Derleme
BibTex RIS Kaynak Göster

Anti-icing and De-icing Methods used for Icing at Wings of Aircrafts

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1496353

Öz

Research on aircraft flight safety has especially focused on wing icing because it has significant and fatal consequences. When the wing is iced, the aerodynamic shape of the wing changes, and this change leads to a reduction in lift force and an increase in landing force, which can lead to an accident. Therefore, the study of the anti-icing system of aircraft is an important issue to be considered in the research and improvement of aircraft design. In our study, the causes of icing on aircraft wings (unmanned or manned), the types of icing, and the advantages and disadvantages of anti-icing methods are explained in detail.

Kaynakça

  • [1] Cao YH., Tan WY., Wu ZL., “Aircraft icing: An ongoing threat to aviation safety”, Aerospace Science and Technology, 75: 353–385, (2018).
  • [2] Roh W., Kikuchi N., “Analysis of Stefan problem with level set method”, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St. Louis, Missouri, USA, June 24–26 (2002).
  • [3] Gori G., Zocca M., Guardone A., “A model for in-flight ice accretion based on the exact solution of the unsteady Stefan problem”, 7th AIAA Atmospheric and Space Environments Conference, Dallas, TX, USA, June 22-26, (2015).
  • [4] He Q., Li KS., Xu Z., Wang JW., Wang XS., Li AL., “Research progress on construction strategy and technical evaluation of aircraft icing accretion protection system”, Chinese Journal of Aeronautics, 36(10): 1–23 (2023).
  • [5] Waldman RM., Hu H., “High-speed imaging to quantify transient ice accretion process over an airfoil”, Journal of Aircraft, 53(2): 369–377, (2016).
  • [6] Thomas S.K., Cassoni R.P., MacArthur C.D., “Aircraft anti-icing and de-icing techniques and modeling”, Journal of Aircraft, 33(5): 841–854, (1996).
  • [7] Chen X., Zhao QJ., “Numerical simulations for ice accretion rotors using new three-dimensional icing model”, Journal of Aircraft, 54(4): 1428–1442, (2017).
  • [8] Potapezuk MG., “Aircraft icing research at NASA Glenn Research Center”, Journal of Aerospace Engineering, 26(2): 260–276, (2013).
  • [9] Zheng DS., Li ZY., Du ZY., Ma Y., Zhang L., Du C., Li ZJ., Cui LQ., Zhang L., Xuan XG., Deng X., “Design of capacitance and impedance dual-parameters planar electrode sensor for thin ice detection of aircraft icing mitigation”, IEEE Sensors Journal, 22(11): 11006–11015, (2022).
  • [10] Feng KX., Lu ZZ., Yun WY., “Aircraft icing severity analysis considering three uncertainty types”, AIAA Journal, 57(4): 1514–1522, (2019).
  • [11] Cao YH., Wu ZL., Su Y., Xu Z., “Aircraft flight characteristics in icing conditions”, Progress in Aerospace Sciences, 74: 62–80, (2015).
  • [12] Zhou WW., Liu Y., Hu H., Hu HY., Meng XS., “Utilization of thermal effect induced by plasma generation for aircraft icing mitigation”, AIAA Journal, 56(3): 1097–1104, (2018).
  • [13] Wang YB., Xu YM., Huang Q., “Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency”, Renewable Sustainable Energy Review, 79: 638–645, (2017).
  • [14] http://www.weather.gov/ZHU_Training_Page/icing.htm
  • [15] Leader R., Takahashi T., “Frosty Weather: The regulatory history of aircraft design and operations in icing conditions”, AIAA Scitech Forum, January 7-11, San Diago, California, (2019).
  • [16] Addy Harold E. Jr., “Ice accretions and icing effects for modern airfoils”, NASA/TP‒2000‒210031, (2000).
  • [17] Ernez S., Morency F., “Eulerian-Lagrangian CFD model for prediction of heat transfer between aircraft deicing liquid sprays and a surface”. International Journal of Numerical Methods Heat Fluid Flow, 29 (7) 2450–2475, (2019).
  • [18] Chen Y., Jiang XL., Liao Y., Chen Q., Wang M., Li T., Hu Q., “Influence of structural parameters on the pulse effect of pulsed coils”. Results in Physics, 43: 106128, (2022).
