudali, U., Sridhar, T.M., and Raj, B., "Corrosion of bio implants", Sadhana, 28 (3–4): 601–637, (2003).
  • [5] Hermawan, H., Ramdan, D., and P. Djuansjah, J.R., “Metals for biomedical applications, biomedical engineering - from theory to applicationsg”, InTech, (2011).
  • [6] Huang, B., Yang, M., Kou, Y., and Jiang, B., "Bioactive materials absorbable implants in sport medicine and arthroscopic surgery : A narrative review of recent development", Bioactive Materials, 31 (11): 272–283, (2024).
  • [7] Qin, Y., Wen, P., Guo, H., Xia, D., Zheng, Y., Jauer, L., Poprawe, R., Voshage, M., and Schleifenbaum, J.H., "Additive manufacturing of biodegradable metals: Current research status and future perspectives", Acta Biomaterialia, 98: 3–22, (2019).
  • [8] Zheng, Y.F., Gu, X.N., and Witte, F., "Biodegradable metals", Materials Science and Engineering: R: Reports, 77: 1–34, (2014).
  • [9] Chen, Q., and Thouas, G.A., "Metallic implant biomaterials", Materials Science and Engineering: R: Reports, 87: 1–57, (2015).
  • [10] Ulum, M.F., Arafat, A., Noviana, D., Yusop, A.H., Nasution, A.K., Abdul Kadir, M.R., and Hermawan, H., "In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications", Materials Science and Engineering: C, 36 (1): 336–344, (2014).
  • [11] Purnama, A., Hermawan, H., Couet, J., and Mantovani, D., "Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation", Acta Biomaterialia, 6 (5): 1800–1807, (2010).
  • [12] Ma, J., Zhao, N., and Zhu, D., "Endothelial cellular responses to biodegradable metal zinc", ACS Biomaterials Science & Engineering, 1 (11): 1174–1182, (2015).
  • [13] Seitz, J., Durisin, M., Goldman, J., and Drelich, J.W., "Recent advances in biodegradable metals for medical sutures: a critical review", Advanced Healthcare Materials, 4 (13): 1915–1936, (2015).
  • [14] Eddy Jai Poinern, G., Brundavanam, S., and Fawcett, D., "Biomedical magnesium alloys: A Review of material properties, surface modifications and potential as a biodegradable orthopaedic implant", American Journal of Biomedical Engineering, 2 (6): 218–240, (2013).
  • [15] Sanchez, A.H.M., Luthringer, B.J.C., Feyerabend, F., and Willumeit, R., "Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review", Acta Biomaterialia, 13: 16–31, (2015).
  • [16] Niu, J., Xiong, M., Guan, X., Zhang, J., Huang, H., Pei, J., and Yuan, G., "The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results", Corrosion Science, 113: 183–187, (2016).
  • [17] Yusop, A.H., Bakir, A.A., Shaharom, N.A., Abdul Kadir, M.R., and Hermawan, H., "Porous biodegradable metals for hard tissue scaffolds: A Review", International Journal of Biomaterials, 2012: 1–10, (2012).
  • [18] Berglund, I.S., Brar, H.S., Dolgova, N., Acharya, A.P., Keselowsky, B.G., Sarntinoranont, M., and Manuel, M. V., "Synthesis and characterization of Mg‐Ca‐Sr alloys for biodegradable orthopedic implant applications", Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B (6): 1524–1534, (2012).
  • [19] Li, H., Zheng, Y., and Qin, L., "Progress of biodegradable metals", Progress in Natural Science: Materials International, 24 (5): 414–422, (2014).
  • [20] Bauer, S., Schmuki, P., von der Mark, K., and Park, J., "Engineering biocompatible implant surfaces Part I: Materials and surfaces", Progress in Materials Science, 58 (3): 261–326, (2013).
  • [21] Sezer, N., Evis, Z., Kayhan, S.M., Tahmasebifar, A., and Koç, M., "Review of magnesium-based biomaterials and their applications", Journal of Magnesium and Alloys, 6 (1): 23–43, (2018).
  • [22] Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., and Berzina-Cimdina, L., "Biodegradable materials and metallic implants—A Review", Journal of Functional Biomaterials, 8 (4): 44, (2017).
  • [23] Sommer, D., Götzendorfer, B., Esen, C., and Hellmann, R., "Design rules for hybrid additive manufacturing combining selective laser melting and micromilling", Materials, 14 (19): 5753, (2021).
  • [24] Oliveira, D., Carla, A., Kapoor, S.G., de Oliveira Campos, F., Araujo, A.C., Jardini Munhoz, A.L., and Kapoor, S.G., "The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: A comparison of SLM and commercial workpieces", Journal of Manufacturing Processes, 60 (November): 299–307, (2020).
  • [25] Yun, Y., Dong, Z., Lee, N., Liu, Y., Xue, D., Guo, X., Kuhlmann, J., Doepke, A., Halsall, H.B., Heineman, W., Sundaramurthy, S., Schulz, M.J., Yin, Z., Shanov, V., Hurd, D., Nagy, P., Li, W., and Fox, C., "Revolutionizing biodegradable metals", Materials Today, 12 (10): 22–32, (2009).
  • [26] Zhao, D., Witte, F., Lu, F., Wang, J., Li, J., and Qin, L., "Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective", Biomaterials, 112: 287–302, (2017).
  • [27] Lu, Y., Deshmukh, S., Jones, I., and Chiu, Y.L., "Biodegradable magnesium alloys for orthopaedic applications", Biomaterials Translational, 2 (3): 214–235, (2021).
  • [28] Ang, H.Q., Abbott, T.B., Zhu, S., Gu, C., and Easton, M.A., "Proof stress measurement of die-cast magnesium alloys", Materials and Design, 112: 402–409, (2016).
  • [29] Antoniac, I., Miculescu, M., Mănescu (Păltânea), V., Stere, A., Quan, P.H., Păltânea, G., Robu, A., and Earar, K., "Magnesium-based alloys used in orthopedic surgery", Materials, 15 (3): 1148, (2022).
  • [30] Wang, J., Xu, J., Hopkins, C., Chow, D.H., and Qin, L., "Biodegradable magnesium‐based implants in orthopedics—A general review and perspectives", Advanced Science, 7 (8): (2020).
