Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1638100

Öz

Bu çalışmanın amacı, farklı sıcaklık kür koşulları altında atık malzeme olarak bulunan %50 uçucu kül (UK) ve %50 yüksek fırın cürufu (YFC) kullanılarak üretilen tek bileşenli geopolimer betonların erken yaş basınç dayanım gelişimini incelemektedir. Tek bileşenli geopolimer beton, sıvı alkali kullanımını ortadan kaldırarak uygulama kolaylığı sunarken, daha güvenli olması ve endüstriyel atıkların kullanımıyla sürdürülebilirlik gibi önemli avantajlarının yanında ısıl kür koşullarında yüksek erken yaş basınç dayanımı sağlamaktadır. Geopolimer beton numunelerine, oda sıcaklığı (yaklaşık 25°C) ve 40°C, 50°C, 60°C, 70°C, 80°C ve 90°C sıcaklıklarında ilk 24 saat boyunca kür uygulanmıştır. Kür işleminin ardından numunelere taze ve sertleşmiş geopolimer beton özelliklerini değerlendirmek amacıyla slump testi, geopolimer betonun yoğunluğu, ultrasonic pulse velocity (UPV) testi ve basınç dayanımı testleri uygulanmıştır. Bulgulara göre, geopolimer betonların çökme değeri yaklaşık 10 cm ölçülmüş, yoğunluk ortalama 2,10 kg/m³ olarak belirlenmiş, ve UPV sonuçlarının ortalama 4463 m/s olduğu görülmüştür. Karışımda yüksek fırın cürufunun olması, aktivasyon hızının artmasına katkıda bulunarak daha fazla miktarda C-A-S-H jelinin oluşumuna yol açmıştır, böylelikle daha yoğun bir mikro yapının oluşumuyla beton boşluk oranının azalmasına ve bunun sonucunda da UPV değerinin yüksek çıkmasına neden olmuştur. Ayrıca, tek bileşenli geopolimer betonların erken yaş basınç dayanımları 60 °C kür sıcaklığına kadar doğru orantılı olarak artarken, yüksek sıcaklıklarda uygulanan kür ile dayanımlar düşmüştür. Numuneler arasında en yüksek basınç dayanımı 60°C sıcaklık kürü uygulanan numunede 58 MPa olarak ölçülmüştür. Bu sonuçlar, optimum sıcaklık kürünün geopolimer betonların erken yaş performansını iyileştirdiğini göstermiştir.

