Araştırma Makalesi
BibTex RIS Kaynak Göster

AgFeO2 Delafosit Malzemelerin Sentez Koşulları, Kristal Yapısı, Morfolojisi ve OER Aktivitesi Arasındaki İlişki

Yıl 2023, Cilt: 26 Sayı: 2, 625 - 630, 05.07.2023
https://doi.org/10.2339/politeknik.1023907

Öz

Bu çalışmada, delafosit yapılı AgFeO2 malzemeleri hidrotermal yöntem kullanılarak sentezlenmiştir. Sentez sıcaklığına (115, 155 veya 180 oC) ve NaOH miktarına (1,0, 1,6, 2,0 veya 2,4 g) bağlı olarak delafosit malzemeler ya çift-fazlı 3R/2H-AgFeO2 ya da tek-fazlı 3R-AgFeO2 kristallerden oluşmuştur. Yüksek sıcaklıklar ve NaOH miktarındaki artış µm boyutlu 3R (uzay grubu R-3m) kristallerin büyümesine yardımcı olurken, düşük sıcaklık ve NaOH miktarındaki azalış nm boyutlu 2H (uzay grubu P63/mmc) kristallerin oluşumunu desteklemiştir. Farklı delafosit malzemelerin kıyaslaması sonucu, oksijen çıkış tepkimesi akımının çift-fazlı malzemelerde daha yüksek olduğu belirlenmiştir. Ayrıca, çift-fazlı sistemden tek-fazlı sisteme geçişte oksijen çıkış tepkimesi akımında ani düşüş görülmüştür. Elde edilen veriler ışığında, 3R ve 2H fazlı delafositlerin elektrokimyasal davranışları arasındaki fark, literatürdeki benzer çalışmalar da dikkate alınarak ayrıntılı olarak tartışılmıştır.

Destekleyen Kurum

Tarsus Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

BAP-HUBF.21.001.