  • [31] Song, G.L., and Atrens, A., "Corrosion mechanisms of magnesium alloys", Advanced Engineering Materials, 1 (1): 11–33, (1999).
  • [32] Yamamoto, A., and Hiromoto, S., "Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro", Materials Science and Engineering C, 29 (5): 1559–1568, (2009).
  • [33] Zhang, Y., Xu, J., Ruan, Y.C., Yu, M.K., O’Laughlin, M., Wise, H., Chen, D., Tian, L., Shi, D., Wang, J., Chen, S., Feng, J.Q., Chow, D.H.K., Xie, X., Zheng, L., Huang, L., Huang, S., Leung, K., Lu, N., Zhao, L., Li, H., Zhao, D., Guo, X., Chan, K., Witte, F., Chan, H.C., Zheng, Y., and Qin, L., "Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats", Nature Medicine, 22 (10): 1160–1169, (2016).
  • [34] Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H., "In vivo corrosion of four magnesium alloys and the associated bone response", Biomaterials, 26 (17): 3557–3563, (2005).
  • [35] Kong, X., Wang, L., Li, G., Qu, X., Niu, J., Tang, T., Dai, K., Yuan, G., and Hao, Y., "Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model", Materials Science and Engineering C, 86 (July 2017): 42–47, (2018).
  • [36] Song, G., and Song, S., "A possible biodegradable magnesium implant material", Advanced Engineering Materials, 9 (4): 298–302, (2007).
  • [37] Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y., "What is going on in magnesium alloys?", Journal of Materials Science & Technology, 34 (2): 245–247, (2018).
  • [38] Ding, Y., Wen, C., Hodgson, P., and Li, Y., "Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review", J. Mater. Chem. B, 2 (14): 1912–1933, (2014).
  • [39] Jia, B., Yang, H., Han, Y., Zhang, Z., Qu, X., Zhuang, Y., Wu, Q., Zheng, Y., and Dai, K., "In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications", Acta Biomaterialia, 108: 358–372, (2020).
  • [40] Biber, R., Pauser, J., Geßlein, M., and Bail, H.J., "Magnesium-Based absorbable metal screws for intra-articular fracture fixation", Case Reports in Orthopedics, 2016: 1–4, (2016).
  • [41] Naujokat, H., Seitz, J.M., Açil, Y., Damm, T., Möller, I., Gülses, A., and Wiltfang, J., "Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs", Acta Biomaterialia, 62: 434–445, (2017).
  • [42] Han, H.S., Loffredo, S., Jun, I., Edwards, J., Kim, Y.C., Seok, H.K., Witte, F., Mantovani, D., and Glyn-Jones, S., "Current status and outlook on the clinical translation of biodegradable metals", Materials Today, 23 (March): 57–71, (2019).
  • [43] Seetharaman, S., Jayalakshmi, S., Arvind Singh, R., and Gupta, M., "The potential of magnesium-based materials for engineering and biomedical applications", Journal of the Indian Institute of Science, 102 (1): 421–437, (2022).
  • [44] Liu, D., Yang, D., Li, X., and Hu, S., "Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review", Journal of Materials Research and Technology, 8 (1): 1538–1549, (2019).
  • [45] Waizy, H., Diekmann, J., Weizbauer, A., Reifenrath, J., Bartsch, I., Neubert, V., Schavan, R., and Windhagen, H., "In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months", Journal of Biomaterials Applications, 28 (5): 667–675, (2014).
  • [46] Liu, J., Liu, B., Min, S., Yin, B., Peng, B., Yu, Z., Wang, C., Ma, X., Wen, P., Tian, Y., and Zheng, Y., "Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation", Bioactive Materials, 16 (February): 301–319, (2022).
  • [47] Sun, Y., Wu, H., Wang, W., Zan, R., Peng, H., Zhang, S., and Zhang, X., "Bioactive materials translational status of biomedical Mg devices in China", Bioactive Materials, 4 (November 2019): 358–365, (2020).
  • [48] Sealy, M.P., Guo, Y.B., Liu, J.F., and Li, C., "Pulsed laser cutting of magnesium-calcium for biodegradable stents", Procedia CIRP, 42 (Isem Xviii): 67–72, (2016).
  • [49] Sealy, M.P., Guo, Y.B., Caslaru, R.C., Sharkins, J., and Feldman, D., "Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants", International Journal of Fatigue, 82: 428–436, (2016).
  • [50] Edelmann, A., Riedel, L., and Hellmann, R., "Realization of a dental framework by 3D printing in material cobalt-chromium with superior precision and fitting accuracy", Materials, 13 (23): 5390, (2020).
  • [51] Merklein, M., Junker, D., Schaub, A., and Neubauer, F., "Hybrid additive manufacturing technologies – An analysis regarding potentials and applications", Physics Procedia, 83: 549–559, (2016).
  • [52] Allwood, J.M., Childs, T.H.C., Clare, A.T., De Silva, A.K.M., Dhokia, V., Hutchings, I.M., Leach, R.K., Leal-Ayala, D.R., Lowth, S., Majewski, C.E., Marzano, A., Mehnen, J., Nassehi, A., Ozturk, E., Raffles, M.H., Roy, R., Shyha, I., and Turner, S., "Manufacturing at double the speed", Journal of Materials Processing Technology, 229: 729–757, (2016).
  • [53] Greco, S., Kieren-Ehses, S., Kirsch, B., and Aurich, J.C., "Micro milling of additively manufactured AISI 316L: impact of the layerwise microstructure on the process results", The International Journal of Advanced Manufacturing Technology, 112 (1–2): 361–373, (2021).
  • [54] Bruschi, S., Tristo, G., Rysava, Z., Bariani, P.F., Umbrello, D., and De Chiffre, L., "Environmentally clean micromilling of electron beam melted Ti6Al4V", Journal of Cleaner Production, 133: 932–941, (2016).
  • [55] Bartolo, P., Kruth, J.-P., Silva, J., Levy, G., Malshe, A., Rajurkar, K., Mitsuishi, M., Ciurana, J., and Leu, M., "Biomedical production of implants by additive electro-chemical and physical processes", CIRP Annals, 61 (2): 635–655, (2012).