Kaynakça

  • [1] El-Mir, A., Hwalla, J., El-Hassan, H., Assaad, J. J., El-Dieb, A., and Shehab, E., “Valorization of waste perlite powder in geopolymer composites”, Construction and Building Materials, 368, 130491, (2023).
  • [2] Guo, S., Ma, C., Long, G., and Xie, Y., “Cleaner one-part geopolymer prepared by introducing fly ash sinking spherical beads: properties and geopolymerization mechanism”, Journal of cleaner production, 219, 686-697, (2019).
  • [3] Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., and Alnahhal, M. F., “Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review”, Construction and Building Materials, 148, 62-84, (2017).
  • [4] Neville, A. M., “Properties of concrete”, Pearson Education India, (1963).
  • [5] Thomas, M., “Supplementary cementing materials in concrete”, CRC press, (2013).
  • [6] Xu, G., and Shi, X., “Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, conservation and recycling, 136, 95-109, (2018).
  • [7] Meng, Y., Ling, T. C., and Mo, K. H., “Recycling of wastes for value-added applications in concrete blocks: An overview”, Resources, conservation and recycling, 138, 298-312, (2018).
  • [8] Oderji, S. Y., Chen, B., Ahmad, M. R., and Shah, S. F. A., “Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators”, Journal of Cleaner Production, 225, 1-10, (2019).
  • [9] Pacheco-Torgal, F., “Introduction to handbook of alkali-activated cements, mortars and concretes”, In Handbook of alkali-activated cements, mortars and concretes, (pp. 1-16), Woodhead Publishing, (2015).
  • [10] Zhang, Y. J., Wang, Y. C., and Li, S., “Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin”, Materials Science and Engineering, 527(24-25), 6574-6580, (2010).
  • [11] Kong, D. L., and Sanjayan, J. G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and concrete research, 40(2), 334-339, (2010).
  • [12] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M., “Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar”, Journal of cleaner production, 187, 171-179, (2018).
  • [13] Bernal, S. A., San Nicolas, R., Provis, J. L., Mejía de Gutiérrez, R., and Van Deventer, J. S. “Natural carbonation of aged alkali-activated slag concretes”, Materials and structures, 47, 693-707, (2014).
  • [14] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M., “One-part alkali-activated materials: A review”, Cement and Concrete Research, 103, 21-34, (2018).
  • [15] Provis, J. L. “Alkali-activated materials”, Cement and concrete research, 114, 40-48, (2018).
  • [16] Sunarsih, E. S., As' ad, S., Sam, A. M., and Kristiawan, S. A. “Transport properties of fly ash-slag-based geopolymer concrete with 2M sodium hydroxide combined with variations in slag percentage, Al/Bi ratio, and SS/SH ratio”, Materiales de Construcción, 74(354), e343-e343, (2024).
  • [17] Qu, F., Li, W., Wang, K., Zhang, S., and Sheng, D., “Performance deterioration of fly ash/slag-based geopolymer composites subjected to coupled cyclic preloading and sulfuric acid attack”, Journal of Cleaner Production, 321, 128942, (2021).
  • [18] Yip, C. K., and Van Deventer, J. S. J., “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder”, Journal of Materials Science, 38, 3851-3860, (2003).
  • [19] Dong, T., Sun, T., Xu, F., Ouyang, G., Wang, H., Yang, F., and Wang, Z., “Effect of solid sodium silicate on workability, hydration and strength of alkali-activated GGBS/fly ash paste”, Coatings, 13(4), 696, (2023).
  • [20] Rabie, M., Irshidat, M. R., and Al-Nuaimi, N., “Ambient and heat-cured geopolymer composites: Mix design optimization and life cycle assessment”, Sustainability, 14(9), 4942, (2022).
  • [21] Zhang, H. Y., Qiu, G. H., Kodur, V., and Yuan, Z. S., “Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure”, Cement and Concrete Composites, 106, 103483, (2020).
  • [22] Koloušek, D., Brus, J., Urbanova, M., Andertova, J., Hulinsky, V., and Vorel, J., “Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers”, Journal of Materials Science, 42, 9267-9275, (2007).
  • [23] Peng, M. X., Wang, Z. H., Shen, S. H., and Xiao, Q. G., “Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali”, Materials and Structures, 48, 699-708, (2015).
  • [24] Ma, C., Long, G., Shi, Y., and Xie, Y., “Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China”, Journal of Cleaner Production, 201, 636-647, (2018).
  • [25] Zhang, H. Y., Kodur, V., Cao, L., and Qi, S. L., “Fiber reinforced geopolymers for fire resistance applications”, Procedia engineering, 71, 153-158, (2014).
  • [26] Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., and Dai, J. G., “Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete”, Frontiers in Materials, 10, 1142237, (2023).
  • [27] Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P., and Illikainen, M., “Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates”, Journal of Materials in Civil Engineering, 31(2), 04018386, (2019).
  • [28] Siciliano, U. C., Zhao, J., Trindade, A. C. C., Liebscher, M., Mechtcherine, V., and de Andrade Silva, F., “Influence of curing temperature and pressure on the mechanical and microstructural development of metakaolin-based geopolymers”, Construction and Building Materials, 424, 135852, (2024).
  • [29] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [30] Kljajević, L., Nenadović, M., Ivanović, M., Bučevac, D., Mirković, M., Mladenović Nikolić, N., and Nenadović, S., “Heat treatment of geopolymer samples obtained by varying concentration of sodium hydroxide as constituent of alkali activator”, Gels, 8(6), 333, (2022).
  • [31] Temuujin, J., Van Riessen, A., and Williams, R., “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes”, Journal of hazardous materials, 167(1-3), 82-88, (2009).
  • [32] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [33] Olivia, M., and Nikraz, H., “Properties of fly ash geopolymer concrete designed by Taguchi method”, Materials & Design (1980-2015), 36, 191-198, (2012).
  • [34] Zhang, H. Y., Qiu, G. H., Kodur, V., and Yuan, Z. S., “Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure”, Cement and Concrete Composites, 106, 103483, (2020).
  • [35] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S. “Geopolymer technology: the current state of the art”, Journal of materials science, 42, 2917-2933, (2007).
  • [36] Zhao, J., Wang, K., Wang, S., Wang, Z., Yang, Z., Shumuye, E. D., and Gong, X., “Effect of elevated temperature on mechanical properties of high-volume fly ash-based geopolymer concrete, mortar and paste cured at room temperature”, Polymers, 13(9), 1473, (2021).
  • [37] Davidovits, J., “Geopolymer chemistry and applications”, Geopolymer Institute, (2008).
  • [38] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [39] Hardjito, D., Wallah, S. E., Sumajouw, D. M., and Rangan, B. V., “Development and properties of low-calcium fly ash-based geopolymer concrete”, Australian Journal of Structural Engineering, 6(1), 77-86, (2005).
  • [40] Fernández-Jiménez, A., and Palomo, A., “Characterisation of fly ashes”, Potential reactivity as alkaline cements, Fuel, 82(18), 2259-2265, (2003).
  • [41] Zawrah, M. F., Gado, R. A., Feltin, N., Ducourtieux, S., and Devoille, L. J. P. S., “Recycling and utilization assessment of waste fired clay bricks with granulated blast-furnace slag for geopolymer production”, Process Safety and Environmental Protection, 103, 237-251, (2016).
  • [42] Van Deventer, J. S. J., and Provis, J. L., “Alkali-activated materials: state-of-the-art report”, RILEM TC, (2014).
  • [43] ASTM International, “Standard specification for concrete aggregates”, ASTM C33/C33M–03, (2003).
  • [44] Gunasekara, C., Dirgantara, R., Law, D. W., and Setunge, S., “Effect of curing conditions on microstructure and pore-structure of brown coal fly ash geopolymers”, Applied Sciences, 9(15), 3138, (2019).
  • [45] European Committee for Standardization (CEN), EN 12350-2: Testing fresh concrete – Part 2: Slump test. Brussels: CEN, (2019).
  • [46] European Committee for Standardization (CEN), EN 12390-7: Testing hardened concrete – Part 7: Density of hardened concrete. Brussels: CEN, (2019).
  • [47] European Committee for Standardization (CEN), EN 12504-4: Testing concrete – Part 4: Determination of ultrasonic pulse velocity. Brussels: CEN, (2021).
  • [48] European Committee for Standardization (CEN), EN 12390-3: Testing hardened concrete – Part 3: Compressive strength of test specimens. Brussels: CEN, (2019).
  • [49] Hardjito, D., Wallah, S. E., Sumajouw, D. M., and Rangan, B. V., “Development and properties of low-calcium fly ash-based geopolymer concrete”, Australian Journal of Structural Engineering, 6(1), 77-86. (2005).
  • [50] Shi, C., Roy, D., and Krivenko, P., “Alkali-activated cements and concretes”, CRC press., (2003).
  • [51] Provis, J. L., and Van Deventer, J. S. J. (Eds.), “Geopolymers: structures, processing, properties and industrial applications”, Elsevier, (2009).
  • [52] Mindess, S., Young, F., and Darwin, D., “Concrete 2nd edition”, Technical Documents, 585, (2003).
  • [53] Shi, C., Roy, D., and Krivenko, P., “Alkali-activated cements and concretes”, CRC press, (2003).
  • [54] Kong, D. L., and Sanjayan, J. G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and concrete research, 40(2), 334-339, (2010).
  • [55] Provis, J. L., and Van Deventer, J. S. J. (Eds.)., “Geopolymers: structures, processing, properties and industrial applications”, Elsevier, (2009).
  • [56] Al Bakria, A. M., Kamarudin, H., BinHussain, M., Nizar, I. K., Zarina, Y., and Rafiza, A. R. “The effect of curing temperature on physical and chemical properties of geopolymers”, Physics Procedia, 22, 286-291, (2011).
  • [57] Sajan, P., Jiang, T., Lau, C., Tan, G., and Ng, K. “Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer”, Cleaner Materials, 1, 100002, (2021).
  • [58] Temuujin, J., Williams, R. P., and Van Riessen, A., “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature”, Journal of materials processing technology, 209(12-13), 5276-5280, (2009).

