Investigation of Mechanical Properties of Masonry Materials Under Compressive Loading: Experimental and Numerical Study
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Alper Çelik
,
Ozgur Anıl
,
Ömer Mercimek
,
Sercan Tuna Akkaya
,
Ahmet İhsan Turan
Öz
Masonry structures are buildings whose load-bearing system consists of vertical walls made of different units such as bricks, aerated concrete or natural stones. Masonry structures are quite common because they can be built quickly and economically with the use of local materials without requiring skilled labor. In the design of masonry structures and in the analyses of existing masonry structures, it is very important to determine the mechanical properties of the material accurately and to use them in the calculation models created with the micro model technique. In this study, the mechanical behaviour of hollow brick, clay brick and aerated concrete masonry units under uniaxial compressive loading was investigated experimentally for the purpose of masonry analysis. Using the experimental results, the concrete damage plasticity (CDP) model is proposed for the clay-based brick material for applications to be analysed by micro modelling technique in finite element software. The method used in the study will provide light for experimental studies to be carried out to determine the mechanical properties of different types of masonry units and to reflect them to the analysis models.
Teşekkür
This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 123M152. The authors thank to TUBITAK for their supports.
Kaynakça
- [1]. Hendry AW, “Structural masonry. Macmillan Education”, London, (1998).
- [2]. Penna A., Morandi P., Rota M., Manzini C. F., Da Porto F., & Magenes Performance of masonry buildings during the Emilia 2012 earthquake. “ Bulletin of Earthquake Engineering”, 12, 2255-2273, (2014).
- [3]. Indirli M., S. Kouris, L. A., Formisano A., Borg R. P., & Mazzolani, F. M. Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 earthquake: The case study of the historical centers of L'Aquila and Castelvecchio Subequo, “International Journal of Architectural Heritage”, 7(5), 536-578. (2013).
- [4]. Bilgin H., Shkodrani N., Hysenlliu M., Ozmen H. B., Isik, E., & Harirchian E, Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes, “Engineering Failure Analysis”, 131, 105824, (2022).
- [5]. Bayraktar A., Coşkun, N., & Yalçin, Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey. “Engineering Failure Analysis”, 14(1), 147-157, (2007).
- [6]. Vlachakis G., Vlachaki E., & Lourenço P. Learning from failure: Damage and failure of masonry structures, after the 2017 Lesvos earthquake (Greece), “Engineering Failure Analysis” 117, 104803, (2020).
- [7]. Özmen A., Maraş M. M., Ayaz Y., & Sayın, Assessments of masonry buildings and historical structures during the 2020 Sivrice-Elazığ Earthquake. “Periodica Polytechnica Civil Engineering”, 67(2), 530-544. (2023).
- [8]. Mercimek Ö. , Seismic failure modes of masonry structures exposed to Kahramanmaraş earthquakes (Mw 7.7 and 7.6) on February 6, 2023. “Engineering Failure Analysis” 151, 107422, (2023).
- [9]. Sayın E., Yön B., Onat O., Gör M., Öncü M. E., Tuğrul Tunç E., ... & Calayır, Y24 January 2020 Sivrice-Elazığ, Turkey earthquake: geotechnical evaluation and performance of structures. “Bulletin of Earthquake Engineering”, 19, 657-684,(2021).
- [10]. Calderoni B., Cordasco E. A., Del Zoppo M., & Prota A., Damage assessment of modern masonry buildings after the L’Aquila earthquake. . “Bulletin of Earthquake Engineering”,18, 2275-2301, (2020).
- [11]. Javed M., Naeem A., Penna A., & Magenes G.. Behavior of masonry structures during the Kashmir 2005 earthquake. “In Proc. Of the First European Conference on Earthquake Engineering and Seismology”, Geneva, Switzerland, 1093, (2005).
- [12]. Günaydin M., Atmaca B., Demir S., Altunişik A. C., Hüsem M., Adanur S., ... & Angin Z., Seismic damage assessment of masonry buildings in Elazığ and Malatya following the 2020 Elazığ-Sivrice earthquake, Turkey, “Bulletin of Earthquake Engineering”, 19, 2421-2456. (2021).