  • [56] Demir, A.G., Previtali, B., Ge, Q., Vedani, M., Wu, W., Migliavacca, F., Petrini, L., Biffi, C.A., and Bestetti, M., "Biodegradable magnesium coronary stents: material, design and fabrication", International Journal of Computer Integrated Manufacturing, 27 (10): 936–945, (2014).
  • [57] Demir, A.G., Maressa, P., and Previtali, B., "Fibre laser texturing for surface functionalization", Physics Procedia, 41: 759–768, (2013).
  • [58] Cappellini, C., Malandruccolo, A., Abeni, A., and Attanasio, A., "A feasibility study of promoting osseointegration surface roughness by micro-milling of Ti-6Al-4V biomedical alloy", The International Journal of Advanced Manufacturing Technology, 126 (7–8): 3053–3067, (2023).
  • [59] Trueba, P., Navarro, C., Rodríguez-Ortiz, J.A., Beltrán, A.M., García-García, F.J., and Torres, Y., "Fabrication and characterization of superficially modified porous dental implants", Surface and Coatings Technology, 408 (December 2020): 126796, (2021).
  • [60] Jain, A., and Bajpai, V., "Alteration in Ti6Al4V implant surface properties with micro textures density", Surface Engineering, 38 (2): 174–182, (2022).
  • [61] Kumar, S.P.L., and Avinash, D., "Experimental biocompatibility investigations of Ti–6Al–7Nb alloy in micromilling operation in terms of corrosion behavior and surface characteristics study", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (9): 1–11, (2019).
  • [62] Szewczenko, J., Marciniak, J., Kajzer, W., and Kajzer, A., "Evaluation of corrosion resistance of titanium alloys used for medical implants", Archives of Metallurgy and Materials, 61 (2): 695–700, (2016).
  • [63] Chehroudi, B., McDonnell, D., and Brunette, D.M., "The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing", Journal of Biomedical Materials Research, 34 (3): 279–290, (1997).
  • [64] Chandra, G., and Pandey, A., "Biodegradable bone implants in orthopedic applications: a review", Biocybernetics and Biomedical Engineering, 40 (2): 596–610, (2020).
  • [65] Vadiraj, A., and Kamaraj, M., "Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys", Tribology International, 40 (1): 82–88, (2007).
  • [66] Wang, H., and Shi, Z., "In vitro biodegradation behavior of magnesium and magnesium alloy", Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98B (2): 203–209, (2011).
  • [67] Wan, Y., Wang, T., Wang, Z., Jin, Y., and Liu, Z., "Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation", The International Journal of Advanced Manufacturing Technology, 98 (1–4): 29–35, (2018).
  • [68] Buser, D., Nydegger, T., Oxland, T., Cochran, D.L., Schenk, R.K., Hirt, H.P., Snétivy, D., and Nolte, L.P., "Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs", Journal of Biomedical Materials Research, 45 (2): 75–83, (1999).
  • [69] Denkena, B., Lucas, A., Thorey, F., Waizy, H., Angrisani, N., and Meyer-Lindenberg, A., “Biocompatible magnesium alloys as degradable implant materials - machining induced surface and subsurface properties and implant performance, special issues on magnesium alloys” InTech, (2011).
  • [70] Klocke, F., Schwade, M., Klink, A., and Kopp, A., "EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications", Procedia Engineering, 19: 190–195, (2011).
  • [71] Virtanen, S., “Degradation of titanium and its alloys, Degradation of implant materials. Springer, New York, (2012).
  • [72] Lauro, C.H., Ribeiro Filho, S.L.M., Brandão, L.C., and Davim, J.P., "Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting", Measurement: Journal of the International Measurement Confederation, 93: 529–540, (2016).
  • [73] Roushan, A., Srinivas Rao, U., Patra, K., and Sahoo, P., "Multi-characteristics optimization in micro-milling of Ti6Al4V alloy", Journal of Physics: Conference Series, 1950 (1): 012046, (2021).
  • [74] Jain, A., Kumari, N., Jagadevan, S., and Bajpai, V., "Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling", Surfaces and Interfaces, 21 (September): 100714, (2020).
  • [75] Pandey, L.M., and Hasan, A., “Nanoscale engineering of biomaterials: properties and applications”, Springer Nature Singapore, Singapore, (2022).
  • [76] O’Toole, L., Kang, C.W., and Fang, F.Z., "Precision micro-milling process: state of the art", Advances in Manufacturing, 9 (2): 173–205, (2021).
  • [77] Chrzanowski, W., "Corrosion study of Ti6Al7Nb alloy after thermal , anodic and alkali surface treatments", Journal of Achievements in Materials and Manufacturing Engineering, 31 (2): 203–211, (2008).
  • [78] Babík, O., Czán, A., Holubják, J., Kameník, R., and Pilc, J., "Non-destructive analysis of basic surface characteristics of titanium dental implants made by miniature machining", Technological Engineering, 13 (2): 28–30, (2016).
  • [79] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., and Chandrashekarappa, M.P.G., "Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of Mg13Sn alloy", Micromachines, 14 (8): 1590, (2023).
  • [80] Li, J., Zhou, P., Attarilar, S., and Shi, H., " Innovative surface modification procedures to achieve micro/nano-graded ti-based biomedical alloys and implants", Coatings, 11(6): 647, (2021).
  • [81] Erwin, N., Sur, D., and Basim, G.B., "Remediation of machining medium effect on biocompatibility of titanium-based dental implants by chemical mechanical nano-structuring", Journal of Materials Research, 37 (16): 2686–2697, (2022).
  • [82] Byrne, G., Dornfeld, D., and Denkena, B., "Advancing cutting technology", CIRP Annals, 52 (2): 483–507, (2003).
  • [83] Filiz, S., Xie, L., Weiss, L.E., and Ozdoganlar, O.B., "Micromilling of microbarbs for medical implants", International Journal of Machine Tools and Manufacture, 48 (3–4): 459–472, (2008).
  • [84] Liu, H., Sun, Y., Geng, Y., and Shan, D., "Experimental research of milling force and surface quality for TC4 titanium alloy of micro-milling", The International Journal of Advanced Manufacturing Technology, 79 (1–4): 705–716, (2015).