  • [19] Villeneuve F., Volat C., Ghinet S., “Numerical and experimental investigation of the design of a piezoelectric de-icing system for small rotorcraft part 1/3: Development of a flat plate numerical model with experimental validation”, Aerospace, 7(5) : 62 (2020).
  • [20] Palacios J., Wolfe D., Bailey M., Szefi J., “Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades”, Journal of the American Helicopter Society, 60: 032014, 1–12, (2015).
  • [21] Wang ZJ., “Recent Progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft”, Energy Build, 140: 42 (2017).
  • [22] Wang YL., Yao X., Wu SW., Li QY., Lv JY., Wang JJ., Jiang L., “Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer”, Advanced Materials, 29(26): 1700865, (2017).
  • [23] Saeed F., Ahmed KZ., Owes AO., Paraschivoiu I., “Anti-icing hot air jet heat transfer augmentation employing inner channels”, Advances in Mechanical Engineering, 13(12): (2021).
  • [24] Zhao ZH., Chen HW., Liu XL., Wang ZL., Zhu YT, Zhou YP., “Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces”, Surface and Coating Technology, 404: 126489, (2020).
  • [25] Shen X, Wang H, Lin G, Bu X, Wen D. “Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234 (2): 388–400, (2020).
  • [26] Piscitelli F., Chiariello A., Dabkowski D., Corraro G. Marra F., Di Palma L., “Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft”, Aerospace, 7( 2): (2020).
  • [27] Papadakis M., Wong SH., Yeong HW., Wong SC., Vu GT., “Icing tests of a wing model with a hot-air ice protection system”, Proceedings of the AIAA Atmospheric and Space Environments Conference, Toronto, Ontario, Canada, (2010).
  • [28] Pourbagain M., Habashi WG., “Parametric analysis of energy requirements of in-flight ice protection systems”, Proceedings of the 20th Annual conference of the CFD society of Canada, Canmore, Canada, (2012).
  • [29] Pourbagain M., Habashi WG., “CFD-based optimization of electro-thermal wing ice protection systems in de-icing mode”, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, USA, (2013).
  • [30] Li AL, Li KS, Zhang FY, Ren SY, Zhang FW, He Q, “Research on low temperature performance of ZnO/SiO2 composite superhydrophobic paper mulch”, Journal of Materials Research and Technology, 14: 851–863, (2021).
  • [31] Xue CH., Tian QQ., Jia ST., Zhao LL., Ding YR., Lia HG., An QF., “The fabrication of mechanically durable and stretchable superhydrophobic PDMS/SiO2 composite film”, RSC Adv., 10, 19466–19473, (2020).
  • [32] Yin XY., Zhang YE., Wang DA., Liu ZL., Liu YP., Pei XW., Yu B., Zhou F., “Integration of Self-Lubrication and Near-Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance”, Advanced Functional Materials, 25(27): 4237–4245, (2015).
  • [33] Huang X., Nick Tepylo N., Pommier-Budinger V., Budinger M., Bonaccurso E., Villedieu P., Bennani L., “A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications”, Progress in Aerospace Sciences, 105: 74–97, (2019).
  • [34] Levin IA., “USSR electric impulse de-icing system design”, Aircraft Engineering and Aerospace Technology, 44(7): 7–10, (1972).
  • [35] Endres M., Sommerwerk H., Mendig C., Sinapius M., Horst P., “Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel”, CEAS Aeronautical Journal, 8: 429–439, (2017).
  • [36] Sommerwerk H., Horst P., Bansmer S., “Studies on Electro Impulse De-Icing of a Leading-Edge Structure in an Icing Wind Tunnel”, 8th AIAA Atmospheric and Space Environments Conference, Washington, D.C., AIAA 2016–3441, (2016).
  • [37] Tian YQ., Zhang ZK., Cai JS., Yang LL., Kang L., “Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma”, Chinese Journal of Aeronautics, 31(7): 1449–1460, (2018).
  • [38] Sommerwerk H., Luplow T., Horst P., “Numerical simulation and validation of electro-impulse de-icing on a leading-edge structure”, Theoretical and Applied Fracture Mechanics, 105: 102392, (2020).
