Araştırma Makalesi
BibTex RIS Kaynak Göster

Model Uçaklarda Güneş Panellerinin Entegrasyonu: Enerji Verimliliği ve Aerodinamik Performansın Değerlendirilmesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1660926

Öz

Bu çalışma, kanatlarında güneş paneli hücreleri bulunan bir uçağın tasarım ve pratik uygulamasını içeren bir durum çalışmasıdır. Uçuş sırasında gerekli enerjinin bir kısmının yenilenebilir bir enerji kaynağı olan güneşten sağlanması hedeflenmektedir. Araştırma, güneş hücrelerinin yenilikçi bir uçak tasarımındaki etkinliğini ve uçağın çeşitli hız koşullarındaki uçuş performansını değerlendirmektedir. Prototip uçak, 2,5 m kanat açıklığı, 1,4 m uzunluk ve 0,5 m genişlikte, NACA 2412 kanat profili ile tasarlanmıştır. Farklı uçuş hızlarında (1, 5, 10, 13 ve 20 m/s) yapılan aerodinamik testler, aerodinamik kuvvetler, tork değerleri ve güneş panellerinin enerji katkısını belirlemiştir. Sonuçlar, güneş panellerinin uçuş için gerekli enerjinin %15'ini sağladığını ve 20 m/s hızda maksimum kaldırma kuvvetinin 10,68 N olduğunu göstermektedir. Uçuş hızının artması, sürükleme ve kaldırma kuvvetlerini artırmakta, 10 m/s üzerindeki hızlarda sürükleme kuvvetindeki artış oranı, kaldırma kuvvetine göre %25 daha düşük olmaktadır. Çalışma, sürdürülebilir uçak tasarımı ve enerji verimliliği konularında yenilikçi bir yaklaşım sunmaktadır.