  • [85] Davis, J. Materials for medical devices, ASM Handbook Series, (2012).
  • [86] Ratner, B.D., and Bryant, S.J., "Biomaterials: Where we have been and where we are going", Annual Review of Biomedical Engineering, 6 (1): 41–75, (2004).
  • [87] Shen, N., and Ding, H., "Thermo-mechanical coupled analysis of laser-assisted mechanical micromilling of difficult-to-machine metal alloys used for bio-implant", International Journal of Precision Engineering and Manufacturing, 14 (10): 1677–1685, (2013).
  • [88] Huo, D., and Cheng, K. “Overview of Micro Cutting, Micro‐Cutting”,Cheng, K., and Huo, D., Wiley, Chichester, (2013).
  • [89] Chae, J., Park, S.S., and Freiheit, T., "Investigation of micro-cutting operations", International Journal of Machine Tools and Manufacture, 46 (3–4): 313–332, (2006).
  • [90] Wang, G., Wan, Y., Ren, B., and Liu, Z., "Bioactivity of micropatterned TiO 2 nanotubes fabricated by micro-milling and anodic oxidation", Materials Science and Engineering C, 95 (June 2018): 114–121, (2019).
  • [91] Jain, A., and Bajpai, V., "Mechanical micro-texturing and characterization on Ti6Al4V for the improvement of surface properties", Surface and Coatings Technology, 380 (July): 125087, (2019).
  • [92] Janssen, P.J.M., Hoefnagels, J.P.M., de Keijser, T.H., and Geers, M.G.D., "Processing induced size effects in plastic yielding upon miniaturisation", Journal of the Mechanics and Physics of Solids, 56 (8): 2687–2706, (2008).
  • [93] Jin, X., and Altintas, Y., "Slip-line field model of micro-cutting process with round tool edge effect", Journal of Materials Processing Technology, 211 (3): 339–355, (2011).
  • [94] Leo Kumar, S.P., Jerald, J., Kumanan, S., and Prabakaran, R., "A review on current research aspects in tool-based micromachining processes", Materials and Manufacturing Processes, 29 (11–12): 1291–1337, (2014).
  • [95] Asad, A.B.M.A., Masaki, T., Rahman, M., Lim, H.S., and Wong, Y.S., "Tool-based micro-machining", Journal of Materials Processing Technology, 192–193: 204–211, (2007).
  • [96] Sun, Y., Gong, Y.D., Wen, X.L., Yin, G.Q., and Meng, F.T., "Micro milling characteristics of LS-WEDM fabricated helical and corrugated micro end mill", International Journal of Mechanical Sciences, 167 (October 2019): 105277, (2020).
  • [97] Chen, N., Li, L., Wu, J., Qian, J., He, N., and Reynaerts, D., "Research on the ploughing force in micro milling of soft-brittle crystals", International Journal of Mechanical Sciences, 155 (November 2018): 315–322, (2019).
  • [98] Boswell, B., Islam, M.N., and Davies, I.J., "A review of micro-mechanical cutting", The International Journal of Advanced Manufacturing Technology, 94 (1–4): 789–806, (2018).
  • [99] Koç, M., and Özel, T., “Fundamentals of micro-manufacturing, Micro‐Manufacturing: Design and manufacturing of micro‐products”, Wiley, U.S.A, (2011).
  • [100] Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., and Young, E.W.K., "Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices", Lab on a Chip, 15 (11): 2364–2378, (2015).
  • [101] Piljek, P., Keran, Z., and Math, M., "Micromachining", Interdisciplinary Description of Complex Systems, 12 (1): 1–27, (2014).
  • [102] Dimov, S. S., Matthews, C. W., Glanfield, A., and Dorrington, P., “A roadmapping study in multi-material micro manufacture”, In 4M 2006-Second International Conference on Multi-Material Micro Manufacture, pp: xi-xxv, Elsevier, (2006).
  • [103] Bilgin, M., "AZ31B magnezyum alaşiminin sürtünmeli delme işlemi üzerine deneysel çalişma Experimental study on the friction drilling process of AZ31B magnesium alloy", Politeknik Dergisi, 24 (4): 1655–1666, (2021).
  • [104] Aktüz, B., "“A comparative study on wear and machinability behaviors of AM20, AJ21 and AS21 magnesium alloys", Politeknik Dergisi, 26 (1): 243–248, (2023).
  • [105] Balázs, B.Z., Geier, N., Takács, M., and Davim, J.P., "A review on micro-milling: recent advances and future trends", The International Journal of Advanced Manufacturing Technology, 112 (3–4): 655–684, (2021).
  • [106] Pu, Z., Outeiro, J.C., Batista, A.C., Dillon, O.W., Puleo, D.A., and Jawahir, I.S., "Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components", International Journal of Machine Tools and Manufacture, 56: 17–27, (2012).
  • [107] Sunil, B.R., Ganesh, K. V., Pavan, P., Vadapalli, G., Swarnalatha, C., Swapna, P., Bindukumar, P., and Pradeep Kumar Reddy, G., "Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling", Journal of Magnesium and Alloys, 4 (1): 15–21, (2016).
  • [108] Wang, F., Cheng, X., Liu, Y., Yang, X., and Meng, F., "micromilling simulation for the hard-to-cut material", Procedia Engineering, 174: 693–699, (2017).
  • [109] Aramcharoen, A., Mativenga, P.T., Yang, S., Cooke, K.E., and Teer, D.G., "Evaluation and selection of hard coatings for micro milling of hardened tool steel", International Journal of Machine Tools and Manufacture, 48 (14): 1578–1584, (2008).
  • [110] Kumar, P., Bajpai, V., and Singh, R., "Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling", Manufacturing Letters, 11: 12–16, (2017).
  • [111] Sahoo, P., Patra, K., Szalay, T., and Dyakonov, A.A., "Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters", The International Journal of Advanced Manufacturing Technology, 106 (11–12): 4675–4691, (2020).
  • [112] Balázs, B.Z., and Takács, M., "Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel", The International Journal of Advanced Manufacturing Technology, 106 (11–12): 5289–5305, (2020).