  • [39] Zhang Y.J., Liang K., Lan H., Falzon B.G., “Modelling electro-impulse de-icing process in leading edge structure and impact fatigue life prediction of rivet holes in critical areas”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(5): 1117–1131, (2020).
  • [40] Wang YY., Jiang XL., “Design Research and Experimental Verification of the Electro-Impulse De-Icing System for Wind Turbine Blades in the Xuefeng Mountain Natural Icing Station”, IEEE Access, 8: 28915–28924, (2020).
  • [41] Zhang Y., Narayanasamy K., Sandel W., Nilamdeen S., Ozcer I., “A Three-Layer Model for Ice Crystal Icing in Aircraft Engines”, SAE Technical Paper 01-1481, (2023).
  • [42] Liu Y., Bond L., Hu H., Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena”, AIAA Journal, 55(5): 1602‒1609, (2017).
  • [43] Svilainis L., “Review of high resolution time of flight estimation techniques for ultrasonic signals”, International Conference NDT, Telford, England, (2013).
  • [44] Vargas M., Broughton H., Sims JJ., Bleeze B., Gaines V., “Local and total density measurements in ice shapes”, Journal of Aircraft, 44(3): 780-789, (2007).
  • [45] Bowden D., “Effect of pneumatic de-icers and ice formations on aerodynamic characteristics of a airfoil”, Washington, D.C., NACA-TN-3564, (1956).
  • [46] Broeren AP., Bragg MB., Addy HE., “Effect of intercycle ice accretions on airfoil performance”, Journal of Aircraft, 41(1): 165–174, (2004).
  • [47] Al-Khalil K., Horvath C., Miller D.R., Wright W., “Validation of thermal ice protection computer codes: III- the validation of ANTICE”, Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97-0051, Nevada, U.S.A, (1997).
  • [48] Al-Khalil K., Ferguson TW., Phillips D.M., “A hybrid anti-icing ice protection system”, Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97-0302, Nevada, U.S.A, (1997).
  • [49] Pourbagian M., Talgorn B., Habashi WG., “Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems”, Optimization and Engineering, 16(4): 663–693, (2015).
  • [50] Hann R., Enache A., Nielsen M.C., Stovner B.N., van Beeck J., Johansen T.A., Borup K.T., “Experimental heat loads for electrothermal anti-icing and de-icing on UAVs”, Aerospace, 8: 83, (2021).
  • [51] Vertuccio L., Foglia F., Pantani R., Guadagno L., “New Aircraft Anti/de-Icing Technologies”, IOP Conf. Series: Materials Science and Engineering, 1024: 012012, (2021).
  • [52] Zilio C., Patricelli L. “Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model”, Applied Thermal Engineering, 63: 40-51, (2014).
  • [53] Salcedo S. A.G., Da Silva A.F., Andrade C.R., “Turbulent impingement jet heat transfer on concave surfaces for aeronautical applications”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 545, (2018).
  • [54] Stallabrass JR., “Thermal aspects of deicer design”, in: 1st International Helicopter Icing Conference, Ottawa, Canada, May (1972).
  • [55] Marano JJ., “Numerical simulation of an electrothermal deicer pad”, Toledo, Ohio, USA, NASA-CR-168097, (1983).
  • [56] Roelke R.J., Keith TG., De Witt KJ., Wright WB., “Efficient numerical simulation of a one-dimensional electrothermal deicer pad”, Journal of Aircraft, 25(12): 1097–1105, (1988).
  • [57] Chao DF., “Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components”, Toledo, Ohio, USA, NASA-CR-168283, (1983).
  • [58] Wright WB., Keith TG., De Witt KJ., “Two-dimensional simulation of electrothermal deicing of aircraft components”, Journal of Aircraft, 26(6): 554–562, (1989).
  • [59] Wright W., Dewitt K., Keith J.T., “Numerical simulation of icing, deicing, and shedding”, Proceedings of the 29th Aerospace Sciences Meeting, Reno, NV, USA, (1991).
  • [60] Yaslik AD., De Witt KJ., Keith Jr. TG., Boronow W., “Three-dimensional simulation of electrothermal deicing systems”, Journal of Aircraft, 29(6): 1035–1042, (1992).