Kaynakça

  • [1] Boucher R., “History of solar flight”, 20th Joint Propulsion Conference, Cincinnati, OH, USA, June 11-13, pp. 1429, (1984).
  • [2] Nickol C.L., Guynn M.D., Kohout L.L. and Ozoroski T.A., “High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development”, In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, CA, USA, 8–11 January, pp. 12653–12669, (2007).
  • [3] Al Dhafari L.S., Afzal A., Al Abri O.K. and Khan A., “Solar-Powered UAVs: A systematic Literature Review,” 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 12-14 February, pp. 1-8, (2024).
  • [4] Wang K. and Zhou Z., “An investigation on the aerodynamic performance of a hand-launched solar-powered UAV in flying wing configuration,” Aerospace Science and Technology, 129, 107804, (2022).
  • [5] Noth A, “Design of solar powered airplanes for continuous flight” (PhD Thesis), ETH Zurich, pp. 61, (2008).
  • [6] Barcons Ventura N, “Study of the aerodynamic and energetic impact of the solar panel’s installation on a commercial plane’s wing”, (Master's Thesis), Universitat Politècnica de Catalunya, pp. 56, (2018).
  • [7] Dinca L., Corcau J. I. and Voinea D. G., “Solar UAVs-more aerodynamic efficiency or more electrical power?” Energies, 16(9): 3778, (2023).
  • [8] Liscouët-Hanke S., Mir M. and Bashir M., “Exploration of Solar Power System Integration for Sustainable Air Transportation-A Case Study for Seaplane Air Taxi Operations,” Aerospace, 12(3): 164, (2025).
  • [9] Chu Y., Ho C., Lee Y. and Li B., “Development of a solar-powered unmanned aerial vehicle for extended flight endurance,” Drones, 5(2): 44, (2021).
  • [10] Oettershagen P., Melzer A., Mantel T., Rudin K., Stastny T., Wawrzacz B. and Siegwart, R., “Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight,” Journal of Field Robotics, 34(7): 1352-1377, (2017).
  • [11] Jaszczur M., Papis K., Książek M., Czerwiński G., Wojtas G., Koncewicz W. and Wójcik M., “Investigation of aerodynamic parameters of solar plane airfoil using CFD modeling,” Computer Science, 22: 123-142, (2021).
  • [12] Peciak M., Skarka W., Mateja K. and Gude M., “Impact analysis of solar cells on vertical take-off and landing (VTOL) fixed-wing UAV,” Aerospace, 10(3): 247, (2023).
  • [13] Liller J., Goel R., Aziz A., Hester J. and Nguyen P., “Development of a battery free, solar powered, and energy aware fixed wing unmanned aerial vehicle,” Scientific Reports, 15(1): 6141, (2025).
  • [14] Gao Y., Qiao Z., Pei X., Wu G. and Bai Y., “Design of energy-management strategy for solar-powered UAV,” Sustainability, 15(20): 14972 (2023).
  • [15] El-Atab N., Mishra R. B., Alshanbari R. and Hussain M. M., “Solar powered small unmanned aerial vehicles: A review,” Energy Technology, 9(12): 2100587, (2021).
  • [16] Khani Aminjan K., Ghodrat M., Heidari M., Rahmanivahid P., Naghdi Khanachah S. and Hitt M., “Numerical and experimental investigation to design a novel morphing airfoil for performance optimization”, Propulsion and Power Research, 12(1): 83-103, (2023).
  • [17] Sudin M.N., Abdullah M.A., Shamsuddin S.A., Ramli F.R. and Tahir M.M., “Review of research on vehicles aerodynamic drag reduction methods”, International Journal of Mechanical and Mechatronics Engineering, 14(2): 35-47, (2014).
  • [18] Chakraborty S. and Ghosh S., “A CFD study on the structural parameters of NACA 2412 airfoil-based air-wing using different composite materials”, Materialstoday: Proceedings, 60: 894-901, (2022).
  • [19] Danışmaz M. and Demirbilek M., “Assessment of heat transfer capabilities of some known nanofluids under turbulent flow conditions in a five-turn spiral pipe flow”, Applied Rheology, 34(1): 20240002, (2024).
  • [20] Dehouck V., Lateb M., Sacheau J. and Fellouah H., “Application of the blade element momentum theory to design horizontal axis wind turbine blades”, Journal of Solar Energy Engineering, 140(1): 014501-1, (2018).
  • [21] Hasan M.F., Danışmaz M. and Waheed F., “Modern Nanotechnology Application for Generation Highly Efficient Electricity in Save Mode and Much Less Polluting”, International Journal of Computational and Experimental Science and Engineering, 8(1): 1-4, (2022).
  • [22] Yang H., Shen W., Xu H., Hong Z. and Liu C., “Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD”, Renewable Energy, 70: 107-115, (2014).
  • [23] Selig M.S. and Guglielmo J.J., “High-lift low Reynolds number airfoil design,” Journal of aircraft, 34(1): 72-79, (1997).
  • [24] Chaviaropoulos P. K. and Hansen M.O., “Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver”, Journal of Fluids Engineering, 122(2): 330-336, (2000).