  • [113] Gao, S., Pang, S., Jiao, L., Yan, P., Luo, Z., Yi, J., and Wang, X., "Research on specific cutting energy and parameter optimization in micro-milling of heat-resistant stainless steel", The International Journal of Advanced Manufacturing Technology, 89 (1–4): 191–205, (2017).
  • [114] Dib, M.H.M., Duduch, J.G., and Jasinevicius, R.G., "Minimum chip thickness determination by means of cutting force signal in micro endmilling", Precision Engineering, 51 (July 2017): 244–262, (2018).
  • [115] De Oliveira, F.B., Rodrigues, A.R., Coelho, R.T., and De Souza, A.F., "Size effect and minimum chip thickness in micromilling", International Journal of Machine Tools and Manufacture, 89: 39–54, (2015).
  • [116] Wojciechowski, S., Matuszak, M., Powałka, B., Madajewski, M., Maruda, R.W., and Królczyk, G.M., "Prediction of cutting forces during micro end milling considering chip thickness accumulation", International Journal of Machine Tools and Manufacture, 147 (2019): 103466, (2019).
  • [117] Hajiahmadi, S., "Burr size investigation in micro milling of stainless steel 316L", International Journal of Lightweight Materials and Manufacture, 2 (4): 296–304, (2019).
  • [118] Zhang, T., Liu, Z., and Xu, C., "Influence of size effect on burr formation in micro cutting", The International Journal of Advanced Manufacturing Technology, 68 (9–12): 1911–1917, (2013).
  • [119] Biermann, D., and Kahnis, P., "Analysis and simulation of size effects in micromilling", Production Engineering, 4 (1): 25–34, (2010).
  • [120] Aramcharoen, A., and Mativenga, P.T., "Size effect and tool geometry in micromilling of tool steel", Precision Engineering, 33 (4): 402–407, (2009).
  • [121] de Oliveira, D., Gomes, M.C., de Oliveira, G.V., dos Santos, A.G., and da Silva, M.B., "Experimental and computational contribution to chip geometry evaluation when micromilling Inconel 718", Wear, 476 (September 2020): 203658, (2021).
  • [122] Kim, J.-D., and Kim, D.S., "Theoretical analysis of micro-cutting characteristics in ultra-precision machining", Journal of Materials Processing Technology, 49 (3–4): 387–398, (1995).
  • [123] Lee, K., and Dornfeld, D.A., "Micro-burr formation and minimization through process control", Precision Engineering, 29 (2): 246–252, (2005).
  • [124] Özel, T., Liu, X., and Dhanorker, A., "Modelling and simulation of micro-milling process", 4th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Çeşme/Türkiye, 21–23, (2007).
  • [125] Chen, N., Li, H.N., Wu, J., Li, Z., Li, L., Liu, G., and He, N., "Advances in micro milling: From tool fabrication to process outcomes", International Journal of Machine Tools and Manufacture, 160 (November 2020): 103670, (2021).
  • [126] Fang, B., Yuan, Z., Li, D., and Gao, L., "Effect of ultrasonic vibration on finished quality in ultrasonic vibration assisted micromilling of Inconel718", Chinese Journal of Aeronautics, 34 (6): 209–219, (2021).
  • [127] Alting, L., Kimura, F., Hansen, H.N., and Bissacco, G., "Micro engineering", CIRP Annals, 52 (2): 635–657, (2003).
  • [128] Teng, X., Huo, D., Shyha, I., Chen, W., and Wong, E., "An experimental study on tool wear behaviour in micro milling of nano Mg/Ti metal matrix composites", The International Journal of Advanced Manufacturing Technology, 96 (5–8): 2127–2140, (2018).
  • [129] Trent E.M., and Wright P.K. “Metal cutting”, Butterworth-Heinemann, Boston, (2004).
  • [130] Bissacco, G., Hansen, H.N., and De Chiffre, L., "Micromilling of hardened tool steel for mould making applications", Journal of Materials Processing Technology, 167 (2–3): 201–207, (2005).
  • [131] Chen, W., Zheng, L., Teng, X., Yang, K., and Huo, D., "Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling", The International Journal of Advanced Manufacturing Technology, 105 (11): 4539–4549, (2019).
  • [132] Li, P., Oosterling, J.A.J., Hoogstrate, A.M., Langen, H.H., and Munnig Schmidt, R.H., "Design of micro square endmills for hard milling applications", The International Journal of Advanced Manufacturing Technology, 57 (9–12): 859–870, (2011).
  • [133] Tansel, I., Rodriguez, O., Trujillo, M., Paz, E., and Li, W., "Micro-end-milling—I. Wear and breakage", International Journal of Machine Tools and Manufacture, 38 (12): 1419–1436, (1998).
  • [134] Malekian, M., Mostofa, M.G., Park, S.S., and Jun, M.B.G., "Modeling of minimum uncut chip thickness in micro machining of aluminum", Journal of Materials Processing Technology, 212 (3): 553–559, (2012).
  • [135] Yuan, Z.J., Zhou, M., and Dong, S., "Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining", Journal of Materials Processing Technology, 62 (4): 327–330, (1996).
  • [136] Liu, J., Li, J., and Xu, C., "Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review", CIRP Journal of Manufacturing Science and Technology, 7 (2): 55–70, (2014).
  • [137] Anand, R.S., and Patra, K., "Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates", CIRP Journal of Manufacturing Science and Technology, 16: 55–63, (2017).
  • [138] Weule, H., Hüntrup, V., and Tritschler, H., "Micro-cutting of steel to meet new requirements in miniaturization", CIRP Annals, 50 (1): 61–64, (2001).
  • [139] Sooraj, V.S., and Mathew, J., "An experimental investigation on the machining characteristics of microscale end milling", The International Journal of Advanced Manufacturing Technology, 56 (9–12): 951–958, (2011).
  • [140] H. Tschätsch, “Applied machining technology”, Springer Berlin Heidelberg, Berlin, (2009).
  • [141] Uhlmann, E., Oberschmidt, D., Kuche, Y., and Löwenstein, A., "Cutting edge preparation of micro milling tools", Procedia CIRP, 14: 349–354, (2014).
  • [142] Shaw, M.C., "The size effect in metal cutting", Sadhana, 28 (5): 875–896, (2003).
