Derleme
BibTex RIS Kaynak Göster

β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri

Yıl 2023, Cilt: 26 Sayı: 4, 1601 - 1620, 01.12.2023
https://doi.org/10.2339/politeknik.987216

Öz

Biyomedikal malzeme endüstrisi, insanların hayat kalitesini ve buna bağlı aktivitelerini sürdürebilmeleri amacıyla dünya çapında gelişmeye devam etmektedir. Yaşlı nüfus ve refah seviyesinin artış göstermesi biyomedikal malzeme sektörünün hızlı bir şekilde büyümesini sağlayan başlıca sebepler arasındadır. Vücut içerisinde implantasyonun yapılacağı bölgenin özelliklerine göre tercih edilen malzeme grubu değişmektedir. Bu malzemeler arasında metalik biyomalzemeler üstün mekanik özelliklerinden dolayı yüksek kullanım oranına sahiptir. Polimer esaslı, seramik esaslı ve kompozit biyomalzemelerde olduğu gibi metalik biyomalzemelerin de konak canlıda oluşturduğu problemler birçok etkene bağlıdır. Oluşan sorunlara karşı yapılan çalışmalar ve gelişen teknoloji ile birlikte günümüzde yenilikçi çözümler üretilmektedir. Metalik biyomalzemeler sahip oldukları yüksek elastisite modülü ile biyomekanik uyumsuzluğa sebep olurken, içerdikleri alaşım element iyonlarının toksik etki oluşturması sonucunda biyouyumluluğu tehlikeye atmaktadırlar. Bundan dolayı derleme doğrultusunda temelde yaşanan iki probleme karşı geliştirilen, biyouyumluluğu yüksek elementlerle alaşımlanan ve faz yapısı sayesinde düşük elastisite modülüne sahip olan β tipi Ti alaşımlarının özellikleri incelenmiştir. Bununla birlikte, β tipi Ti alaşımlarının üretim yöntemlerinin alaşım üzerindeki etkileri üzerinde durulmuş bu noktada toz metalürjisi teknolojisi ile geliştirilen alaşımların verimliliği araştırılmıştır.

Kaynakça

  • [1] Zhang, L. C., & Chen, L. Y., “A review on biomedical titanium alloys: recent progress and prospect”, Advanced engineering materials, 21(4), 1801215, (2019).
  • [2] Konnopka, A., Jerusel, N., & König, H. H., “The health and economic consequences of osteopenia-and osteoporosis-attributable hip fractures in Germany: estimation for 2002 and proion until 2050”, Osteoporosis international, 20(7), 1117-1129, (2009).
  • [3] Cooper, C., Campion, G., & Melton, L. 3., “Hip fractures in the elderly: a world-wide projection”, Osteoporosis international, 2(6), 285-289, (1992).
  • [4] Papachristos, I. V., & Giannoudis, P. V., “Overview of classification and surgical management of hip fractures”, Orthopaedics and Trauma, 34(2), 56-63, (2020).
  • [5] Gepreel, M. A. H., & Niinomi, M., “Biocompatibility of Ti-alloys for long-term implantation”, Journal of the mechanical behavior of biomedical materials, 20, 407-415, (2013).
  • [6] Dewidar, M. M., Yoon, H. C., & Lim, J. K., “Mechanical properties of metals for biomedical applications using powder metallurgy process: a review”, Metals and Materials International, 12(3), 193-206, (2006).
  • [7] Park, J. B., & Bronzino, J. D., “Biomaterials: principles and applications”, CRC Press, (2002).
  • [8] Liu, Y. J., Li, S. J., Wang, H. L., Hou, W. T., Hao, Y. L., Yang, R., ... & Zhang, L. C., “Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting”, Acta Materialia, 113, 56-67, (2016).
  • [9] Ong, J. L., Appleford, M. R., & Mani, G., “Introduction to biomaterials: basic theory with engineering applications”, Cambridge University Press, (2014).
  • [10] Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V., & Moosavi, S. B., “Novel double layer hydroxyapatite (HA)/Ti coating for biocompatibility improvement of metallic implants”, Surface engineering, 17(6), 459-464, (2001).
  • [11] Abdel-Hady, M., Hinoshita, K., & Morinaga, M., “General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters”, Scripta Materialia, 55(5), 477-480, (2006).
  • [12] Gasser, B., “Design and engineering criteria for titanium devices”, In Titanium in medicine, Springer, Berlin, Heidelberg, (2001).
  • [13] Niinomi, M., Nakai, M., & Hieda, J., “Development of new metallic alloys for biomedical applications”, Acta biomaterialia, 8(11), 3888-3903, (2012).
  • [14] Niinomi, M., “Metallic biomaterials”, Journal of Artificial Organs, 11(3), 105-110, (2008).
  • [15] Long, M., & Rack, H. J., “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, 19(18), 1621-1639, (1998).
  • [16] Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K., “Ti based biomaterials, the ultimate choice for orthopaedic implants–a review”, Progress in materials science, 54(3), 397-425, (2009).
  • [17] Hanawa, T., “Metal ion release from metal implants”, Materials Science and Engineering: C, 24(6-8), 745-752, (2004).
  • [18] Haynes, D. R., Crotti, T. N., & Haywood, M. R., “Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age”, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 49(2), 167-175, (2000).