- [13]. Page A, The biaxial compressive strength of brick masonry, “Proc Inst Civ Eng”, 71(3):893–906, (1981).
- [14]. Lourenço P. B., Mendes N., Ramos L. F., & Oliveira D. V., Analysis of masonry structures without box behavior. “International Journal of Architectural Heritage”, 5(4-5), 369-382, (2011).
- [15]. Blash A. A. A., Bakar B. A., Udi U. J., Dabbour B. S., Jaafar A. A., Yanhao L., ... & Rashed M., Performance of unreinforced masonry walls in compression: a review of design provisions, experimental research, and future needs. “Applied Sciences”, 13(22), 12306, (2023).
- [16]. Croci G., The Conservation and Structural restoration of architectural heritage, “Computational Mechanics Publications”, Southampton, (1998).
- [17]. Asteris P. G., Asce M., & Syrmakezis C. A Strength of Unreinforced Masonry Walls under Concentrated Compression Loads, “ASCE”. (2005).
- [18]. Eslami A., Ronagh H. R., Mahini S. S., & Morshed R. Experimental investigation and nonlinear FE analysis of historical masonry buildings–A case study. “Construction and Building Materials” ,35, 251-260, (2012).
- [19]. Dhanasekar M., & Haider W., Explicit finite element analysis of lightly reinforced masonry shear walls. “Computers & Structures”, 86(1-2), 15-26, (2008).
- [20]. Güncü A., Soyluk A., Çelik A., Mutlu E. Investigation of the Earthquake Behavior of Historical Erzincan Çadırcı Bath and the Reasons for Its Persistence Until Today. “Politeknik Dergisi ” 1-1, (2024).
- [21]. Furukawa A. and Ohta Y., Failure process of Masonry Buildings During Earthquake and Associated Casualty Risk Evaluation, “Natural Hazard ” , (2009).
- [22]. Walker P. Strength, durability and shrinkage characteristics of cement stabilised soil blocks. “Cem. Concr. Comp. ” 17:301–310, (1995).
- [23]. Maheri M. R., & Rahmani H. Static and seismic design of one-way and two-way jack arch masonry slabs. “Engineering structures” 25(13), 1639-1654, (2003).
- [24]. Rodrigues Varum, & H. Costa A.,Simplified Macro-Model for Infill Masonry Panels, “Journal of Earthquake Engineering” , Taylor & Francis , 390-416, (2010).
- [25]. Shrestha S. A case study of brick properties manufacture in Bhaktapur. “J. Sci. Eng. ”, 7:27–33,(2019).
- [26]. Liu B., Drougkas A., & Sarhosis V. A material characterisation framework for assessing brickwork masonry arch bridges: From material level to component level testing. “Construction and Building Materials”, 397, 132347, (2023).
- [27]. Russo S., & Sciarretta F., Experimental and theoretical investigation on masonry after high temperature exposure. “Experimental Mechanics”, 52,341-359, (2012).
- [28]. Nguyen ThD, Meftah F, Chammas R, Mebarki A., The behaviour of masonry walls subjected to fire: modelling and parametric studies in the case of hollow burnt-clay bricks, “Fire Safety Journal ” ,44:629–641, (2009).
- [29]. Asteris P. G., Finite element micro-modeling of infilled frames, ‘‘Electronic Journal of Structural Engineering’’, 8:1–11, (2008).
- [30]. Sayed-Ahmed EY, Shrive NG. Numerical analysis of face shell bedded hollow masonry walls subject to concentrated loads., ‘‘Canadian Journal of Civil Engineering’’ ,22(4):802–19, (1995).
- [31]. Dogangun A., & Sezen H. Seismic vulnerability and preservation of historical masonry monumental structures. ‘‘Earthquake and Structures’’, 3(1), 83-95, (2012).
- [32]. Turkish Standart-TS2848-Mortar for masonry
- [33]. Simulia D. ABAQUS 2020 analysis user'smanual. ABAQUS 2020 Documentation; (2020).