  • [143] Câmara, M.A., Rubio, J.C.C., Abrão, A.M., and Davim, J.P., "State of the art on micromilling of materials, a review", Journal of Materials Science & Technology, 28 (8): 673–685, (2012).
  • [144] Liu, K., and Melkote, S.N., "Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process", International Journal of Mechanical Sciences, 49 (5): 650–660, (2007).
  • [145] Silva, L.C., and da Silva, M.B., "Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel", Precision Engineering, 60 (July): 178–188, (2019).
  • [146] Chern, G.-L., Wu, Y.-J.E., Cheng, J.-C., and Yao, J.-C., "Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM", Precision Engineering, 31 (2): 122–129, (2007).
  • [147] Yadav, R., Chakladar, N.D., and Paul, S., "Micro-milling of Ti-6Al-4 V with controlled burr formation", International Journal of Mechanical Sciences, 231 (July): 107582, (2022).
  • [148] Kumar, P., Kumar, M., Bajpai, V., and Singh, N.K., "Recent advances in characterization, modeling and control of burr formation in micro-milling", Manufacturing Letters, 13: 1–5, (2017).
  • [149] Schaller, T., Bohn, L., Mayer, J., and Schubert, K., "Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills", Precision Engineering, 23 (4): 229–235, (1999).
  • [150] Fang, F.Z., and Liu, Y.C., "On minimum exit-burr in micro cutting", Journal of Micromechanics and Microengineering, 14 (7): 984–988, (2004).
  • [151] Filiz, S., Conley, C.M., Wasserman, M.B., and Ozdoganlar, O.B., "An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills", International Journal of Machine Tools and Manufacture, 47 (7–8): 1088–1100, (2007).
  • [152] Zhang, X., Yu, T., Wang, W., and Zhao, J., "Improved analytical prediction of burr formation in micro end milling", International Journal of Mechanical Sciences, 151 (December 2018): 461–470, (2019).
  • [153] Kou, Z., Wan, Y., Cai, Y., Liang, X., and Liu, Z., "Burr controlling in micro milling with supporting material method", Procedia Manufacturing, 1: 501–511, (2015).
  • [154] Yadav, R., Chakladar, N.D., and Paul, S., "Modelling and experimental validation of burr control in micro milling of metals", Materials Today Communications, 35 (March): 106205, (2023).
  • [155] Chen, Y., Wang, T., and Zhang, G., "Research on parameter optimization of micro-milling al7075 based on edge-size-effect", Micromachines, 11 (2): 197, (2020).
  • [156] Schmidt, J., and Tritschler, H., "Micro cutting of steel", Microsystem Technologies, 10 (3): 167–174, (2004).
  • [157] Attanasio, A., Gelfi, M., Pola, A., Ceretti, E., and Giardini, C., "Influence of material microstructures in micromilling of Ti6Al4V alloy", Materials, 6 (9): 4268–4283, (2013).
  • [158] Wan, M., Ye, X.Y., Wen, D.Y., and Zhang, W.H., "Modeling of machining-induced residual stresses", Journal of Materials Science, 54 (1): 1–35, (2019).
  • [159] Lekkala, R., Bajpai, V., Singh, R.K., and Joshi, S.S., "Characterization and modeling of burr formation in micro-end milling", Precision Engineering, 35 (4): 625–637, (2011).
  • [160] Uhlmann, E., Piltz, S., and Schauer, K., "Micro milling of sintered tungsten–copper composite materials", Journal of Materials Processing Technology, 167 (2–3): 402–407, (2005).
  • [161] K, V., and Mathew, J., "Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness", Wear, 424–425 (February): 165–182, (2019).
  • [162] Swain, N., Venkatesh, V., Kumar, P., Srinivas, G., Ravishankar, S., and Barshilia, H.C., "An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills", CIRP Journal of Manufacturing Science and Technology, 16: 34–42, (2017).
  • [163] Gilbin, A., Fontaine, M., Michel, G., Thibaud, S., and Picard, P., "Capability of tungsten carbide micro-mills to machine hardened tool steel", International Journal of Precision Engineering and Manufacturing, 14 (1): 23–28, (2013).
  • [164] Piquard, R., D’Acunto, A., Laheurte, P., and Dudzinski, D., "Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation", Precision Engineering, 38 (2): 356–364, (2014).
  • [165] Biermann, D., and Steiner, M., "Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10", Procedia CIRP, 3 (1): 97–102, (2012).
  • [166] Uhlmann, E., Oberschmidt, D., Löwenstein, A., and Kuche, Y., "Influence of cutting edge preparation on the performance of micro milling tools", Procedia CIRP, 46: 214–217, (2016).
  • [167] Vogler, M.P., DeVor, R.E., and Kapoor, S.G., "On the modeling and analysis of machining performance in micro-endmilling, Part I: Surface generation", Journal of Manufacturing Science and Engineering, 126 (4): 685–694, (2004).
  • [168] Aslantas, K., Hopa, H.E., Percin, M., Ucun, İ., and Çicek, A., "Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy", Precision Engineering, 45: 55–66, (2016).
  • [169] Ahmadi, M., Karpat, Y., Acar, O., and Kalay, Y.E., "Microstructure effects on process outputs in micro scale milling of heat treated Ti6Al4V titanium alloys", Journal of Materials Processing Technology, 252 (September 2017): 333–347, (2018).
  • [170] Wang, Y., Zou, B., Wang, J., Wu, Y., and Huang, C., "Effect of the progressive tool wear on surface topography and chip formation in micro-milling of Ti–6Al–4V using Ti(C7N3)-based cermet micro-mill", Tribology International, 141 (August 2019): 105900, (2020).
  • [171] Yang, K., Liang, Y., Zheng, K., Bai, Q., and Chen, W., "Tool edge radius effect on cutting temperature in micro-end-milling process", The International Journal of Advanced Manufacturing Technology, 52 (9–12): 905–912, (2011).
  • [172] Zhu, K., and Yu, X., "The monitoring of micro milling tool wear conditions by wear area estimation", Mechanical Systems and Signal Processing, 93: 80–91, (2017).
  • [173] Mian, A.J., Driver, N., and Mativenga, P.T., "Identification of factors that dominate size effect in micro-machining", International Journal of Machine Tools and Manufacture, 51 (5): 383–394, (2011).