The Effect of Different Curing Temperatures on The Early-Age Compressive Strength of One-Part Geopolymer Concrete

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1638100

Öz

The aim of this study is to investigate the early-age compressive strength development of one-part geopolymer concrete produced using 50% fly ash (FA) and 50% ground granulated blast furnace slag (GGBS), both utilized as industrial waste materials, under different curing temperature conditions. One-part geopolymer concrete eliminates the need for liquid alkali activators, offering ease of application, enhanced safety, and sustainability through the use of industrial by-products. Moreover, it provides high early-age strength when subjected to thermal curing. In this study, the geopolymer concrete specimens were cured for the first 24 hours at room temperature (approximately 25°C) and at elevated temperatures of 40°C, 50°C, 60°C, 70°C, 80°C, and 90°C. Following the curing process, slump test, density measurement, ultrasonic pulse velocity (UPV) test, and compressive strength test were conducted to evaluate the fresh and hardened properties of the geopolymer concrete specimens. According to the results, the slump value of the geopolymer concretes was measured to be approximately 10 cm, the density of each concrete sample was measured to be approximately 2.10 kg/m³, and the average UPV value was found to be around 4463 m/s. The presence of ground granulated blast furnace slag in the mixture contributed to an increased rate of activation, leading to the formation of a greater amount of C-A-S-H gel. Consequently, the formation of a denser microstructure reduced the porosity of the concrete, which in turn resulted in higher UPV values. Moreover, the early-age compressive strengths of one-part geopolymer concretes increased proportionally with curing temperatures up to 60 °C, while higher curing temperatures resulted in a reduction in strength. Among the specimens, the highest compressive strength was recorded as 58 MPa in the sample cured at 60 °C. These findings indicate that an optimum curing temperature significantly enhances the early-age performance of geopolymer concretes.