  • [19] Aziz-Kerrzo, M., Conroy, K. G., Fenelon, A. M., Farrell, S. T., & Breslin, C. B., “Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials”, Biomaterials, 22(12), 1531-1539, (2001).
  • [20] Sidambe, A. T., “Biocompatibility of advanced manufactured titanium implants—A review”, Materials, 7(12), 8168-8188, (2014).
  • [21] Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C., “A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces”, Acta biomaterialia, 8(8), 2875-2888, (2012).
  • [22] Rattan, P. V., Sidhu, T. S., & Mittal, M., “An overview of hydroxyapatite coated titanium implants”, Asian Journal of Engineering and Applied Technology, 1(2), 40-43, (2012).
  • [23] Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Silva, F. S., Carvalho, O., & Miranda, G., “Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting”, Transactions of Nonferrous Metals Society of China, 27(4), 829-838, (2017).
  • [24] Yamanoglu, R., German, R. M., Karagoz, S., Bradbury, W. L., Zeren, M., Li, W., & Olevsky, E. A., “Microstructural investigation of as cast and PREP atomised Ti–6Al–4V alloy”, Powder metallurgy, 54(5), 604-607, (2011).
  • [25] Fernandes, D. J., Elias, C. N., & Valiev, R. Z., “Properties and performance of ultrafine grained titanium for biomedical applications”, Materials Research, 18, 1163-1175, (2015).
  • [26] Yamanoglu, R., “Network distribution of molybdenum among pure titanium powders for enhanced wear properties”, Metal Powder Report, 76(1), 32-39, (2021).
  • [27] Yu, J., Zhao, Z. J., & Li, L. X., “Corrosion fatigue resistances of surgical implant stainless steels and titanium alloy”, Corrosion science, 35(1-4), 587-597, (1993).
  • [28] Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N., “Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review”, International Journal of Chemical Molecular Nuclear Materials and Metallurgy Engineering, 8(8), 726, (2014).
  • [29] Costa, B. C., Tokuhara, C. K., Rocha, L. A., Oliveira, R. C., Lisboa-Filho, P. N., & Pessoa, J. C., “Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation”, Materials Science and Engineering: C, 96, 730-739, (2019).
  • [30] Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., ... & Rondeau, V., “Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide”, Journal of Toxicology and Environmental Health, Part B, 10(S1), 1-269, (2007).
  • [31] Mi, Z. R., Shuib, S., Hassan, A. Y., Shorki, A. A., & Ibrahim, M. M., “Problem of stress shielding and improvement to the hip Implat designs: a review”, International Journal of Medical Sciences, 7(3), 460-467, (2007).
  • [32] Dewidar, M. M., Yoon, H. C., & Lim, J. K., “Mechanical properties of metals for biomedical applications using powder metallurgy process: a review”, Metals and Materials International, 12(3), 193-206, (2006).
  • [33] Yamanoglu, R., Bahador, A., & Kondoh, K., “Fabrication Methods of Porous Titanium Implants by Powder Metallurgy”, Transactions of the Indian Institute of Metals, 1-13, (2021).
  • [34] Niinomi, M., & Nakai, M., “Titanium-based biomaterials for preventing stress shielding between implant devices and bone”, International journal of biomaterials, 2011, (2011).
  • [35] Arifin, A., Sulong, A. B., Muhamad, N., Syarif, J., & Ramli, M. I., “Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review”, Materials & Design, 55, 165-175, (2014).
  • [36] Nasab, M. B., Hassan, M. R., & Sahari, B. B., “Metallic biomaterials of knee and hip-a review”, Trends in Biomaterials & Artificial Organs, 24(1), 69-82, (2010).
  • [37] Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y., “New developments of Ti-based alloys for biomedical applications”, Materials, 7(3), 1709-1800, (2014).
  • [38] Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T., “Design and mechanical properties of new β type titanium alloys for implant materials”, Materials Science and Engineering: A, 243(1-2), 244-249, (1998).
  • [39] Wang, K., “The use of titanium for medical applications in the USA”, Materials Science and Engineering: A, 213(1-2), 134-137, (1996).
  • [40] Davis, J. R., “Handbook of materials for medical devices”, ASM international, (2006).
  • [41] Wang, K., “The Characterization of Ti-12Mo-6Zr-2Fe A New Biocompatible Titanium Alloy Developed for Surgical Implant”, Beta Titanium Alloys in the 1990's, 49-60, (1993).
  • [42] Gepreel, M. A. H., & Niinomi, M., “Biocompatibility of Ti-alloys for long-term implantation”, Journal of the mechanical behavior of biomedical materials, 20, 407-415, (2013).
  • [43] Zhang, L. C., Klemm, D., Eckert, J., Hao, Y. L., & Sercombe, T. B., “Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy”, Scripta Materialia, 65(1), 21-24, (2011).
  • [44] Hanawa, T., “Metal ion release from metal implants”, Materials Science and Engineering: C, 24(6-8), 745-752, (2004).
  • [45] Niinomi, M., Kuroda, D., Fukunaga, K. I., Morinaga, M., Kato, Y., Yashiro, T., & Suzuki, A., “Corrosion wear fracture of new β type biomedical titanium alloys”, Materials Science and Engineering: A, 263(2), 193-199, (2004).