  • [61] Zhou Y., Lin GP, Bu XQ., Mu ZD., Pan R., Ge Q., Qiao XD., “Temperature and runback ice prediction method for three-dimensional hot air anti-icing system”, IOP Conference Series: Materials Science and Engineering, 187, 012017, (2017).
  • [62] Cao Y., Ma C., Zhang Q., Sheridan J., “Numerical simulation of ice accretions on an aircraft wing”, Aerospace Science and Technology, 23: 296‒304, (2012).
  • [63] Calıskan F., Hajiyev C., “A review of in-flight detection and identification of aircraft icing and reconfigural control”, Progress in Aerospace Sciences, 60: 12-34, (2013).
  • [64] Cao Y., Li G., Song D., “Numerical simulation of melting of ice accreted on an airfoil”, Aerospace Science and Technology, 119: 107223, (2021).
  • [65] Myers T.G., “Extension to the Messinger Model for aircraft icing”, AIAA Journal, 39(1): 211-218, (2001).
  • [66] Bragg MB., Hutchison T., Merret J., Oltman R., Pokhariyel D., “Effect of ice accretion on aircraft flight dynamics”, AIAA Paper, 2000‒0360, (2000).
  • [67] Fortin G., Laforte J.-L., Ilinca A., “Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model”, International Journal of Thermal Sciences, 45(6): 595–606, (2006).
  • [68] Xi C., Qi-Jun Z., “Numerical simulations for ice accretion on Rotors using new three-dimensional icing model”, Journal of Aircraft, 54(4): (2017).
  • [69] Deiler C., Kilian T., “Dynamic aircraft simulation model covering local icing effects”, CEAS Aeronautical Journal, 9(3): 429–444, (2018).
  • [70] Li HR., Zhang YF., Chen HX., “Optimization design of airfoils under atmospheric icing conditions for UAV”, Chinese Journal of Aeronautics, 35(4):118–133, (2022).
  • [71] Currie T.C., Struk P.M., Tsao J-C., Fuleki D., Knezevici D.C., “Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines”, 4th AIAA Atmospheric and Space Environments Conference, AIAA 2012-3035, (2012).
  • [72] Ronneberg S., Laforte C., Volat C., He J., Zhang Z., “The effect of ice type on ice adhesion”, AIP Advances, 9: 055304, (2019).
  • [73] Long C., Jinghang X., Xichun L., Liu Z., Bing W., Qinghua S., Yukui C., Yi W., Xiangyu G., Chunlong L., “Micro/nano manufacturing aircraft surface with anti-icing and deicing performances: An overview”, Nanotechnology Reviews, 12: 20230105, (2023).
  • [74] Gori G., Parma G., Zocca M., Guardone A., “Local solution to the unsteady Stefan Problem for in-flight ice accretion modeling”, Journal of Aircraft, 55(1): 251‒262, (2018).
  • [75] Kim Y. Yee K., “Target temperature-based simulation method for predicting performance and design aircraft thermal anti-icing systems”, International Journal of Heat and Mass Transfer, 229: 125688, (2024).
  • [76] Rekuviene R., Saeidiharzand S., Mažeika L., Samaitis V., Jankauskas A., Sadaghiani A.K., Gharib G., Muganlı Z., Koşar A., “A review on passive and active anti-icing and de-icing technologies”, Applied Thermal Engineering, 250: 123474, (2024).

Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1496353

Öz

Günümüzde uçak buzlanması üzerine yapılan araştırmalar, önemli ve ölümcül kötü sonuçlarına sebeb olması nedeniyle, kanatlarda oluşan buzlanma üzerine yoğunlaşmaktadır. Kanat buzlandığında, kanat aerodinamik özelliklerinde değişim oluşmakta ve bu değişim kazaya sebebiyet verebilecek şekilde, kaldırma kuvvetlerinde azalma ve iniş durumunda artışa neden olmaktadır. Bu nedenle, uçakta buz önleme sisteminin araştırılması uçak dizaynı araştırma ve iyileştirme konularında düşünülmesi gereken önemli bir konudur. Çalışmamızda insanlı yada insansız hava araçlarında oluşan buzlanma nedenleri ve buz önleme yöntemlerinin çeşitleri, uygulama avantaj ve dezavantajları bakımından ayrıntılı anlatılmaktadır.