Teşekkür

Tarsus Üniversitesi Bilimsel Araştırma Projeleri Birimine desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • [1] Shao Y., Xiao X., Zhu Y. and Ma T., ‘’Single-Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes‘’, Angewandte Chemie International Edition, 58: 14599 -14604, (2019).
  • [2] Lee Y., Suntivich J., May K. J., Perry E. E. and Shao-Horn Y., ‘’Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions‘’, Journal of Physical Chemistry Letters, 3: 399-404, (2012).
  • [3] Tsuji E., Imanishi A., Fukuia K. and Nakato Y., ‘’Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution‘’, Electrochimica Acta, 56: 2009-2016, (2011).
  • [4] Da Y., Zeng L., Wang C., Gong C. and Cui L., ‘’A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts‘’, Electrochimica Acta, 300: 85-92, (2019).
  • [5] You M., Gui L., Ma X., Wang Z., Xu Y., Zhang J., Sun J., He B. and Zhao L., ‘’Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media‘’, Applied Catalysis B: Environmental, 298: 120562, (2021).
  • [6] Bejara J., Alvarez-Contrerasb L., Ledesma-Garciac J., Arjonaa N. and Arriagaa L.G., ‘’Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media‘’, Journal of Electroanalytical Chemistry, 847: 113190, (2019).
  • [7] Huang Y., Yang W., Yu Y. and Hao S., ‘’Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction‘’, Journal of Electroanalytical Chemistry, 840: 409-414, (2019).
  • [8] Ahmed J. and Mao Y., ‘’Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2‘’ Journal of Solid State Chemistry, 242: 77-85, (2016).
  • [9] Du Z., Xiong D., Verma K. S., Liu B., Zhao X., Liu L. and Li H., ‘’A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions‘’ Inorganic Chemistry Front, 5: 183-188, (2018).
  • [10] Liu Q., Liu Z., Gao Q., Feng L., Tian H., Yana F. and Zeng W., ‘’Density functional theory study of 3R– and 2H–CuAlO2 in tensile stress‘’ Physics Letters A, 375 : 1608-1611, (2011).
  • [11] Liu Q., Liu Z., Chen J., Feng L. and Tian H., ‘’First-principles study of structural, mechanical, electronic and optical properties of 3R- and 2H-CuGaO2‘’ Physica B, 406: 3377–3382, (2011).
  • [12] Toyoda K., Hinogami R., Miyata N. and Aizawa M., ‘’Calculated Descriptors of Catalytic Activity for Water Electrolysis Anode: Application to Delafossite Oxides‘’ Journal of Physical Chemistry C, 119: 6495-6501, (2015).
  • [13] Tang D. and Zhang G., ‘’Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance‘’ Applied Surface Science, 391: 415–422, (2017).
  • [14] Liu Q., Zhao Z., Zhao R. and Yi J., ‘’Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion‘’ Journal of Alloys and Compounds, 819: 153032, (2020).
  • [15] Moghaddam K. S., Haghighi B., Ahmadian S. M. S. and Rezvani Z., ‘’ Carbon paste electrode modified with AgFeO2 as an electrocatalyst with excellent activity for water reduction and oxidation ‘’ Journal of Electroanalytical Chemistry, 836: 158–164, (2019).
  • [16] Deng Y., Xiong D., Gao H., Wu J., Verma K. S., Liu B. and Zhao X., ‘’Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction‘’ Dalton Transactions, 49: 3519-3524, (2019).
  • [17] Zhao Y., An H., Feng J., Ren Y. and Ma J.,‘’Impact of Crystal Types of AgFeO2 Nanoparticles on the Peroxymonosulfate Activation in the Water‘’ Environmental Science & Technology, 53: 4500-4510, (2019).
  • [18] Tomar N., Nagarajan R. and Shivakumara C.,‘’Soft chemical deintercalation of silver from delafossites AgFeO2, and AgCrO2‘’ Solid State Sciences, 108: 106385, (2020).
  • [19] Tang D. and Zhang G., ‘’Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity‘’ Ultrasonics Sonochemistry, 37: 208-215, (2017).
  • [20] Xiong D., Qi Y., Li X., Liu X., Tao H., Chen W. and Zhaoa X., ‘’Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C‘’ RSC Advances, 5: 49280-49286, (2015).
  • [21] Hinogami R., Toyoda K., Aizawa M., Yoshii S., Kawasaki T. and Gyotena H., ‘’Active copper delafossite anode for oxygen evolution reaction‘’ Electrochemistry Communications, 35: 142-145, (2013).
  • [22] Nguyen V., Mousavi M., Ghasemi B. J., Delbari A. S., Le V. Q., Asl M. S., Shokouhimehr M., Mohammadi M., Azizian-Kalandaragh Y. and Namini A S., ‘’ Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation‘’, Journal of the Taiwan Institute of Chemical Engineers,115: 279-292, (2020).
  • [23] Liua j., Huc Q., Wangd Y., Yanga Z., Fana X., Liub L. and Guoa L., ‘’Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst ‘’ Proceedings of te National Academy of Sciences of the United States of America, 117: 21906-21913, (2020).
  • [24] Ahmed J. and Mao Y., ‘’Delafossite CuAlO2 Nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions‘’ Nanomaterials for Sustainable Energy, 1213: 57-72, (2015).
  • [25] Miclau M., Miclau N., Banica R. and Ursu D. ‘’Effect of polymorphism on photovoltaic performance of CuAlO2 delafossite nanomaterials for p-type dye-sensitized solar cells application ‘’ Materials Today: Proceedings, 4: 6975-6981, (2017).
  • [26] Toh J. R., Sofer Z., Luxa J., Sedmidubsky D. and Pumera M., ‘’3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution‘’ Chemical Communications, 53: 3054-3057, (2017).

Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials

Yıl 2023, Cilt: 26 Sayı: 2, 625 - 630, 05.07.2023
https://doi.org/10.2339/politeknik.1023907

Öz

In this current study, delafossite type AgFeO2 materials were synthesized using the hydrothermal method. Depending on synthesis temperature (115, 155 or 180 oC) and NaOH mineralizer mass (1.0, 1.6, 2.0 or 2.4 g) amount, the delafossites were composed of either mixed-phase 3R/2H-AgFeO2 or single-phase 3R-AgFeO2 crystals. Higher temperatures and NaOH mass were helpful to the growth of µm-sized 3R (space group of R-3m) crystals while lower temperatures and mineralizer mass produced nm-sized 2H (space group of P63/mmc) crystals. The comparison of different delafossite samples revealed that the oxygen evolution reaction (OER) current was larger in mixed-phase materials. Also, the transition from two-phase system to single-phase system was accompanied with a sudden drop in OER current. On the other hand, the difference between the electrochemical behavior of 3R and 2H phase delafossite is discussed in detail by considering similar studies in the literature. 