  • [25] Filippone A., “Comprehensive analysis of transport aircraft flight performance”, Progress in Aerospace Sciences, 44(3): 192-236, (2008).
  • [26] El-Sayed A.F., “Fundamentals of aircraft and rocket propulsion”, London: Springer, (2016).
  • [27] Ives R., Bassey E. and Hamad F. A., “Investigation of the flow around an aircraft wing of section NACA 2412 utilising ANSYS fluent,” INCAS Bulletin, 10(1): 95-104, (2018).
  • [28] Ahammad R., Hasan M. K., Rahman M. and Chakraborty M., “Performance test of Naca 2412 airfoil,” In International conference on mechanical engineering and renewable energy, Chittagong, Bangladesh, 26-29 November (2015).
  • [29] Quagliarella D., Serani A., Diez M., Pisaroni M., Leyland P., Montagliani L. and Stern F., “Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties,” In AIAA Aviation 2019 Forum, 5(3): 3555, (2019).
  • [30] Chinvorarat S., Watjatrakul B., Nimdum P., Sangpet T. and Vallikul P., “Flight test stall analysis of a light amphibious airplane with NACA 2412 wing airfoil,” In AIP Conference Proceedings, 3236(1): 030001, (2024).
  • [31] He J., Jin X., Xie S., Cao L., Wang Y., Lin Y. and Wang N., “CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines”, Renewable Energy, 145: 2658-2670, (2020).
  • [32] Tatlıer M. S. and Baran T., “Structural and CFD analysis of an airfoil subjected to bird strike”, European Journal of Mechanics-B/Fluids, 84: 478-486, (2020).
  • [33] Danışmaz M., Atılğan D. and Karaca F., “Airfoil design and analysis for fixed wing mini-UAVs”. III. International Congress of Applied Sciences, Karabagh, Azerbaijan, 07-10 June (2022).
  • [34] Arik S., Turkmen I. and Oktay T., “Redesign of Morphing UAV for Simultaneous Improvement of Directional Stability and Maximum Lift/Drag Ratio,” Advances in Electrical & Computer Engineering, 18(4): 57-62, (2018).
  • [35] Yeşilbaş E., Özgür B., Ozen E. and Oktay T., “Simultaneous and stochastic design of piston-prop TUAV vertical tail and its autonomous system,” Aircraft Engineering and Aerospace Technology, (2025).
  • [36] Uzun M. and Oktay T., “Simultaneous UAV having actively sweep angle morphing wing and flight control system design,” Aircraft Engineering and Aerospace Technology, 95(7): 1062-1068, (2023).
  • [37] Oktay, T. and Coban, S., “Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs,” Elektronika ir elektrotechnika, 23(5): 15-20, (2017).
  • [38] Oktay T., Arik S., Turkmen I., Uzun M. and Celik, H., “Neural network-based redesign of morphing UAV for simultaneous improvement of roll stability and maximum lift/drag ratio,” Aircraft Engineering and Aerospace Technology, 90(8): 1203-1212, (2018).
  • [39] Kose O. and Oktay T., “Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA,” Aircraft Engineering and Aerospace Technology, 95(6): 939-949, (2023).
  • [40] Aslan S., Demirci S., Oktay T. and Yeşilbaş E., “Percentile-based adaptive immune plasma algorithm and its application to engineering optimization,” Biomimetics, 8(6): 486, (2023).
  • [41] Oktay T. and Eraslan Y., “Computational fluid dynamics (CFD) investigation of a quadrotor UAV propeller,” In International Conference on Energy, Environment and Storage of Energy, Kayseri, Türkiye, 5-7 June, pp. 1-5, (2020).
  • [42] Emax GT3526/05 (710KV) motor, “Data Sheet”, https://emaxmodel.com/products/gt3526 (Access 10 March 2025).
  • [43] Evran S. and Yıldır S.Z., “Numerical and Statistical Aerodynamic Performance Analysis of NACA0009 and NACA4415 Airfoils”, Journal of Polytechnic, 27(3): 849-856, (2024).
  • [44] Durmus S. and Ulutas A., “Numerical analysis of NACA 6409 and Eppler 423 airfoils”, Journal of Polytechnic, 26(1): 39-47, (2023).
  • [45] Demir H. and Kaya N., “Multi-objective optimization of an aircraft wing spar section”, Journal of Polytechnic, 28(2): 607-616, (2025).
  • [46] Joshi A. S., Dincer I. and Reddy B. V., “Thermodynamic assessment of photovoltaic systems,” Solar Energy, 82(8): 1139-1149, (2009).
  • [47] Amiri N., Ramirez-Serrano A. and Davies R.J., “Integral backstepping control of an unconventional dual-fan unmanned aerial vehicle,” Journal of Intelligent & Robotic Systems, 69: 147-159, (2013).
  • [48] Taherinezhad M., Ramirez-Serrano A. and Abedini A., “Robust Trajectory-Tracking for a Bi-Copter Drone Using INDI: A Gain Tuning Multi-Objective Approach,” Robotics, 11: 86, (2022).
  • [49] NASA Prediction of Worldwide Energy Resources (POWER), “Data Access Viewer (DAV)”, https://power.larc.nasa.gov/data-access-viewer (Access 10 March 2025).
  • [50] Khan F. A., Islam A., Abbas H., Rasheed S. M. M. H., and Iqbal S., “Computational Analysis of a UAV Drone with Varying Angle of Attacks,” 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), 27-29 November, pp. 1-11, (2023).

Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1660926

Öz

This study presents a case analysis involving the design and practical application of an aircraft featuring solar panel cells on its wings. The objective is to harness a portion of the energy required for flight from a renewable energy source, namely solar energy. The research evaluates the effectiveness of solar cells in an innovative aircraft design and assesses the aircraft’s flight performance under various speed conditions. The prototype aircraft is designed with a wingspan of 2.5 m, a length of 1.4 m, and a width of 0.5 m, utilizing a NACA 2412 airfoil. Aerodynamic tests conducted at different flight speeds (1, 5, 10, 13, and 20 m/s) measured aerodynamic forces, torque values, and the energy contribution from the solar panels. The results indicate that the solar panels provide 15% of the energy required for flight, with a maximum lift force of 10.68 N achieved at 20 m/s. As flight speed increases, both drag and lift forces rise, with the rate of increase in drag being 25% lower than that of lift at speeds above 10 m/s. This study offers an innovative approach to sustainable aircraft design and energy efficiency.

Kaynakça

  • [1] Boucher R., “History of solar flight”, 20th Joint Propulsion Conference, Cincinnati, OH, USA, June 11-13, pp. 1429, (1984).
  • [2] Nickol C.L., Guynn M.D., Kohout L.L. and Ozoroski T.A., “High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development”, In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, CA, USA, 8–11 January, pp. 12653–12669, (2007).
  • [3] Al Dhafari L.S., Afzal A., Al Abri O.K. and Khan A., “Solar-Powered UAVs: A systematic Literature Review,” 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 12-14 February, pp. 1-8, (2024).
  • [4] Wang K. and Zhou Z., “An investigation on the aerodynamic performance of a hand-launched solar-powered UAV in flying wing configuration,” Aerospace Science and Technology, 129, 107804, (2022).
  • [5] Noth A, “Design of solar powered airplanes for continuous flight” (PhD Thesis), ETH Zurich, pp. 61, (2008).
  • [6] Barcons Ventura N, “Study of the aerodynamic and energetic impact of the solar panel’s installation on a commercial plane’s wing”, (Master's Thesis), Universitat Politècnica de Catalunya, pp. 56, (2018).
  • [7] Dinca L., Corcau J. I. and Voinea D. G., “Solar UAVs-more aerodynamic efficiency or more electrical power?” Energies, 16(9): 3778, (2023).
  • [8] Liscouët-Hanke S., Mir M. and Bashir M., “Exploration of Solar Power System Integration for Sustainable Air Transportation-A Case Study for Seaplane Air Taxi Operations,” Aerospace, 12(3): 164, (2025).
  • [9] Chu Y., Ho C., Lee Y. and Li B., “Development of a solar-powered unmanned aerial vehicle for extended flight endurance,” Drones, 5(2): 44, (2021).
  • [10] Oettershagen P., Melzer A., Mantel T., Rudin K., Stastny T., Wawrzacz B. and Siegwart, R., “Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight,” Journal of Field Robotics, 34(7): 1352-1377, (2017).
  • [11] Jaszczur M., Papis K., Książek M., Czerwiński G., Wojtas G., Koncewicz W. and Wójcik M., “Investigation of aerodynamic parameters of solar plane airfoil using CFD modeling,” Computer Science, 22: 123-142, (2021).
  • [12] Peciak M., Skarka W., Mateja K. and Gude M., “Impact analysis of solar cells on vertical take-off and landing (VTOL) fixed-wing UAV,” Aerospace, 10(3): 247, (2023).
  • [13] Liller J., Goel R., Aziz A., Hester J. and Nguyen P., “Development of a battery free, solar powered, and energy aware fixed wing unmanned aerial vehicle,” Scientific Reports, 15(1): 6141, (2025).
  • [14] Gao Y., Qiao Z., Pei X., Wu G. and Bai Y., “Design of energy-management strategy for solar-powered UAV,” Sustainability, 15(20): 14972 (2023).
  • [15] El-Atab N., Mishra R. B., Alshanbari R. and Hussain M. M., “Solar powered small unmanned aerial vehicles: A review,” Energy Technology, 9(12): 2100587, (2021).
  • [16] Khani Aminjan K., Ghodrat M., Heidari M., Rahmanivahid P., Naghdi Khanachah S. and Hitt M., “Numerical and experimental investigation to design a novel morphing airfoil for performance optimization”, Propulsion and Power Research, 12(1): 83-103, (2023).
  • [17] Sudin M.N., Abdullah M.A., Shamsuddin S.A., Ramli F.R. and Tahir M.M., “Review of research on vehicles aerodynamic drag reduction methods”, International Journal of Mechanical and Mechatronics Engineering, 14(2): 35-47, (2014).
  • [18] Chakraborty S. and Ghosh S., “A CFD study on the structural parameters of NACA 2412 airfoil-based air-wing using different composite materials”, Materialstoday: Proceedings, 60: 894-901, (2022).
  • [19] Danışmaz M. and Demirbilek M., “Assessment of heat transfer capabilities of some known nanofluids under turbulent flow conditions in a five-turn spiral pipe flow”, Applied Rheology, 34(1): 20240002, (2024).
  • [20] Dehouck V., Lateb M., Sacheau J. and Fellouah H., “Application of the blade element momentum theory to design horizontal axis wind turbine blades”, Journal of Solar Energy Engineering, 140(1): 014501-1, (2018).
  • [21] Hasan M.F., Danışmaz M. and Waheed F., “Modern Nanotechnology Application for Generation Highly Efficient Electricity in Save Mode and Much Less Polluting”, International Journal of Computational and Experimental Science and Engineering, 8(1): 1-4, (2022).