Yığma Yapı Malzemelerinin Basınç Yüklemesi Altında Mekanik Özelliklerinin İncelenmesi: Deneysel Ve Nümerik Çalışma
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Alper Çelik
,
Ozgur Anıl
,
Ömer Mercimek
,
Sercan Tuna Akkaya
,
Ahmet İhsan Turan
Öz
Yığma yapılar, taşıyıcı sistemi tuğla, gaz beton veya doğal taşlar gibi farklı birimlerden üretilmiş düşey duvarlardan oluşan yapılardır. Nitelikli işçilik gerektirmeden yerel malzemelerin kullanımıyla hızlı bir şekilde ekonomik olarak inşa edilebilmeleri sebebiyle yığma yapılar oldukça yaygındır. Yığma yapı tasarımında ve mevcut yığma yapıların analizlerinde malzeme mekanik özelliklerinin doğru bir şekilde belirlenip mikro model tekniği ile oluşturulan hesap modellerinde kullanılması oldukça önemlidir. Bu çalışmada, yığma yapıların analizlerin kullanılması amacıyla boşluklu tuğla, dolu harman tuğla ve gazbeton yığma birimlerinin tek eksenli basınç yüklemesi altında mekanik davranışları deneysel olarak incelenmiştir. Deneysel sonuçlar kullanılarak kil bazlı tuğla malzemesi için sonlu eleman yazılımlarında mikro modelleme tekniği ile analiz yapılacak uygulamalar için concrete damage plastisity (CDP) modeli önerilmiştir. Çalışmada kullanılan yöntem, farklı tipteki yığma birimlerin mekanik özelliklerinin belirlenmesi ve analiz modellerine yansıtılması için yapılacak deneysel çalışmalara ışık tutacaktır.
Kaynakça
- [1]. Hendry AW, “Structural masonry. Macmillan Education”, London, (1998).
- [2]. Penna A., Morandi P., Rota M., Manzini C. F., Da Porto F., & Magenes Performance of masonry buildings during the Emilia 2012 earthquake. “ Bulletin of Earthquake Engineering”, 12, 2255-2273, (2014).
- [3]. Indirli M., S. Kouris, L. A., Formisano A., Borg R. P., & Mazzolani, F. M. Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 earthquake: The case study of the historical centers of L'Aquila and Castelvecchio Subequo, “International Journal of Architectural Heritage”, 7(5), 536-578. (2013).
- [4]. Bilgin H., Shkodrani N., Hysenlliu M., Ozmen H. B., Isik, E., & Harirchian E, Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes, “Engineering Failure Analysis”, 131, 105824, (2022).
- [5]. Bayraktar A., Coşkun, N., & Yalçin, Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey. “Engineering Failure Analysis”, 14(1), 147-157, (2007).
- [6]. Vlachakis G., Vlachaki E., & Lourenço P. Learning from failure: Damage and failure of masonry structures, after the 2017 Lesvos earthquake (Greece), “Engineering Failure Analysis” 117, 104803, (2020).
- [7]. Özmen A., Maraş M. M., Ayaz Y., & Sayın, Assessments of masonry buildings and historical structures during the 2020 Sivrice-Elazığ Earthquake. “Periodica Polytechnica Civil Engineering”, 67(2), 530-544. (2023).
- [8]. Mercimek Ö. , Seismic failure modes of masonry structures exposed to Kahramanmaraş earthquakes (Mw 7.7 and 7.6) on February 6, 2023. “Engineering Failure Analysis” 151, 107422, (2023).
- [9]. Sayın E., Yön B., Onat O., Gör M., Öncü M. E., Tuğrul Tunç E., ... & Calayır, Y24 January 2020 Sivrice-Elazığ, Turkey earthquake: geotechnical evaluation and performance of structures. “Bulletin of Earthquake Engineering”, 19, 657-684,(2021).
- [10]. Calderoni B., Cordasco E. A., Del Zoppo M., & Prota A., Damage assessment of modern masonry buildings after the L’Aquila earthquake. . “Bulletin of Earthquake Engineering”,18, 2275-2301, (2020).
- [11]. Javed M., Naeem A., Penna A., & Magenes G.. Behavior of masonry structures during the Kashmir 2005 earthquake. “In Proc. Of the First European Conference on Earthquake Engineering and Seismology”, Geneva, Switzerland, 1093, (2005).