  • [46] Bahador, A., Umeda, J., Ghandvar, H., Bakar, T. A. A., Yamanoglu, R., Issariyapat, A., & Kondoh, K., “Microstructure globularization of high oxygen concentration dual-phase extruded Ti alloys via powder metallurgy route”, Materials Characterization, 172, 110855, (2021).
  • [47] Leyens, C., & Peters, M. (Eds.), “Titanium and titanium alloys: fundamentals and applications”, Wiley-vch, (2006).
  • [48] Oshida, Y., “Bioscience and bioengineering of titanium materials”, Elsevier, (2010).
  • [49] Hallab, N., Merritt, K., & Jacobs, J. J., “Metal sensitivity in patients with orthopaedic implants”, The Journal of Bone and Joint Surgery, 83(3), 428, (2001).
  • [50] Kita N., “Meme Cerrahisinde Skar Doku için Kapsülektomi”, [Available from: https://tr.approby.com/meme-cerrahisinde-skar-doku-icin-kapsuelektomi/, (2021).
  • [51] Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y., “New developments of Ti-based alloys for biomedical applications”, Materials, 7(3), 1709-1800, (2014).
  • [52] Niinomi, M., “Recent metallic materials for biomedical applications”, Metallurgical and materials transactions A, 33(3), 477-486, (2002).
  • [53] Liu, X., Chu, P. K., & Ding, C., “Surface modification of titanium, titanium alloys, and related materials for biomedical applications”, Materials Science and Engineering: R: Reports, 47(3-4), 49-121, (2004).
  • [54] Khoshnaw, F., Yamanoglu, R., Basci, U. G., & Muratal, O., “Pressure assisted bonding process of stainless steel on titanium alloy using powder metallurgy”, Materials Chemistry and Physics, 259, 124015, (2021).
  • [55] Adya, N., Alam, M., Ravindranath, T., Mubeen, A., & Saluja, B., “Corrosion in titanium dental implants: literature review”, The Journal of Indian Prosthodontic Society, 5(3), 126, (2005).
  • [56] Donachie, M. J., ”Titanium: a technical guide.”, ASM international, (2000).
  • [57] Kulkarni, M., Mazare, A., Schmuki, P., & Iglič, A., “Biomaterial surface modification of titanium and titanium alloys for medical applications”, Nanomedicine, 111, 111, (2014).
  • [58] Al-Mobarak, N. A., Al-Swayih, A. A., & Al-Rashoud, F. A., “Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications”, International Journal of Electrochemical Science, 6(6), 2031-2042, (2011).
  • [59] Chahine, G., Koike, M., Okabe, T., Smith, P., & Kovacevic, R., “The design and production of Ti-6Al-4V ELI customized dental implants”, The Journal of The Minerals, Metals & Materials Society, 60(11), 50-55, (2008).
  • [60] Okabe, T., & Hero, H., “The use of titanium in dentistry”, Cells and Materials, 5(2), 9, (1995).
  • [61] Niinomi, M. (Ed.), “Metals for biomedical devices”, Woodhead publishing, (2019).
  • [62] Froes, F., & Qian, M. (Eds.), “Titanium in medical and dental applications”, Woodhead Publishing, (2018).
  • [63] Mohan, P., Osman, T. A., Amigo, V., & Mohamed, A., “Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys”, Journal of Alloys and Compounds, 729, 1215-1225, (2017).
  • [64] Olin, C., “Titanium in cardiac and cardiovascular applications”, In Titanium in medicine (pp. 889-907). Springer, Berlin, Heidelberg, (2001).
  • [65] Liu, X., Chu, P. K., & Ding, C., “Surface modification of titanium, titanium alloys, and related materials for biomedical applications”, Materials Science and Engineering: R: Reports, 47(3-4), 49-121, (2004).
  • [66] AMETEK, “Ametek develops ultra-thin titanium strip for pacemaker and neurostimulator enclosures”, [Available from: https://www.ametekmetals.com/news/latestnews/2017/june/ametek-develops-ultra-thin-titanium-strip-for-pacemaker-and-neurostimulator-enclosures, (2017).
  • [67] Jacobs S., “Allergy to Titanium in Cardiac Pacemaker Thought to Have Led to Asthma Development: Case Study: Asthma Advisor Channel” [Available from: https://www.pulmonologyadvisor.com/advisor-channels/asthma-advisor-channel/allergy-to-titanium-in-cardiac-pacemaker-thought-to-have-led-to-asthma-development-case-study/, (2020).
  • [68] Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M., “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030”, Journal of Bone and Joint Surgery, 89(4), 780-785, (2007).
  • [69] Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A., “Biomedical applications of titanium and its alloys”, The Journal of The Minerals, Metals & Materials Society, 60(3), 46-49, (2008).
  • [70] Zhou, L., Yuan, T., Li, R., Tang, J., Wang, M., & Mei, F., “Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging”, Materials Science and Engineering: A, 725, 329-340, (2018).
  • [71] Xu, Y., Gao, J., Huang, Y., & Rainforth, W. M., “A low-cost metastable beta Ti alloy with high elastic admissible strain and enhanced ductility for orthopaedic application”, Journal of Alloys and Compounds, 835, 155391, (2020).