Kaynakça

  • [1] El-Mir, A., Hwalla, J., El-Hassan, H., Assaad, J. J., El-Dieb, A., and Shehab, E., “Valorization of waste perlite powder in geopolymer composites”, Construction and Building Materials, 368, 130491, (2023).
  • [2] Guo, S., Ma, C., Long, G., and Xie, Y., “Cleaner one-part geopolymer prepared by introducing fly ash sinking spherical beads: properties and geopolymerization mechanism”, Journal of cleaner production, 219, 686-697, (2019).
  • [3] Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., and Alnahhal, M. F., “Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review”, Construction and Building Materials, 148, 62-84, (2017).
  • [4] Neville, A. M., “Properties of concrete”, Pearson Education India, (1963).
  • [5] Thomas, M., “Supplementary cementing materials in concrete”, CRC press, (2013).
  • [6] Xu, G., and Shi, X., “Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, conservation and recycling, 136, 95-109, (2018).
  • [7] Meng, Y., Ling, T. C., and Mo, K. H., “Recycling of wastes for value-added applications in concrete blocks: An overview”, Resources, conservation and recycling, 138, 298-312, (2018).
  • [8] Oderji, S. Y., Chen, B., Ahmad, M. R., and Shah, S. F. A., “Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators”, Journal of Cleaner Production, 225, 1-10, (2019).
  • [9] Pacheco-Torgal, F., “Introduction to handbook of alkali-activated cements, mortars and concretes”, In Handbook of alkali-activated cements, mortars and concretes, (pp. 1-16), Woodhead Publishing, (2015).
  • [10] Zhang, Y. J., Wang, Y. C., and Li, S., “Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin”, Materials Science and Engineering, 527(24-25), 6574-6580, (2010).
  • [11] Kong, D. L., and Sanjayan, J. G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and concrete research, 40(2), 334-339, (2010).
  • [12] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M., “Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar”, Journal of cleaner production, 187, 171-179, (2018).
  • [13] Bernal, S. A., San Nicolas, R., Provis, J. L., Mejía de Gutiérrez, R., and Van Deventer, J. S. “Natural carbonation of aged alkali-activated slag concretes”, Materials and structures, 47, 693-707, (2014).
  • [14] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M., “One-part alkali-activated materials: A review”, Cement and Concrete Research, 103, 21-34, (2018).
  • [15] Provis, J. L. “Alkali-activated materials”, Cement and concrete research, 114, 40-48, (2018).
  • [16] Sunarsih, E. S., As' ad, S., Sam, A. M., and Kristiawan, S. A. “Transport properties of fly ash-slag-based geopolymer concrete with 2M sodium hydroxide combined with variations in slag percentage, Al/Bi ratio, and SS/SH ratio”, Materiales de Construcción, 74(354), e343-e343, (2024).
  • [17] Qu, F., Li, W., Wang, K., Zhang, S., and Sheng, D., “Performance deterioration of fly ash/slag-based geopolymer composites subjected to coupled cyclic preloading and sulfuric acid attack”, Journal of Cleaner Production, 321, 128942, (2021).
  • [18] Yip, C. K., and Van Deventer, J. S. J., “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder”, Journal of Materials Science, 38, 3851-3860, (2003).
  • [19] Dong, T., Sun, T., Xu, F., Ouyang, G., Wang, H., Yang, F., and Wang, Z., “Effect of solid sodium silicate on workability, hydration and strength of alkali-activated GGBS/fly ash paste”, Coatings, 13(4), 696, (2023).
  • [20] Rabie, M., Irshidat, M. R., and Al-Nuaimi, N., “Ambient and heat-cured geopolymer composites: Mix design optimization and life cycle assessment”, Sustainability, 14(9), 4942, (2022).
  • [21] Zhang, H. Y., Qiu, G. H., Kodur, V., and Yuan, Z. S., “Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure”, Cement and Concrete Composites, 106, 103483, (2020).
  • [22] Koloušek, D., Brus, J., Urbanova, M., Andertova, J., Hulinsky, V., and Vorel, J., “Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers”, Journal of Materials Science, 42, 9267-9275, (2007).
  • [23] Peng, M. X., Wang, Z. H., Shen, S. H., and Xiao, Q. G., “Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali”, Materials and Structures, 48, 699-708, (2015).
  • [24] Ma, C., Long, G., Shi, Y., and Xie, Y., “Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China”, Journal of Cleaner Production, 201, 636-647, (2018).
  • [25] Zhang, H. Y., Kodur, V., Cao, L., and Qi, S. L., “Fiber reinforced geopolymers for fire resistance applications”, Procedia engineering, 71, 153-158, (2014).
  • [26] Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., and Dai, J. G., “Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete”, Frontiers in Materials, 10, 1142237, (2023).
  • [27] Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P., and Illikainen, M., “Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates”, Journal of Materials in Civil Engineering, 31(2), 04018386, (2019).
  • [28] Siciliano, U. C., Zhao, J., Trindade, A. C. C., Liebscher, M., Mechtcherine, V., and de Andrade Silva, F., “Influence of curing temperature and pressure on the mechanical and microstructural development of metakaolin-based geopolymers”, Construction and Building Materials, 424, 135852, (2024).