  • [174] Mamedov, A., and Lazoglu, I., "Thermal analysis of micro milling titanium alloy Ti-6Al-4V", Journal of Materials Processing Technology, 229: 659–667, (2016).
  • [175] Wissmiller, D.L., and Pfefferkorn, F.E., "Technical paper: Micro end mill tool temperature measurement and prediction", Journal of Manufacturing Processes, 11 (1): 45–53, (2009).
  • [176] Geier, N., Davim, J.P., and Szalay, T., "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review", Composites Part A: Applied Science and Manufacturing, 125 (February): 105552, (2019).
  • [177] Geier, N., and Szalay, T., "Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)", Measurement: Journal of the International Measurement Confederation, 110: 319–334, (2017).
  • [178] A. Masrani, “Identification of internal process parameters of micro milling considering machined surface”, Bilkent University, Master's thesis, (2022).
  • [179] Teng, X., Huo, D., Wong, E., Meenashisundaram, G., and Gupta, M., "Micro-machinability of nanoparticle-reinforced Mg-based MMCs: an experimental investigation", International Journal of Advanced Manufacturing Technology, 87 (5–8): 2165–2178, (2016).
  • [180] Teng, X., Huo, D., Wong, W.L.E., Sankaranarayanan, S., and Gupta, M., “Machinability investigation in micro-milling of Mg ased MMCs with nano-sized particles, Magnesium Technology 2017”, Solanki, K.N., Orlov, D., Singh, A., and Neelameggham, N.R., Springer, Cham, (2017).
  • [181] Simoneau, A., Ng, E., and Elbestawi, M.A., "Chip formation during microscale cutting of a medium carbon steel", International Journal of Machine Tools and Manufacture, 46 (5): 467–481, (2006).
  • [182] Yun, H.T., Heo, S., Lee, M.K., Min, B.K., and Lee, S.J., "Ploughing detection in micromilling processes using the cutting force signal", International Journal of Machine Tools and Manufacture, 51 (5): 377–382, (2011).
  • [183] Lai, X., Li, H., Li, C., Lin, Z., and Ni, J., "Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness", International Journal of Machine Tools and Manufacture, 48 (1): 1–14, (2008).
  • [184] Kieren-Ehses, S., Böhme, L., Morales-Rivas, L., Lösch, J., Kirsch, B., Kerscher, E., Kopnarski, M., and Aurich, J.C., "The influence of the crystallographic orientation when micro machining commercially pure titanium: A size effect", Precision Engineering, 72 (April): 158–171, (2021).
  • [185] Tansel, I., Nedbouyan, A., Trujillo, M., and Tansel, B., "Micro-end-milling—II. extending tool life with a smart workpiece holder (SWH)", International Journal of Machine Tools and Manufacture, 38 (12): 1437–1448, (1998).
  • [186] Liu, J., Li, J., and Xu, C., "Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements", Journal of Micro and Nano-Manufacturing, 1 (1): 1–10, (2013).
  • [187] Afazov, S.M., Zdebski, D., Ratchev, S.M., Segal, J., and Liu, S., "Effects of micro-milling conditions on the cutting forces and process stability", Journal of Materials Processing Technology, 213 (5): 671–684, (2013).
  • [188] Wu, X., Li, L., He, N., Yao, C., and Zhao, M., "Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting", Precision Engineering, 45: 359–364, (2016).
  • [189] Lu, X., Wang, F., Jia, Z., Si, L., Zhang, C., and Liang, S.Y., "A modified analytical cutting force prediction model under the tool flank wear effect in micro-milling nickel-based superalloy", The International Journal of Advanced Manufacturing Technology, 91 (9–12): 3709–3716, (2017).
  • [190] Mittal, R.K., Kulkarni, S.S., and Singh, R.K., "Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V", Journal of Manufacturing Processes, 28: 413–421, (2017).
  • [191] Pratap, T., Patra, K., and Dyakonov, A.A., "Modeling cutting force in micro-milling of Ti-6Al-4V titanium alloy", Procedia Engineering, 129: 134–139, (2015).
  • [192] Sun, Q., Cheng, X., Liu, Y., Yang, X., and Li, Y., "Modeling and simulation for micromilling mechanisms", Procedia Engineering, 174: 760–766, (2017).
  • [193] Takács, M., Balázs, B.Z., and Jáuregui, J.C., "Dynamical aspects of micro milling process”, IN-TECH 2017 , Proceedings of International Conference on Innovative Technologies, 181-184, (2017).
  • [194] Singh, K.K., Kartik, V., and Singh, R., "Via velocity and chip load dependent cutting coef fi cients", International Journal of Machine Tools and Manufacture, 96: 56–66, (2015).
  • [195] Moges, T.M., Desai, K.A., and Rao, P.V.M., "Modeling of cutting force, tool deflection, and surface error in micro-milling operation", The International Journal of Advanced Manufacturing Technology, 98 (9–12): 2865–2881, (2018).
  • [196] Uriarte, L., Herrero, A., Zatarain, M., Santiso, G., Lopéz de Lacalle, L.N., Lamikiz, A., and Albizuri, J., "Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter", Precision Engineering, 31 (1): 1–12, (2007).
  • [197] Singh, K.K., and Singh, R., "Chatter stability prediction in high-speed micromilling of Ti6Al4V via finite element based microend mill dynamics", Advances in Manufacturing, 6 (1): 95–106, (2018).
  • [198] Ma, L., Howard, I., Pang, M., Wang, Z., and Su, J., "Experimental investigation of cutting vibration during micro-end-milling of the straight groove", Micromachines, 11 (5): 494, (2020).
  • [199] Yilmaz, E.E., Budak, E., and Özgüven, H.N., "Modeling and measurement of micro end mill dynamics using inverse stability approach", Procedia CIRP, 46: 242–245, (2016).
  • [200] Zhang, X., Yu, T., and Wang, W., "Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out", International Journal of Mechanical Sciences, 124–133, (2018).
  • [201] Baschin, A., Kahnis, P., and Biermann, D., "Dynamikanalyse des mikrofräsprozesses - einfluss von werkzeugschwingungen auf die qualität von mikrostrukturen", Materialwissenschaft und Werkstofftechnik, 39 (9): 616–621, (2008).