  • [72] Acharya, S., Panicker, A. G., Laxmi, D. V., Suwas, S., & Chatterjee, K., “Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications”, Materials & Design, 164, 107555, (2019).
  • [73] Sotniczuk, A., Kuczyńska-Zemła, D., Kwaśniak, P., Thomas, M., & Garbacz, H., “Corrosion behavior of Ti-29Nb-13Ta-4.6 Zr and commercially pure Ti under simulated inflammatory conditions–comparative effect of grain refinement and non-toxic β phase stabilizers”, Electrochimica Acta, 312, 369-379, (2019).
  • [74] Hendrickson, M., Mantri, S. A., Ren, Y., Alam, T., Soni, V., Gwalani, B., ... & Banerjee, R., “The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy”, Journal of Materials Science, 52(6), 3062-3073, (2017).
  • [75] Disegi, J. A., “Titanium alloys for fracture fixation implants”, Injury, 31, D14-D17, (2000).
  • [76] Atapour, M., Pilchak, A. L., Frankel, G. S., & Williams, J. C., “Corrosion behavior of β titanium alloys for biomedical applications”, Materials Science and Engineering: C, 31(5), 885-891, (2011).
  • [77] Yamanoglu, R., Bahador, A., & Kondoh, K., “Effect of Mo Addition on the Mechanical and Wear Behavior of Plasma Rotating Electrode Process Atomized Ti6Al4V Alloy”, Journal of Materials Engineering and Performance, 30(5), 3203-3212, (2021).
  • [78] Kumar, A., Jayakumar, T., Raj, B., & Banerjee, D., “A new methodology for identification of β-transus temperature in α+ β and β titanium alloys using ultrasonic velocity measurement”, Philosophical Magazine, 88(3), 327-338, (2008).
  • [79] Collings, E. W., “The physical metallurgy of titanium alloys”, Metals Park Ohio, 3, (1984).
  • [80] Bahador, A., Umeda, J., Yamanoglu, R., Amrin, A., Alhazaa, A., & Kondoh, K., “Ultrafine-grain formation and improved mechanical properties of novel extruded Ti-Fe-W alloys with complete solid solution of tungsten”, Journal of Alloys and Compounds, 875, 160031, (2021).
  • [81] Geetha, M., Singh, A. K., Muraleedharan, K., Gogia, A. K., & Asokamani, R., “Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy”, Journal of Alloys and Compounds, 329(1-2), 264-271, (2001).
  • [82] Tang, X., Ahmed, T., & Rack, H. J., “Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys”, Journal of Materials Science, 35(7), 1805-1811, (2000).
  • [83] Imam, M. A., & Fraker, A. C., “Titanium alloys as implant materials”, In Medical applications of titanium and its alloys: The material and biological issues, ASTM International, (1996).
  • [84] Yang, Y. L., Wang, W. Q., Li, F. L., Li, W. Q., & Zhang, Y. Q., “The effect of aluminum equivalent and molybdenum equivalent on the mechanical properties of high strength and high toughness titanium alloys”, In Materials Science Forum Vol. 618, pp. 169-172, (2009).
  • [85] Laheurte, P., Eberhardt, A., & Philippe, M. J., “Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy”, Materials Science and Engineering: A, 396(1-2), 223-230, (2005).
  • [86] Mythili, R., Paul, V. T., Saroja, S., Vijayalakshmi, M., & Raghunathan, V. S., “Study of transformation behavior in a Ti–4.4 Ta–1.9 Nb alloy”, Materials Science and Engineering: A, 390(1-2), 299-312, (2005).
  • [87] Kim, H. S., Lim, S. H., Yeo, I. D., & Kim, W. Y., “Stress-induced martensitic transformation of metastable β-titanium alloy”, Materials Science and Engineering: A, 449, 322-325, (2007).
  • [88] Wang, Q., Dong, C., & Liaw, P. K., “Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+ β)] phase-boundary slopes”, Metallurgical and Materials Transactions A, 46(8), 3440-3447, (2015).
  • [89] Ping, D. H., Cui, C. Y., Yin, F. X., & Yamabe-Mitarai, Y., “TEM investigations on martensite in a Ti–Nb-based shape memory alloy”, Scripta Materialia, 54(7), 1305-1310, (2006).
  • [90] Zhou, Y. L., & Niinomi, M., “Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications”, Journal of Alloys and Compounds, 466(1-2), 535-542, (2008).
  • [91] Majumdar, P., Singh, S. B., & Chakraborty, M., “Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study”, Materials Science and Engineering: A, 489(1-2), 419-425, (2008).
  • [92] Pruitt, L. A., & Chakravartula, A. M., “Mechanics of biomaterials: fundamental principles for implant design”, MRS Bulletin, 37(7), 698-698, (2012).
  • [93] Balakrishnan, A., Lee, B. C., Kim, T. N., & Panigrahi, B. B., “Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application”, Trends in Biomaterials & Artificial Organs, 22(1), 58-64, (2008).
  • [94] Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J., “Preparation of TiO2 layers on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating techniques and their characterization”, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28, (2002).
  • [95] Guo, W. Y., Sun, J., & Wu, J. S., “Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7 Ta–2Zr–O alloy in Ringer's solution”, Materials Chemistry and Physics, 113(2-3), 816-820, (2009).