Proje Numarası

BAP-HUBF.21.001.

Kaynakça

  • [1] Shao Y., Xiao X., Zhu Y. and Ma T., ‘’Single-Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes‘’, Angewandte Chemie International Edition, 58: 14599 -14604, (2019).
  • [2] Lee Y., Suntivich J., May K. J., Perry E. E. and Shao-Horn Y., ‘’Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions‘’, Journal of Physical Chemistry Letters, 3: 399-404, (2012).
  • [3] Tsuji E., Imanishi A., Fukuia K. and Nakato Y., ‘’Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution‘’, Electrochimica Acta, 56: 2009-2016, (2011).
  • [4] Da Y., Zeng L., Wang C., Gong C. and Cui L., ‘’A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts‘’, Electrochimica Acta, 300: 85-92, (2019).
  • [5] You M., Gui L., Ma X., Wang Z., Xu Y., Zhang J., Sun J., He B. and Zhao L., ‘’Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media‘’, Applied Catalysis B: Environmental, 298: 120562, (2021).
  • [6] Bejara J., Alvarez-Contrerasb L., Ledesma-Garciac J., Arjonaa N. and Arriagaa L.G., ‘’Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media‘’, Journal of Electroanalytical Chemistry, 847: 113190, (2019).
  • [7] Huang Y., Yang W., Yu Y. and Hao S., ‘’Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction‘’, Journal of Electroanalytical Chemistry, 840: 409-414, (2019).
  • [8] Ahmed J. and Mao Y., ‘’Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2‘’ Journal of Solid State Chemistry, 242: 77-85, (2016).
  • [9] Du Z., Xiong D., Verma K. S., Liu B., Zhao X., Liu L. and Li H., ‘’A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions‘’ Inorganic Chemistry Front, 5: 183-188, (2018).
  • [10] Liu Q., Liu Z., Gao Q., Feng L., Tian H., Yana F. and Zeng W., ‘’Density functional theory study of 3R– and 2H–CuAlO2 in tensile stress‘’ Physics Letters A, 375 : 1608-1611, (2011).
  • [11] Liu Q., Liu Z., Chen J., Feng L. and Tian H., ‘’First-principles study of structural, mechanical, electronic and optical properties of 3R- and 2H-CuGaO2‘’ Physica B, 406: 3377–3382, (2011).
  • [12] Toyoda K., Hinogami R., Miyata N. and Aizawa M., ‘’Calculated Descriptors of Catalytic Activity for Water Electrolysis Anode: Application to Delafossite Oxides‘’ Journal of Physical Chemistry C, 119: 6495-6501, (2015).
  • [13] Tang D. and Zhang G., ‘’Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance‘’ Applied Surface Science, 391: 415–422, (2017).
  • [14] Liu Q., Zhao Z., Zhao R. and Yi J., ‘’Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion‘’ Journal of Alloys and Compounds, 819: 153032, (2020).
  • [15] Moghaddam K. S., Haghighi B., Ahmadian S. M. S. and Rezvani Z., ‘’ Carbon paste electrode modified with AgFeO2 as an electrocatalyst with excellent activity for water reduction and oxidation ‘’ Journal of Electroanalytical Chemistry, 836: 158–164, (2019).
  • [16] Deng Y., Xiong D., Gao H., Wu J., Verma K. S., Liu B. and Zhao X., ‘’Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction‘’ Dalton Transactions, 49: 3519-3524, (2019).
  • [17] Zhao Y., An H., Feng J., Ren Y. and Ma J.,‘’Impact of Crystal Types of AgFeO2 Nanoparticles on the Peroxymonosulfate Activation in the Water‘’ Environmental Science & Technology, 53: 4500-4510, (2019).
  • [18] Tomar N., Nagarajan R. and Shivakumara C.,‘’Soft chemical deintercalation of silver from delafossites AgFeO2, and AgCrO2‘’ Solid State Sciences, 108: 106385, (2020).
  • [19] Tang D. and Zhang G., ‘’Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity‘’ Ultrasonics Sonochemistry, 37: 208-215, (2017).
  • [20] Xiong D., Qi Y., Li X., Liu X., Tao H., Chen W. and Zhaoa X., ‘’Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C‘’ RSC Advances, 5: 49280-49286, (2015).
  • [21] Hinogami R., Toyoda K., Aizawa M., Yoshii S., Kawasaki T. and Gyotena H., ‘’Active copper delafossite anode for oxygen evolution reaction‘’ Electrochemistry Communications, 35: 142-145, (2013).
  • [22] Nguyen V., Mousavi M., Ghasemi B. J., Delbari A. S., Le V. Q., Asl M. S., Shokouhimehr M., Mohammadi M., Azizian-Kalandaragh Y. and Namini A S., ‘’ Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation‘’, Journal of the Taiwan Institute of Chemical Engineers,115: 279-292, (2020).
  • [23] Liua j., Huc Q., Wangd Y., Yanga Z., Fana X., Liub L. and Guoa L., ‘’Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst ‘’ Proceedings of te National Academy of Sciences of the United States of America, 117: 21906-21913, (2020).
  • [24] Ahmed J. and Mao Y., ‘’Delafossite CuAlO2 Nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions‘’ Nanomaterials for Sustainable Energy, 1213: 57-72, (2015).
  • [25] Miclau M., Miclau N., Banica R. and Ursu D. ‘’Effect of polymorphism on photovoltaic performance of CuAlO2 delafossite nanomaterials for p-type dye-sensitized solar cells application ‘’ Materials Today: Proceedings, 4: 6975-6981, (2017).
  • [26] Toh J. R., Sofer Z., Luxa J., Sedmidubsky D. and Pumera M., ‘’3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution‘’ Chemical Communications, 53: 3054-3057, (2017).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Doğan Çirmi 0000-0002-5608-398X