Kaynakça

  • [1] Cao YH., Tan WY., Wu ZL., “Aircraft icing: An ongoing threat to aviation safety”, Aerospace Science and Technology, 75: 353–385, (2018).
  • [2] Roh W., Kikuchi N., “Analysis of Stefan problem with level set method”, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St. Louis, Missouri, USA, June 24–26 (2002).
  • [3] Gori G., Zocca M., Guardone A., “A model for in-flight ice accretion based on the exact solution of the unsteady Stefan problem”, 7th AIAA Atmospheric and Space Environments Conference, Dallas, TX, USA, June 22-26, (2015).
  • [4] He Q., Li KS., Xu Z., Wang JW., Wang XS., Li AL., “Research progress on construction strategy and technical evaluation of aircraft icing accretion protection system”, Chinese Journal of Aeronautics, 36(10): 1–23 (2023).
  • [5] Waldman RM., Hu H., “High-speed imaging to quantify transient ice accretion process over an airfoil”, Journal of Aircraft, 53(2): 369–377, (2016).
  • [6] Thomas S.K., Cassoni R.P., MacArthur C.D., “Aircraft anti-icing and de-icing techniques and modeling”, Journal of Aircraft, 33(5): 841–854, (1996).
  • [7] Chen X., Zhao QJ., “Numerical simulations for ice accretion rotors using new three-dimensional icing model”, Journal of Aircraft, 54(4): 1428–1442, (2017).
  • [8] Potapezuk MG., “Aircraft icing research at NASA Glenn Research Center”, Journal of Aerospace Engineering, 26(2): 260–276, (2013).
  • [9] Zheng DS., Li ZY., Du ZY., Ma Y., Zhang L., Du C., Li ZJ., Cui LQ., Zhang L., Xuan XG., Deng X., “Design of capacitance and impedance dual-parameters planar electrode sensor for thin ice detection of aircraft icing mitigation”, IEEE Sensors Journal, 22(11): 11006–11015, (2022).
  • [10] Feng KX., Lu ZZ., Yun WY., “Aircraft icing severity analysis considering three uncertainty types”, AIAA Journal, 57(4): 1514–1522, (2019).
  • [11] Cao YH., Wu ZL., Su Y., Xu Z., “Aircraft flight characteristics in icing conditions”, Progress in Aerospace Sciences, 74: 62–80, (2015).
  • [12] Zhou WW., Liu Y., Hu H., Hu HY., Meng XS., “Utilization of thermal effect induced by plasma generation for aircraft icing mitigation”, AIAA Journal, 56(3): 1097–1104, (2018).
  • [13] Wang YB., Xu YM., Huang Q., “Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency”, Renewable Sustainable Energy Review, 79: 638–645, (2017).
  • [14] http://www.weather.gov/ZHU_Training_Page/icing.htm
  • [15] Leader R., Takahashi T., “Frosty Weather: The regulatory history of aircraft design and operations in icing conditions”, AIAA Scitech Forum, January 7-11, San Diago, California, (2019).
  • [16] Addy Harold E. Jr., “Ice accretions and icing effects for modern airfoils”, NASA/TP‒2000‒210031, (2000).
  • [17] Ernez S., Morency F., “Eulerian-Lagrangian CFD model for prediction of heat transfer between aircraft deicing liquid sprays and a surface”. International Journal of Numerical Methods Heat Fluid Flow, 29 (7) 2450–2475, (2019).
  • [18] Chen Y., Jiang XL., Liao Y., Chen Q., Wang M., Li T., Hu Q., “Influence of structural parameters on the pulse effect of pulsed coils”. Results in Physics, 43: 106128, (2022).
  • [19] Villeneuve F., Volat C., Ghinet S., “Numerical and experimental investigation of the design of a piezoelectric de-icing system for small rotorcraft part 1/3: Development of a flat plate numerical model with experimental validation”, Aerospace, 7(5) : 62 (2020).
  • [20] Palacios J., Wolfe D., Bailey M., Szefi J., “Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades”, Journal of the American Helicopter Society, 60: 032014, 1–12, (2015).
  • [21] Wang ZJ., “Recent Progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft”, Energy Build, 140: 42 (2017).
  • [22] Wang YL., Yao X., Wu SW., Li QY., Lv JY., Wang JJ., Jiang L., “Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer”, Advanced Materials, 29(26): 1700865, (2017).