  • [96] Yu, S. Y., & Scully, J. R., “Corrosion and passivity of Ti-13% Nb-13% Zr in comparison to other biomedical implant alloys”, Corrosion, 53(12), (1997).
  • [97] Schutz, R. W., “Environmental behavior of beta titanium alloys”, The Journal of The Minerals, Metals & Materials Society, 46(7), 24-29, (1994).
  • [98] Godley, R., Starosvetsky, D., & Gotman, I., “Corrosion behavior of a low modulus β-Ti-45% Nb alloy for use in medical implants”, Journal of Materials Science: Materials in Medicine, 17(1), 63-67, (2006).
  • [99] Çaha, I., Alves, A., Chirico, C., Pinto, A., Tsipas, S., Gordo, E., & Toptan, F., “Corrosion and tribocorrosion behavior of Ti-40Nb and Ti-25Nb-5Fe alloys processed by powder metallurgy”, Metallurgical and Materials Transactions A, 51(6), 3256-3267, (2020).
  • [100] De Souza, K. A., & Robin, A., “Preparation and characterization of Ti–Ta alloys for application in corrosive media”, Materials Letters, 57(20), 3010-3016, (2003).
  • [101] Metikos-Huković, M., Kwokal, A., & Piljac, J., “The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution”, Biomaterials, 24(21), 3765-3775, (2003).
  • [102] Banerjee, R., Nag, S., Stechschulte, J., & Fraser, H. L., “Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys”, Biomaterials, 25(17), 3413-3419, (2004).
  • [103] Kobayashi, E., Ando, M., Tsutsumi, Y., Doi, H., Yoneyama, T., Kobayashi, M., & Hanawa, T., “Inhibition effect of zirconium coating on calcium phosphate precipitation of titanium to avoid assimilation with bone”, Materials transactions, 48(3), 301-306, (2007).
  • [104] Shukla, A. K., Balasubramaniam, R., & Bhargava, S., “Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4 Al–29Nb alloys in simulated human body conditions”, Intermetallics, 13(6), 631-637, (2005).
  • [105] Hanawa, T., “Recent development of new alloys for biomedical use”, In Materials Science Forum Vol. 512, pp. 243-248, (2006).
  • [106] Dong, H., “Tribological properties of titanium-based alloys”, In Surface engineering of light alloys (pp. 58-80). Woodhead Publishing, (2010).
  • [107] Molinari, A., Straffelini, G., Tesi, B., & Bacci, T., “Dry sliding wear mechanisms of the Ti6Al4V alloy”, Wear, 208(1-2), 105-112, (1997).
  • [108] Lee, Y. S., Niinomi, M., Nakai, M., Narita, K., & Cho, K., “Predominant factor determining wear properties of β-type and (α+ β)-type titanium alloys in metal-to-metal contact for biomedical applications”, Journal of The Mechanical Behavior of Biomedical Materials, 41, 208-220, (2015).
  • [109] Rabinowicz, E., & Tanner, R. I., “Friction and wear of materials”, Journal of Applied Mechanics, 33(2), 479, (1966).
  • [110] Budinski, K. G., “Tribological properties of titanium alloys”, Wear, 151(2), 203-217, (1991).
  • [111] Laing, P. G., Ferguson Jr, A. B., & Hodge, E. S., “Tissue reaction in rabbit muscle exposed to metallic implants”, Journal of Biomedical Materials Research, 1(1), 135-149, (1967).
  • [112] Oliveira, V., Chaves, R. R., Bertazzoli, R., & Caram, R., “Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants”, Brazilian Journal of Chemical Engineering, 15(4), 326-333, (1998).
  • [113] McGee, M. A., Howie, D. W., Costi, K., Haynes, D. R., Wildenauer, C. I., Pearcy, M. J., & McLean, J. D., “Implant retrieval studies of the wear and loosening of prosthetic joints: a review”, Wear, 241(2), 158-165, (2000).
  • [114] Rigney, D. A., “Some thoughts on sliding wear”, Wear, 152(1), 187-192, (1992).
  • [115] Brown, S. A., & Lemons, J. E., “Medical applications of titanium and its alloys: the material and biological issues” , West Conshohocken, PA: ASTM, (1996).
  • [116] Hacisalihoglu, I., Samancioglu, A., Yildiz, F., Purcek, G., & Alsaran, A., “Tribocorrosion properties of different type titanium alloys in simulated body fluid”, Wear, 332, 679-686, (2015).
  • [117] Niinomi, M., Kuroda, D., Fukunaga, K. I., Morinaga, M., Kato, Y., Yashiro, T., & Suzuki, A., “Corrosion wear fracture of new β type biomedical titanium alloys”, Materials Science and Engineering: A, 263(2), 193-199, (1999).
  • [118] Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y., Niinomi, M., & Guo, Z. X., “Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications”, Wear, 257(9-10), 869-876, (2004).
  • [119] Xu, W., Lu, X., Tian, J., Huang, C., Chen, M., Yan, Y., ... & Wen, C., “Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications”, Journal of Materials Science & Technology, 41, 191-198, (2020).
  • [120] Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T., “In vitro corrosion resistance of titanium made using different fabrication methods”, Biomaterials, 20(2), 183-190, (1999).