Özkan Görmez Bu kişi benim 0000-0002-1360-9275

Barış Saçlı Bu kişi benim 0000-0003-1386-7490

Uğur Çağlayan Bu kişi benim 0000-0001-7646-1119

Muharrem Kunduracı 0000-0003-0670-5987

Proje Numarası BAP-HUBF.21.001.
Yayımlanma Tarihi 5 Temmuz 2023
Gönderilme Tarihi 15 Kasım 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 26 Sayı: 2

Kaynak Göster

APA Çirmi, D., Görmez, Ö., Saçlı, B., Çağlayan, U., vd. (2023). Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials. Politeknik Dergisi, 26(2), 625-630. https://doi.org/10.2339/politeknik.1023907
AMA Çirmi D, Görmez Ö, Saçlı B, Çağlayan U, Kunduracı M. Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials. Politeknik Dergisi. Temmuz 2023;26(2):625-630. doi:10.2339/politeknik.1023907
Chicago Çirmi, Doğan, Özkan Görmez, Barış Saçlı, Uğur Çağlayan, ve Muharrem Kunduracı. “Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials”. Politeknik Dergisi 26, sy. 2 (Temmuz 2023): 625-30. https://doi.org/10.2339/politeknik.1023907.
EndNote Çirmi D, Görmez Ö, Saçlı B, Çağlayan U, Kunduracı M (01 Temmuz 2023) Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials. Politeknik Dergisi 26 2 625–630.
IEEE D. Çirmi, Ö. Görmez, B. Saçlı, U. Çağlayan, ve M. Kunduracı, “Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials”, Politeknik Dergisi, c. 26, sy. 2, ss. 625–630, 2023, doi: 10.2339/politeknik.1023907.
ISNAD Çirmi, Doğan vd. “Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials”. Politeknik Dergisi 26/2 (Temmuz 2023), 625-630. https://doi.org/10.2339/politeknik.1023907.
JAMA Çirmi D, Görmez Ö, Saçlı B, Çağlayan U, Kunduracı M. Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials. Politeknik Dergisi. 2023;26:625–630.
MLA Çirmi, Doğan vd. “Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials”. Politeknik Dergisi, c. 26, sy. 2, 2023, ss. 625-30, doi:10.2339/politeknik.1023907.
Vancouver Çirmi D, Görmez Ö, Saçlı B, Çağlayan U, Kunduracı M. Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials. Politeknik Dergisi. 2023;26(2):625-30.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.