  • [22] Yang H., Shen W., Xu H., Hong Z. and Liu C., “Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD”, Renewable Energy, 70: 107-115, (2014).
  • [23] Selig M.S. and Guglielmo J.J., “High-lift low Reynolds number airfoil design,” Journal of aircraft, 34(1): 72-79, (1997).
  • [24] Chaviaropoulos P. K. and Hansen M.O., “Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver”, Journal of Fluids Engineering, 122(2): 330-336, (2000).
  • [25] Filippone A., “Comprehensive analysis of transport aircraft flight performance”, Progress in Aerospace Sciences, 44(3): 192-236, (2008).
  • [26] El-Sayed A.F., “Fundamentals of aircraft and rocket propulsion”, London: Springer, (2016).
  • [27] Ives R., Bassey E. and Hamad F. A., “Investigation of the flow around an aircraft wing of section NACA 2412 utilising ANSYS fluent,” INCAS Bulletin, 10(1): 95-104, (2018).
  • [28] Ahammad R., Hasan M. K., Rahman M. and Chakraborty M., “Performance test of Naca 2412 airfoil,” In International conference on mechanical engineering and renewable energy, Chittagong, Bangladesh, 26-29 November (2015).
  • [29] Quagliarella D., Serani A., Diez M., Pisaroni M., Leyland P., Montagliani L. and Stern F., “Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties,” In AIAA Aviation 2019 Forum, 5(3): 3555, (2019).
  • [30] Chinvorarat S., Watjatrakul B., Nimdum P., Sangpet T. and Vallikul P., “Flight test stall analysis of a light amphibious airplane with NACA 2412 wing airfoil,” In AIP Conference Proceedings, 3236(1): 030001, (2024).
  • [31] He J., Jin X., Xie S., Cao L., Wang Y., Lin Y. and Wang N., “CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines”, Renewable Energy, 145: 2658-2670, (2020).
  • [32] Tatlıer M. S. and Baran T., “Structural and CFD analysis of an airfoil subjected to bird strike”, European Journal of Mechanics-B/Fluids, 84: 478-486, (2020).
  • [33] Danışmaz M., Atılğan D. and Karaca F., “Airfoil design and analysis for fixed wing mini-UAVs”. III. International Congress of Applied Sciences, Karabagh, Azerbaijan, 07-10 June (2022).
  • [34] Arik S., Turkmen I. and Oktay T., “Redesign of Morphing UAV for Simultaneous Improvement of Directional Stability and Maximum Lift/Drag Ratio,” Advances in Electrical & Computer Engineering, 18(4): 57-62, (2018).
  • [35] Yeşilbaş E., Özgür B., Ozen E. and Oktay T., “Simultaneous and stochastic design of piston-prop TUAV vertical tail and its autonomous system,” Aircraft Engineering and Aerospace Technology, (2025).
  • [36] Uzun M. and Oktay T., “Simultaneous UAV having actively sweep angle morphing wing and flight control system design,” Aircraft Engineering and Aerospace Technology, 95(7): 1062-1068, (2023).
  • [37] Oktay, T. and Coban, S., “Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs,” Elektronika ir elektrotechnika, 23(5): 15-20, (2017).
  • [38] Oktay T., Arik S., Turkmen I., Uzun M. and Celik, H., “Neural network-based redesign of morphing UAV for simultaneous improvement of roll stability and maximum lift/drag ratio,” Aircraft Engineering and Aerospace Technology, 90(8): 1203-1212, (2018).
  • [39] Kose O. and Oktay T., “Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA,” Aircraft Engineering and Aerospace Technology, 95(6): 939-949, (2023).
  • [40] Aslan S., Demirci S., Oktay T. and Yeşilbaş E., “Percentile-based adaptive immune plasma algorithm and its application to engineering optimization,” Biomimetics, 8(6): 486, (2023).
  • [41] Oktay T. and Eraslan Y., “Computational fluid dynamics (CFD) investigation of a quadrotor UAV propeller,” In International Conference on Energy, Environment and Storage of Energy, Kayseri, Türkiye, 5-7 June, pp. 1-5, (2020).
  • [42] Emax GT3526/05 (710KV) motor, “Data Sheet”, https://emaxmodel.com/products/gt3526 (Access 10 March 2025).
  • [43] Evran S. and Yıldır S.Z., “Numerical and Statistical Aerodynamic Performance Analysis of NACA0009 and NACA4415 Airfoils”, Journal of Polytechnic, 27(3): 849-856, (2024).
  • [44] Durmus S. and Ulutas A., “Numerical analysis of NACA 6409 and Eppler 423 airfoils”, Journal of Polytechnic, 26(1): 39-47, (2023).
  • [45] Demir H. and Kaya N., “Multi-objective optimization of an aircraft wing spar section”, Journal of Polytechnic, 28(2): 607-616, (2025).
  • [46] Joshi A. S., Dincer I. and Reddy B. V., “Thermodynamic assessment of photovoltaic systems,” Solar Energy, 82(8): 1139-1149, (2009).
  • [47] Amiri N., Ramirez-Serrano A. and Davies R.J., “Integral backstepping control of an unconventional dual-fan unmanned aerial vehicle,” Journal of Intelligent & Robotic Systems, 69: 147-159, (2013).
  • [48] Taherinezhad M., Ramirez-Serrano A. and Abedini A., “Robust Trajectory-Tracking for a Bi-Copter Drone Using INDI: A Gain Tuning Multi-Objective Approach,” Robotics, 11: 86, (2022).
  • [49] NASA Prediction of Worldwide Energy Resources (POWER), “Data Access Viewer (DAV)”, https://power.larc.nasa.gov/data-access-viewer (Access 10 March 2025).
  • [50] Khan F. A., Islam A., Abbas H., Rasheed S. M. M. H., and Iqbal S., “Computational Analysis of a UAV Drone with Varying Angle of Attacks,” 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), 27-29 November, pp. 1-11, (2023).
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Cüneyd Demir 0000-0002-4628-7786