  • [121] Festas, A., Ramos, A., & Davim, J. P., “Machining of titanium alloys for medical application-a review”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 09544054211028531, (2021).
  • [122] Qosim, N., Supriadi, S., Whulanza, Y., & Saragih, A. S, “Development of ti-6al-4v based-miniplate manufactured by electrical discharge machining as maxillofacial implant”, Journal of Fundamental and Applied Sciences, 10(3S), 765-775, (2018).
  • [123] Weihe, S., Wehmöller, M., Schliephake, H., Haßfeld, S., Tschakaloff, A., Raczkowsky, J., & Eufinger, H., “Synthesis of CAD/CAM, robotics and biomaterial implant fabrication: single-step reconstruction in computer aided frontotemporal bone resection”, International journal of oral and maxillofacial surgery, 29(5), 384-388, (2000).
  • [124] Prasad, R., & Abdullah Al-Kheraif, A., “Three-dimensional accuracy of CAD/CAM titanium and ceramic superstructures for implant abutments using spiral scan microtomography”, International Journal of Prosthodontics, 26(5), (2013).
  • [125] Soundararajan, S. R., Vishnu, J., Manivasagam, G., & Muktinutalapati, N. R., “Processing of beta titanium alloys for aerospace and biomedical applications” In Titanium Alloys-Novel Aspects of Their Manufacturing and Processing, IntechOpen, (2018).
  • [126] Sieniawski, J., & Motyka, M., “Superplasticity in titanium alloys”, Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 123-130, (2007).
  • [127] Chang, B., Song, W., Han, T., Yan, J., Li, F., Zhao, L., ... & Zhang, Y., “Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth”, Acta biomaterialia, 33, 311-321, (2016).
  • [128] Yamanoglu, R., Efendi, E., Kolayli, F., Uzuner, H., & Daoud, I., “Production and mechanical properties of Ti–5Al–2.5 Fe–xCu alloys for biomedical applications”, Biomedical Materials, 13(2), 025013, (2018).
  • [129] Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Aiman, M. H., ... & Manladan, S. M., “A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications”, Critical Reviews in Solid State and Materials Sciences, 46(2), 109-151, (2021).
  • [130] Basci UG., Yamanoglu R., “EKLEMELİ METAL İMALAT TEKNOLOJİLERİ İÇİN METAL TOZU ÜRETİM YÖNTEMLERİ”, Uluslararası Marmara Fen ve Sosyal Bilimler Kongresi, 219-227, Kocaeli, (2019).
  • [131] Zhao, X., Niinomi, M., Nakai, M., & Hieda, J., “Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation application”, Acta biomaterialia, 8(5), 1990-1997, (2012).
  • [132] Almeida, A., Gupta, D., Loable, C., & Vilar, R., “Laser-assisted synthesis of Ti–Mo alloys for biomedical applications”, Materials Science and Engineering: C, 32(5), 1190-1195, (2012).
  • [133] Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., & Kruth, J. P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V”, Acta materialia, 58(9), 3303-3312, (2010).
  • [134] Božić, D., Cvijović, I., Vilotijević, M. N., & Jovanović, M. T., “The influence of microstructural characteristics on the mechanical properties of Ti6Al4V alloy produced by the powder metallurgy technique”, Journal of the Serbian Chemical Society, 71(8-9), 985-992, (2006).
  • [135] Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., & Stucker, B. E., “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting”, Journal of materials engineering and performance, 22(12), 3872-3883, (2013).
  • [136] Zhang, S., Wei, Q., Cheng, L., Li, S., & Shi, Y., “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials & Design, 63, 185-193, (2014).
  • [137] Gu, D., Hagedorn, Y. C., Meiners, W., Meng, G., Batista, R. J. S., Wissenbach, K., & Poprawe, R., “Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium”, Acta Materialia, 60(9), 3849-3860, (2012).
  • [138] Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. R., Zhang, Y., Xia, Y., ... & Free, M., Powder metallurgy of titanium–past, present, and future”, International Materials Reviews, 63(7), 407-459, (2018).
  • [139] Niinomi, M., “Recent metallic materials for biomedical applications”, Metallurgical and materials transactions A, 33(3), 477-486, (2002).
  • [140] Taddei, E. B., Henriques, V. A. R., Silva, C. R. M., & Cairo, C. A. A., “Densification and microstructural behaviour on the sintering of blended elemental Ti-35Nb-7Zr-5Ta alloy”, In Materials Science Forum , Vol. 530, pp. 341-346, (2006).
  • [141] Henriques, V. A. R., & Silva, C. R. M., “Production of titanium alloys for medical implants by powder metallurgy”, In Key engineering materials , Vol. 189, pp. 443-448, (2001).
  • [142] Sochacka, P., Miklaszewski, A., Kowalski, K., & Jurczyk, M., “Influence of the processing method on the properties of Ti-23 at.% Mo alloy”, Metals, 9(9), 931, (2019).
  • [143] Dunand, D. C., “Processing of titanium foams”, Advanced engineering materials, 6(6), 369-376, (2004).
  • [144] Arifin, A., Sulong, A. B., Muhamad, N., & Syarif, J., “Characterization of hydroxyapatite/Ti6Al4V composite powder under various sintering temperature.”, Jurnal Teknologi, 75(7), (2015).