- [12]. Günaydin M., Atmaca B., Demir S., Altunişik A. C., Hüsem M., Adanur S., ... & Angin Z., Seismic damage assessment of masonry buildings in Elazığ and Malatya following the 2020 Elazığ-Sivrice earthquake, Turkey, “Bulletin of Earthquake Engineering”, 19, 2421-2456. (2021).
- [13]. Page A, The biaxial compressive strength of brick masonry, “Proc Inst Civ Eng”, 71(3):893–906, (1981).
- [14]. Lourenço P. B., Mendes N., Ramos L. F., & Oliveira D. V., Analysis of masonry structures without box behavior. “International Journal of Architectural Heritage”, 5(4-5), 369-382, (2011).
- [15]. Blash A. A. A., Bakar B. A., Udi U. J., Dabbour B. S., Jaafar A. A., Yanhao L., ... & Rashed M., Performance of unreinforced masonry walls in compression: a review of design provisions, experimental research, and future needs. “Applied Sciences”, 13(22), 12306, (2023).
- [16]. Croci G., The Conservation and Structural restoration of architectural heritage, “Computational Mechanics Publications”, Southampton, (1998).
- [17]. Asteris P. G., Asce M., & Syrmakezis C. A Strength of Unreinforced Masonry Walls under Concentrated Compression Loads, “ASCE”. (2005).
- [18]. Eslami A., Ronagh H. R., Mahini S. S., & Morshed R. Experimental investigation and nonlinear FE analysis of historical masonry buildings–A case study. “Construction and Building Materials” ,35, 251-260, (2012).
- [19]. Dhanasekar M., & Haider W., Explicit finite element analysis of lightly reinforced masonry shear walls. “Computers & Structures”, 86(1-2), 15-26, (2008).
- [20]. Güncü A., Soyluk A., Çelik A., Mutlu E. Investigation of the Earthquake Behavior of Historical Erzincan Çadırcı Bath and the Reasons for Its Persistence Until Today. “Politeknik Dergisi ” 1-1, (2024).
- [21]. Furukawa A. and Ohta Y., Failure process of Masonry Buildings During Earthquake and Associated Casualty Risk Evaluation, “Natural Hazard ” , (2009).
- [22]. Walker P. Strength, durability and shrinkage characteristics of cement stabilised soil blocks. “Cem. Concr. Comp. ” 17:301–310, (1995).
- [23]. Maheri M. R., & Rahmani H. Static and seismic design of one-way and two-way jack arch masonry slabs. “Engineering structures” 25(13), 1639-1654, (2003).
- [24]. Rodrigues Varum, & H. Costa A.,Simplified Macro-Model for Infill Masonry Panels, “Journal of Earthquake Engineering” , Taylor & Francis , 390-416, (2010).
- [25]. Shrestha S. A case study of brick properties manufacture in Bhaktapur. “J. Sci. Eng. ”, 7:27–33,(2019).
- [26]. Liu B., Drougkas A., & Sarhosis V. A material characterisation framework for assessing brickwork masonry arch bridges: From material level to component level testing. “Construction and Building Materials”, 397, 132347, (2023).
- [27]. Russo S., & Sciarretta F., Experimental and theoretical investigation on masonry after high temperature exposure. “Experimental Mechanics”, 52,341-359, (2012).
- [28]. Nguyen ThD, Meftah F, Chammas R, Mebarki A., The behaviour of masonry walls subjected to fire: modelling and parametric studies in the case of hollow burnt-clay bricks, “Fire Safety Journal ” ,44:629–641, (2009).
- [29]. Asteris P. G., Finite element micro-modeling of infilled frames, ‘‘Electronic Journal of Structural Engineering’’, 8:1–11, (2008).
- [30]. Sayed-Ahmed EY, Shrive NG. Numerical analysis of face shell bedded hollow masonry walls subject to concentrated loads., ‘‘Canadian Journal of Civil Engineering’’ ,22(4):802–19, (1995).
- [31]. Dogangun A., & Sezen H. Seismic vulnerability and preservation of historical masonry monumental structures. ‘‘Earthquake and Structures’’, 3(1), 83-95, (2012).
- [32]. Turkish Standart-TS2848-Mortar for masonry
- [33]. Simulia D. ABAQUS 2020 analysis user'smanual. ABAQUS 2020 Documentation; (2020).