  • [29] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [30] Kljajević, L., Nenadović, M., Ivanović, M., Bučevac, D., Mirković, M., Mladenović Nikolić, N., and Nenadović, S., “Heat treatment of geopolymer samples obtained by varying concentration of sodium hydroxide as constituent of alkali activator”, Gels, 8(6), 333, (2022).
  • [31] Temuujin, J., Van Riessen, A., and Williams, R., “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes”, Journal of hazardous materials, 167(1-3), 82-88, (2009).
  • [32] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [33] Olivia, M., and Nikraz, H., “Properties of fly ash geopolymer concrete designed by Taguchi method”, Materials & Design (1980-2015), 36, 191-198, (2012).
  • [34] Zhang, H. Y., Qiu, G. H., Kodur, V., and Yuan, Z. S., “Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure”, Cement and Concrete Composites, 106, 103483, (2020).
  • [35] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S. “Geopolymer technology: the current state of the art”, Journal of materials science, 42, 2917-2933, (2007).
  • [36] Zhao, J., Wang, K., Wang, S., Wang, Z., Yang, Z., Shumuye, E. D., and Gong, X., “Effect of elevated temperature on mechanical properties of high-volume fly ash-based geopolymer concrete, mortar and paste cured at room temperature”, Polymers, 13(9), 1473, (2021).
  • [37] Davidovits, J., “Geopolymer chemistry and applications”, Geopolymer Institute, (2008).
  • [38] Nath, P., and Sarker, P. K., “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”, Construction and Building materials, 66, 163-171, (2014).
  • [39] Hardjito, D., Wallah, S. E., Sumajouw, D. M., and Rangan, B. V., “Development and properties of low-calcium fly ash-based geopolymer concrete”, Australian Journal of Structural Engineering, 6(1), 77-86, (2005).
  • [40] Fernández-Jiménez, A., and Palomo, A., “Characterisation of fly ashes”, Potential reactivity as alkaline cements, Fuel, 82(18), 2259-2265, (2003).
  • [41] Zawrah, M. F., Gado, R. A., Feltin, N., Ducourtieux, S., and Devoille, L. J. P. S., “Recycling and utilization assessment of waste fired clay bricks with granulated blast-furnace slag for geopolymer production”, Process Safety and Environmental Protection, 103, 237-251, (2016).
  • [42] Van Deventer, J. S. J., and Provis, J. L., “Alkali-activated materials: state-of-the-art report”, RILEM TC, (2014).
  • [43] ASTM International, “Standard specification for concrete aggregates”, ASTM C33/C33M–03, (2003).
  • [44] Gunasekara, C., Dirgantara, R., Law, D. W., and Setunge, S., “Effect of curing conditions on microstructure and pore-structure of brown coal fly ash geopolymers”, Applied Sciences, 9(15), 3138, (2019).
  • [45] European Committee for Standardization (CEN), EN 12350-2: Testing fresh concrete – Part 2: Slump test. Brussels: CEN, (2019).
  • [46] European Committee for Standardization (CEN), EN 12390-7: Testing hardened concrete – Part 7: Density of hardened concrete. Brussels: CEN, (2019).
  • [47] European Committee for Standardization (CEN), EN 12504-4: Testing concrete – Part 4: Determination of ultrasonic pulse velocity. Brussels: CEN, (2021).
  • [48] European Committee for Standardization (CEN), EN 12390-3: Testing hardened concrete – Part 3: Compressive strength of test specimens. Brussels: CEN, (2019).
  • [49] Hardjito, D., Wallah, S. E., Sumajouw, D. M., and Rangan, B. V., “Development and properties of low-calcium fly ash-based geopolymer concrete”, Australian Journal of Structural Engineering, 6(1), 77-86. (2005).
  • [50] Shi, C., Roy, D., and Krivenko, P., “Alkali-activated cements and concretes”, CRC press., (2003).
  • [51] Provis, J. L., and Van Deventer, J. S. J. (Eds.), “Geopolymers: structures, processing, properties and industrial applications”, Elsevier, (2009).
  • [52] Mindess, S., Young, F., and Darwin, D., “Concrete 2nd edition”, Technical Documents, 585, (2003).
  • [53] Shi, C., Roy, D., and Krivenko, P., “Alkali-activated cements and concretes”, CRC press, (2003).
  • [54] Kong, D. L., and Sanjayan, J. G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and concrete research, 40(2), 334-339, (2010).
  • [55] Provis, J. L., and Van Deventer, J. S. J. (Eds.)., “Geopolymers: structures, processing, properties and industrial applications”, Elsevier, (2009).
  • [56] Al Bakria, A. M., Kamarudin, H., BinHussain, M., Nizar, I. K., Zarina, Y., and Rafiza, A. R. “The effect of curing temperature on physical and chemical properties of geopolymers”, Physics Procedia, 22, 286-291, (2011).
  • [57] Sajan, P., Jiang, T., Lau, C., Tan, G., and Ng, K. “Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer”, Cleaner Materials, 1, 100002, (2021).
  • [58] Temuujin, J., Williams, R. P., and Van Riessen, A., “Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature”, Journal of materials processing technology, 209(12-13), 5276-5280, (2009).
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Özdemir Mazlum 0000-0003-0895-8742