  • [145] Doni, Z., Alves, A. C., Toptan, F., Gomes, J. R., Ramalho, A., Buciumeanu, M., ... & Silva, F. S., “Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys”, Materials & Design, 47-57, (2013).
  • [146] Gronostajski, Z., Bandoła, P., & Skubiszewski, T., “Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V”, Archives of Civil and Mechanical Engineering, 9(2), 47-57, (2009).
  • [147] German, R. M., “Powder metallurgy science”, Metal Powder Industries Federation, 105 College Rd. E, Princeton, N. J. 08540, U. S. A., 279, (1984).
  • [148] Yamanoglu, R., Gulsoy, N., Olevsky, E. A., & Gulsoy, H. O., “Production of porous Ti5Al2. 5Fe alloy via pressureless spark plasma sintering”, Journal of Alloys and Compounds, 680, 654-658, (2016).
  • [149] do Prado, R. F., Esteves, G. C., Santos, E. L. D. S., Bueno, D. A. G., Cairo, C. A. A., Vasconcellos, L. G. O. D., ... & De Vasconcellos, L. M. R., “In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy” PloS one, 13(5), e0196169, (2018).
  • [150] Yoshitani, Y., Niinomi, M., Fukunaga, K., Kuroda, D., Fukui, H., Takeuchi, T., & Katsura, S., “Mechanical Properties of Biocompatible Titanium Alloy Castings Made by Dental Precision Casting Method”, In Proceedings of the 5th International Symposium on Titanium in Dentistry, P-71 (Vol. 107), (2004).

A Review on the Properties of β Type Ti Alloys: Microstructure, Mechanical, Corrosion Properties and Production Methods

Yıl 2023, Cilt: 26 Sayı: 4, 1601 - 1620, 01.12.2023
https://doi.org/10.2339/politeknik.987216

Öz

The biomedical material industry continues to grow worldwide for people to sustain their quality of life and related activities. The increase in the aging population and prosperity level are among the main reasons that the biomedical material industry growing rapidly. According to the characteristic properties of the region where implantation will be performed within the body, the preferred material group varies. Among these materials, metallic biomaterials have a high usage rate due to their superior mechanical properties. As with the issues faced in polymer-based, ceramic-based, and composite materials the problems triggered by metallic biomaterials in patients take place by cause of many reasons. Innovative solutions are produced today with the developing technology and the effort done against to the problems. Whereas metallic biomaterials cause biomechanical unsuitability with their high modulus of elasticity, they threaten biocompatibility by producing a poisonous effect because of toxic alloy element ions. Therefore, the characteristics of β-type Ti alloys were explored which were created to address two basic issues: they were alloyed with elements with excellent biocompatibility and had a low modulus of elasticity owing to their phase structure. Furthermore, the effects of the production methods on β-type Ti alloys were highlighted and the effectiveness of alloys created with powder metallurgy technology was analyzed at this step.

Kaynakça

  • [1] Zhang, L. C., & Chen, L. Y., “A review on biomedical titanium alloys: recent progress and prospect”, Advanced engineering materials, 21(4), 1801215, (2019).
  • [2] Konnopka, A., Jerusel, N., & König, H. H., “The health and economic consequences of osteopenia-and osteoporosis-attributable hip fractures in Germany: estimation for 2002 and proion until 2050”, Osteoporosis international, 20(7), 1117-1129, (2009).
  • [3] Cooper, C., Campion, G., & Melton, L. 3., “Hip fractures in the elderly: a world-wide projection”, Osteoporosis international, 2(6), 285-289, (1992).
  • [4] Papachristos, I. V., & Giannoudis, P. V., “Overview of classification and surgical management of hip fractures”, Orthopaedics and Trauma, 34(2), 56-63, (2020).
  • [5] Gepreel, M. A. H., & Niinomi, M., “Biocompatibility of Ti-alloys for long-term implantation”, Journal of the mechanical behavior of biomedical materials, 20, 407-415, (2013).
  • [6] Dewidar, M. M., Yoon, H. C., & Lim, J. K., “Mechanical properties of metals for biomedical applications using powder metallurgy process: a review”, Metals and Materials International, 12(3), 193-206, (2006).
  • [7] Park, J. B., & Bronzino, J. D., “Biomaterials: principles and applications”, CRC Press, (2002).
  • [8] Liu, Y. J., Li, S. J., Wang, H. L., Hou, W. T., Hao, Y. L., Yang, R., ... & Zhang, L. C., “Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting”, Acta Materialia, 113, 56-67, (2016).
  • [9] Ong, J. L., Appleford, M. R., & Mani, G., “Introduction to biomaterials: basic theory with engineering applications”, Cambridge University Press, (2014).
  • [10] Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V., & Moosavi, S. B., “Novel double layer hydroxyapatite (HA)/Ti coating for biocompatibility improvement of metallic implants”, Surface engineering, 17(6), 459-464, (2001).
  • [11] Abdel-Hady, M., Hinoshita, K., & Morinaga, M., “General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters”, Scripta Materialia, 55(5), 477-480, (2006).
  • [12] Gasser, B., “Design and engineering criteria for titanium devices”, In Titanium in medicine, Springer, Berlin, Heidelberg, (2001).