  • [23] Saeed F., Ahmed KZ., Owes AO., Paraschivoiu I., “Anti-icing hot air jet heat transfer augmentation employing inner channels”, Advances in Mechanical Engineering, 13(12): (2021).
  • [24] Zhao ZH., Chen HW., Liu XL., Wang ZL., Zhu YT, Zhou YP., “Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces”, Surface and Coating Technology, 404: 126489, (2020).
  • [25] Shen X, Wang H, Lin G, Bu X, Wen D. “Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234 (2): 388–400, (2020).
  • [26] Piscitelli F., Chiariello A., Dabkowski D., Corraro G. Marra F., Di Palma L., “Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft”, Aerospace, 7( 2): (2020).
  • [27] Papadakis M., Wong SH., Yeong HW., Wong SC., Vu GT., “Icing tests of a wing model with a hot-air ice protection system”, Proceedings of the AIAA Atmospheric and Space Environments Conference, Toronto, Ontario, Canada, (2010).
  • [28] Pourbagain M., Habashi WG., “Parametric analysis of energy requirements of in-flight ice protection systems”, Proceedings of the 20th Annual conference of the CFD society of Canada, Canmore, Canada, (2012).
  • [29] Pourbagain M., Habashi WG., “CFD-based optimization of electro-thermal wing ice protection systems in de-icing mode”, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, USA, (2013).
  • [30] Li AL, Li KS, Zhang FY, Ren SY, Zhang FW, He Q, “Research on low temperature performance of ZnO/SiO2 composite superhydrophobic paper mulch”, Journal of Materials Research and Technology, 14: 851–863, (2021).
  • [31] Xue CH., Tian QQ., Jia ST., Zhao LL., Ding YR., Lia HG., An QF., “The fabrication of mechanically durable and stretchable superhydrophobic PDMS/SiO2 composite film”, RSC Adv., 10, 19466–19473, (2020).
  • [32] Yin XY., Zhang YE., Wang DA., Liu ZL., Liu YP., Pei XW., Yu B., Zhou F., “Integration of Self-Lubrication and Near-Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance”, Advanced Functional Materials, 25(27): 4237–4245, (2015).
  • [33] Huang X., Nick Tepylo N., Pommier-Budinger V., Budinger M., Bonaccurso E., Villedieu P., Bennani L., “A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications”, Progress in Aerospace Sciences, 105: 74–97, (2019).
  • [34] Levin IA., “USSR electric impulse de-icing system design”, Aircraft Engineering and Aerospace Technology, 44(7): 7–10, (1972).
  • [35] Endres M., Sommerwerk H., Mendig C., Sinapius M., Horst P., “Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel”, CEAS Aeronautical Journal, 8: 429–439, (2017).
  • [36] Sommerwerk H., Horst P., Bansmer S., “Studies on Electro Impulse De-Icing of a Leading-Edge Structure in an Icing Wind Tunnel”, 8th AIAA Atmospheric and Space Environments Conference, Washington, D.C., AIAA 2016–3441, (2016).
  • [37] Tian YQ., Zhang ZK., Cai JS., Yang LL., Kang L., “Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma”, Chinese Journal of Aeronautics, 31(7): 1449–1460, (2018).
  • [38] Sommerwerk H., Luplow T., Horst P., “Numerical simulation and validation of electro-impulse de-icing on a leading-edge structure”, Theoretical and Applied Fracture Mechanics, 105: 102392, (2020).
  • [39] Zhang Y.J., Liang K., Lan H., Falzon B.G., “Modelling electro-impulse de-icing process in leading edge structure and impact fatigue life prediction of rivet holes in critical areas”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(5): 1117–1131, (2020).
  • [40] Wang YY., Jiang XL., “Design Research and Experimental Verification of the Electro-Impulse De-Icing System for Wind Turbine Blades in the Xuefeng Mountain Natural Icing Station”, IEEE Access, 8: 28915–28924, (2020).
  • [41] Zhang Y., Narayanasamy K., Sandel W., Nilamdeen S., Ozcer I., “A Three-Layer Model for Ice Crystal Icing in Aircraft Engines”, SAE Technical Paper 01-1481, (2023).