Nihat Atmaca 0000-0003-3355-7561

Erken Görünüm Tarihi 26 Ekim 2025
Yayımlanma Tarihi 17 Kasım 2025
Gönderilme Tarihi 11 Şubat 2025
Kabul Tarihi 5 Ekim 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Özdemir Mazlum, T., & Atmaca, N. (2025). Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1638100
AMA Özdemir Mazlum T, Atmaca N. Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi. Politeknik Dergisi. Published online 01 Ekim 2025:1-1. doi:10.2339/politeknik.1638100
Chicago Özdemir Mazlum, Tuğba, ve Nihat Atmaca. “Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi”. Politeknik Dergisi, Ekim (Ekim 2025), 1-1. https://doi.org/10.2339/politeknik.1638100.
EndNote Özdemir Mazlum T, Atmaca N (01 Ekim 2025) Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi. Politeknik Dergisi 1–1.
IEEE T. Özdemir Mazlum ve N. Atmaca, “Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi”, Politeknik Dergisi, ss. 1–1, Ekim2025, doi: 10.2339/politeknik.1638100.
ISNAD Özdemir Mazlum, Tuğba - Atmaca, Nihat. “Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi”. Politeknik Dergisi. Ekim2025. 1-1. https://doi.org/10.2339/politeknik.1638100.
JAMA Özdemir Mazlum T, Atmaca N. Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi. Politeknik Dergisi. 2025;:1–1.
MLA Özdemir Mazlum, Tuğba ve Nihat Atmaca. “Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1638100.
Vancouver Özdemir Mazlum T, Atmaca N. Tek Bileşenli Geopolimer Betonun Erken Yaş Basınç Dayanımına Farklı Kür Sıcaklıklarının Etkisi. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.