Merdin Danışmaz 0000-0003-2077-9237

Ahmet Köroğlu 0000-0002-1440-276X

Erken Görünüm Tarihi 29 Nisan 2025
Yayımlanma Tarihi 2 Ekim 2025
Gönderilme Tarihi 19 Mart 2025
Kabul Tarihi 26 Nisan 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Demir, C., Danışmaz, M., & Köroğlu, A. (2025). Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1660926
AMA Demir C, Danışmaz M, Köroğlu A. Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance. Politeknik Dergisi. Published online 01 Nisan 2025:1-1. doi:10.2339/politeknik.1660926
Chicago Demir, Cüneyd, Merdin Danışmaz, ve Ahmet Köroğlu. “Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance”. Politeknik Dergisi, Nisan (Nisan 2025), 1-1. https://doi.org/10.2339/politeknik.1660926.
EndNote Demir C, Danışmaz M, Köroğlu A (01 Nisan 2025) Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance. Politeknik Dergisi 1–1.
IEEE C. Demir, M. Danışmaz, ve A. Köroğlu, “Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance”, Politeknik Dergisi, ss. 1–1, Nisan2025, doi: 10.2339/politeknik.1660926.
ISNAD Demir, Cüneyd vd. “Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance”. Politeknik Dergisi. Nisan2025. 1-1. https://doi.org/10.2339/politeknik.1660926.
JAMA Demir C, Danışmaz M, Köroğlu A. Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance. Politeknik Dergisi. 2025;:1–1.
MLA Demir, Cüneyd vd. “Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1660926.
Vancouver Demir C, Danışmaz M, Köroğlu A. Integration of Solar Panels in Aircraft: Evaluation of Energy Efficiency and Aerodynamic Performance. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.