  • [42] Liu Y., Bond L., Hu H., Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena”, AIAA Journal, 55(5): 1602‒1609, (2017).
  • [43] Svilainis L., “Review of high resolution time of flight estimation techniques for ultrasonic signals”, International Conference NDT, Telford, England, (2013).
  • [44] Vargas M., Broughton H., Sims JJ., Bleeze B., Gaines V., “Local and total density measurements in ice shapes”, Journal of Aircraft, 44(3): 780-789, (2007).
  • [45] Bowden D., “Effect of pneumatic de-icers and ice formations on aerodynamic characteristics of a airfoil”, Washington, D.C., NACA-TN-3564, (1956).
  • [46] Broeren AP., Bragg MB., Addy HE., “Effect of intercycle ice accretions on airfoil performance”, Journal of Aircraft, 41(1): 165–174, (2004).
  • [47] Al-Khalil K., Horvath C., Miller D.R., Wright W., “Validation of thermal ice protection computer codes: III- the validation of ANTICE”, Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97-0051, Nevada, U.S.A, (1997).
  • [48] Al-Khalil K., Ferguson TW., Phillips D.M., “A hybrid anti-icing ice protection system”, Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97-0302, Nevada, U.S.A, (1997).
  • [49] Pourbagian M., Talgorn B., Habashi WG., “Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems”, Optimization and Engineering, 16(4): 663–693, (2015).
  • [50] Hann R., Enache A., Nielsen M.C., Stovner B.N., van Beeck J., Johansen T.A., Borup K.T., “Experimental heat loads for electrothermal anti-icing and de-icing on UAVs”, Aerospace, 8: 83, (2021).
  • [51] Vertuccio L., Foglia F., Pantani R., Guadagno L., “New Aircraft Anti/de-Icing Technologies”, IOP Conf. Series: Materials Science and Engineering, 1024: 012012, (2021).
  • [52] Zilio C., Patricelli L. “Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model”, Applied Thermal Engineering, 63: 40-51, (2014).
  • [53] Salcedo S. A.G., Da Silva A.F., Andrade C.R., “Turbulent impingement jet heat transfer on concave surfaces for aeronautical applications”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 545, (2018).
  • [54] Stallabrass JR., “Thermal aspects of deicer design”, in: 1st International Helicopter Icing Conference, Ottawa, Canada, May (1972).
  • [55] Marano JJ., “Numerical simulation of an electrothermal deicer pad”, Toledo, Ohio, USA, NASA-CR-168097, (1983).
  • [56] Roelke R.J., Keith TG., De Witt KJ., Wright WB., “Efficient numerical simulation of a one-dimensional electrothermal deicer pad”, Journal of Aircraft, 25(12): 1097–1105, (1988).
  • [57] Chao DF., “Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components”, Toledo, Ohio, USA, NASA-CR-168283, (1983).
  • [58] Wright WB., Keith TG., De Witt KJ., “Two-dimensional simulation of electrothermal deicing of aircraft components”, Journal of Aircraft, 26(6): 554–562, (1989).
  • [59] Wright W., Dewitt K., Keith J.T., “Numerical simulation of icing, deicing, and shedding”, Proceedings of the 29th Aerospace Sciences Meeting, Reno, NV, USA, (1991).
  • [60] Yaslik AD., De Witt KJ., Keith Jr. TG., Boronow W., “Three-dimensional simulation of electrothermal deicing systems”, Journal of Aircraft, 29(6): 1035–1042, (1992).
  • [61] Zhou Y., Lin GP, Bu XQ., Mu ZD., Pan R., Ge Q., Qiao XD., “Temperature and runback ice prediction method for three-dimensional hot air anti-icing system”, IOP Conference Series: Materials Science and Engineering, 187, 012017, (2017).
  • [62] Cao Y., Ma C., Zhang Q., Sheridan J., “Numerical simulation of ice accretions on an aircraft wing”, Aerospace Science and Technology, 23: 296‒304, (2012).
  • [63] Calıskan F., Hajiyev C., “A review of in-flight detection and identification of aircraft icing and reconfigural control”, Progress in Aerospace Sciences, 60: 12-34, (2013).
  • [64] Cao Y., Li G., Song D., “Numerical simulation of melting of ice accreted on an airfoil”, Aerospace Science and Technology, 119: 107223, (2021).