  • [202] Wang, D., Wang, X., Liu, Z., Gao, P., Ji, Y., Löser, M., and Ihlenfeldt, S., "Surface location error prediction and stability analysis of micro-milling with variation of tool overhang length", The International Journal of Advanced Manufacturing Technology, 99 (1–4): 919–936, (2018).
  • [203] Biermann, D., and Baschin, A., "Influence of cutting edge geometry and cutting edge radius on the stability of micromilling processes", Production Engineering, 3 (4–5): 375–380, (2009).
  • [204] Richter, L.E., Carlos, A., and Beber, D.M. “Machining”, ASM International, (1989).
  • [205] Weinert, K., Inasaki, I., Sutherland, J.W., and Wakabayashi, T., "Dry machining and minimum quantity lubrication", CIRP Annals - Manufacturing Technology, 53 (2): 511–537, (2004).
  • [206] Zhao, N., Hou, J., and Zhu, S., "Chip ignition in research on high-speed face milling AM50A magnesium alloy", 2nd International Conference on Mechanic Automation and Control Engineering, MACE 2011 - Proceedings, 1102–1105, (2011).
  • [207] Akyuz, B., "Influence of Al content on machinability of AZ series Mg alloys", Transactions of Nonferrous Metals Society of China, 23 (8): 2243–2249, (2013).
  • [208] Luxfer, “Machining magnesium,” Luxfer Machining Magnesium. [Online]. Available: https://www.luxfermeltechnologies.com/wp-content/uploads/2021/07/Luxfer-MEL-Technologies-DS-254-Machining-Magnesium.pdf
  • [209] Catherine, L.D.K., and Hamid, D.A., "Mechanical properties and machinability of magnesium alloy AZ31 and AZ91 - A Comparative review", IOP Conference Series: Materials Science and Engineering, 1062 (1): 0–6, (2021).
  • [210] Gül, C., Albayrak, S., Çömez, N., and Durmuş, H., "WE43 Magnezyum alaşiminin soğuk sprey kaplama yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 kaplanmasi ve aşinma davranişlarinin incelenmesi", Politeknik Dergisi, 25 (4): 1791–1798, (2022).
  • [211] Kulekci, M.K., "Magnesium and its alloys applications in automotive industry", Int J Adv Manuf Technol, 39: 851–865, (2008).
  • [212] Villeta, M., Rubio, E.M., Sáenz De Pipaón, J.M., and Sebastián, M.A., "Surface finish optimization of magnesium pieces obtained by dry turning based on taguchi techniquesand statistical tests", Materials and Manufacturing Processes, 26 (12): 1503–1510, (2011).
  • [213] Geng, H., “Manufacturing engineering handbook. 2nd ed”, McGraw-Hill Education, New York, (2016).
  • [214] Pang, S., Zhao, W., Qiu, T., Liu, W., Jiao, L., and Wang, X., "Study on surface quality and mechanical properties of micro-milling WE43 magnesium alloy cardiovascular stent", Journal of Manufacturing Processes, 101 (February): 1080–1090, (2023).
  • [215] Ay, M., Etyemez, A., and Aydin, U., "Milling of magnesium alloy with micro cutting tools", International Journal of Innovative Research and Reviews, 3 (1): 30–34, (2019).
  • [216] Etyemez, A., and Aydin, U., "Investigation of the effects of machining parameters on surface integrity in micromachining", Open Chemistry, 20 (1): 212–224, (2022).
  • [217] Suneesh, E., and Sivapragash, M., "Multi-response optimisation of micro-milling performance while machining a novel magnesium alloy and its alumina composites", Measurement, 168 (March 2020): 108345, (2021).
  • [218] Li, J., Liu, J., and Xu, C., "Machinability study of SiC nano-particles reinforced magnesium nanocomposites during micro-milling processes", ASME 2010 International Manufacturing Science and Engineering Conference, Volume 2, 391–398, (2010).
  • [219] Erçetin, A., Aslantas, K., and Özgün, Ö., "Micro-end milling of biomedical TZ54 magnesium alloy produced through powder metallurgy", Machining Science and Technology, 24 (6): 924–947, (2020).
  • [220] Tharaknath, S., and Rahamathullah, I., "Mechanical, chemical, metallurgical characteristics under HBSS solution and optimization of AZ91D-Ti functional graded composites using TOPSIS", Bulletin of the Chemical Society of Ethiopia, 37 (1): 77–89, (2022).
Toplam 220 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İmalat Süreçleri ve Teknolojileri
Bölüm Derleme Makalesi
Yazarlar

Musa Bilgin 0000-0001-8482-8291

Zekai Murat Kiliç Bu kişi benim 0000-0002-7700-3360

Erken Görünüm Tarihi 6 Ağustos 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Nisan 2024
Kabul Tarihi 12 Haziran 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Bilgin, M., & Kiliç, Z. M. (2024). Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1466579
AMA Bilgin M, Kiliç ZM. Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi. Politeknik Dergisi. Published online 01 Ağustos 2024:1-1. doi:10.2339/politeknik.1466579
Chicago Bilgin, Musa, ve Zekai Murat Kiliç. “Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi”. Politeknik Dergisi, Ağustos (Ağustos 2024), 1-1. https://doi.org/10.2339/politeknik.1466579.
EndNote Bilgin M, Kiliç ZM (01 Ağustos 2024) Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi. Politeknik Dergisi 1–1.
IEEE M. Bilgin ve Z. M. Kiliç, “Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi”, Politeknik Dergisi, ss. 1–1, Ağustos 2024, doi: 10.2339/politeknik.1466579.
ISNAD Bilgin, Musa - Kiliç, Zekai Murat. “Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi”. Politeknik Dergisi. Ağustos 2024. 1-1. https://doi.org/10.2339/politeknik.1466579.
JAMA Bilgin M, Kiliç ZM. Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi. Politeknik Dergisi. 2024;:1–1.
MLA Bilgin, Musa ve Zekai Murat Kiliç. “Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1466579.
Vancouver Bilgin M, Kiliç ZM. Biyolojik Olarak Parçalanabilen İmplant Üretiminde Magnezyum Alaşımlarının Mikro Frezelenmesinin Değerlendirilmesi. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.