  • [65] Myers T.G., “Extension to the Messinger Model for aircraft icing”, AIAA Journal, 39(1): 211-218, (2001).
  • [66] Bragg MB., Hutchison T., Merret J., Oltman R., Pokhariyel D., “Effect of ice accretion on aircraft flight dynamics”, AIAA Paper, 2000‒0360, (2000).
  • [67] Fortin G., Laforte J.-L., Ilinca A., “Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model”, International Journal of Thermal Sciences, 45(6): 595–606, (2006).
  • [68] Xi C., Qi-Jun Z., “Numerical simulations for ice accretion on Rotors using new three-dimensional icing model”, Journal of Aircraft, 54(4): (2017).
  • [69] Deiler C., Kilian T., “Dynamic aircraft simulation model covering local icing effects”, CEAS Aeronautical Journal, 9(3): 429–444, (2018).
  • [70] Li HR., Zhang YF., Chen HX., “Optimization design of airfoils under atmospheric icing conditions for UAV”, Chinese Journal of Aeronautics, 35(4):118–133, (2022).
  • [71] Currie T.C., Struk P.M., Tsao J-C., Fuleki D., Knezevici D.C., “Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines”, 4th AIAA Atmospheric and Space Environments Conference, AIAA 2012-3035, (2012).
  • [72] Ronneberg S., Laforte C., Volat C., He J., Zhang Z., “The effect of ice type on ice adhesion”, AIP Advances, 9: 055304, (2019).
  • [73] Long C., Jinghang X., Xichun L., Liu Z., Bing W., Qinghua S., Yukui C., Yi W., Xiangyu G., Chunlong L., “Micro/nano manufacturing aircraft surface with anti-icing and deicing performances: An overview”, Nanotechnology Reviews, 12: 20230105, (2023).
  • [74] Gori G., Parma G., Zocca M., Guardone A., “Local solution to the unsteady Stefan Problem for in-flight ice accretion modeling”, Journal of Aircraft, 55(1): 251‒262, (2018).
  • [75] Kim Y. Yee K., “Target temperature-based simulation method for predicting performance and design aircraft thermal anti-icing systems”, International Journal of Heat and Mass Transfer, 229: 125688, (2024).
  • [76] Rekuviene R., Saeidiharzand S., Mažeika L., Samaitis V., Jankauskas A., Sadaghiani A.K., Gharib G., Muganlı Z., Koşar A., “A review on passive and active anti-icing and de-icing technologies”, Applied Thermal Engineering, 250: 123474, (2024).
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Derleme Makalesi
Yazarlar

Nimeti Kalaycı 0000-0001-8963-2829

Osman Akgün 0000-0002-8414-564X

Erken Görünüm Tarihi 2 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 5 Haziran 2024
Kabul Tarihi 20 Ekim 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Kalaycı, N., & Akgün, O. (2024). Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1496353
AMA Kalaycı N, Akgün O. Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri. Politeknik Dergisi. Published online 01 Kasım 2024:1-1. doi:10.2339/politeknik.1496353
Chicago Kalaycı, Nimeti, ve Osman Akgün. “Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme Ve Buz-çözme Yöntemleri”. Politeknik Dergisi, Kasım (Kasım 2024), 1-1. https://doi.org/10.2339/politeknik.1496353.
EndNote Kalaycı N, Akgün O (01 Kasım 2024) Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri. Politeknik Dergisi 1–1.
IEEE N. Kalaycı ve O. Akgün, “Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri”, Politeknik Dergisi, ss. 1–1, Kasım 2024, doi: 10.2339/politeknik.1496353.
ISNAD Kalaycı, Nimeti - Akgün, Osman. “Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme Ve Buz-çözme Yöntemleri”. Politeknik Dergisi. Kasım 2024. 1-1. https://doi.org/10.2339/politeknik.1496353.
JAMA Kalaycı N, Akgün O. Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri. Politeknik Dergisi. 2024;:1–1.
MLA Kalaycı, Nimeti ve Osman Akgün. “Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme Ve Buz-çözme Yöntemleri”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1496353.
Vancouver Kalaycı N, Akgün O. Hava Araçları Kanatlarında Oluşan Buzlanmayı Önleme ve Buz-çözme Yöntemleri. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.