  • [13] Niinomi, M., Nakai, M., & Hieda, J., “Development of new metallic alloys for biomedical applications”, Acta biomaterialia, 8(11), 3888-3903, (2012).
  • [14] Niinomi, M., “Metallic biomaterials”, Journal of Artificial Organs, 11(3), 105-110, (2008).
  • [15] Long, M., & Rack, H. J., “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, 19(18), 1621-1639, (1998).
  • [16] Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K., “Ti based biomaterials, the ultimate choice for orthopaedic implants–a review”, Progress in materials science, 54(3), 397-425, (2009).
  • [17] Hanawa, T., “Metal ion release from metal implants”, Materials Science and Engineering: C, 24(6-8), 745-752, (2004).
  • [18] Haynes, D. R., Crotti, T. N., & Haywood, M. R., “Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age”, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 49(2), 167-175, (2000).
  • [19] Aziz-Kerrzo, M., Conroy, K. G., Fenelon, A. M., Farrell, S. T., & Breslin, C. B., “Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials”, Biomaterials, 22(12), 1531-1539, (2001).
  • [20] Sidambe, A. T., “Biocompatibility of advanced manufactured titanium implants—A review”, Materials, 7(12), 8168-8188, (2014).
  • [21] Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C., “A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces”, Acta biomaterialia, 8(8), 2875-2888, (2012).
  • [22] Rattan, P. V., Sidhu, T. S., & Mittal, M., “An overview of hydroxyapatite coated titanium implants”, Asian Journal of Engineering and Applied Technology, 1(2), 40-43, (2012).
  • [23] Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Silva, F. S., Carvalho, O., & Miranda, G., “Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting”, Transactions of Nonferrous Metals Society of China, 27(4), 829-838, (2017).
  • [24] Yamanoglu, R., German, R. M., Karagoz, S., Bradbury, W. L., Zeren, M., Li, W., & Olevsky, E. A., “Microstructural investigation of as cast and PREP atomised Ti–6Al–4V alloy”, Powder metallurgy, 54(5), 604-607, (2011).
  • [25] Fernandes, D. J., Elias, C. N., & Valiev, R. Z., “Properties and performance of ultrafine grained titanium for biomedical applications”, Materials Research, 18, 1163-1175, (2015).
  • [26] Yamanoglu, R., “Network distribution of molybdenum among pure titanium powders for enhanced wear properties”, Metal Powder Report, 76(1), 32-39, (2021).
  • [27] Yu, J., Zhao, Z. J., & Li, L. X., “Corrosion fatigue resistances of surgical implant stainless steels and titanium alloy”, Corrosion science, 35(1-4), 587-597, (1993).
  • [28] Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N., “Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review”, International Journal of Chemical Molecular Nuclear Materials and Metallurgy Engineering, 8(8), 726, (2014).
  • [29] Costa, B. C., Tokuhara, C. K., Rocha, L. A., Oliveira, R. C., Lisboa-Filho, P. N., & Pessoa, J. C., “Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation”, Materials Science and Engineering: C, 96, 730-739, (2019).
  • [30] Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., ... & Rondeau, V., “Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide”, Journal of Toxicology and Environmental Health, Part B, 10(S1), 1-269, (2007).
  • [31] Mi, Z. R., Shuib, S., Hassan, A. Y., Shorki, A. A., & Ibrahim, M. M., “Problem of stress shielding and improvement to the hip Implat designs: a review”, International Journal of Medical Sciences, 7(3), 460-467, (2007).
  • [32] Dewidar, M. M., Yoon, H. C., & Lim, J. K., “Mechanical properties of metals for biomedical applications using powder metallurgy process: a review”, Metals and Materials International, 12(3), 193-206, (2006).
  • [33] Yamanoglu, R., Bahador, A., & Kondoh, K., “Fabrication Methods of Porous Titanium Implants by Powder Metallurgy”, Transactions of the Indian Institute of Metals, 1-13, (2021).
  • [34] Niinomi, M., & Nakai, M., “Titanium-based biomaterials for preventing stress shielding between implant devices and bone”, International journal of biomaterials, 2011, (2011).
  • [35] Arifin, A., Sulong, A. B., Muhamad, N., Syarif, J., & Ramli, M. I., “Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review”, Materials & Design, 55, 165-175, (2014).
  • [36] Nasab, M. B., Hassan, M. R., & Sahari, B. B., “Metallic biomaterials of knee and hip-a review”, Trends in Biomaterials & Artificial Organs, 24(1), 69-82, (2010).
  • [37] Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y., “New developments of Ti-based alloys for biomedical applications”, Materials, 7(3), 1709-1800, (2014).
  • [38] Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T., “Design and mechanical properties of new β type titanium alloys for implant materials”, Materials Science and Engineering: A, 243(1-2), 244-249, (1998).
  • [39] Wang, K., “The use of titanium for medical applications in the USA”, Materials Science and Engineering: A, 213(1-2), 134-137, (1996).
  • [40] Davis, J. R., “Handbook of materials for medical devices”, ASM international, (2006).
  • [41] Wang, K., “The Characterization of Ti-12Mo-6Zr-2Fe A New Biocompatible Titanium Alloy Developed for Surgical Implant”, Beta Titanium Alloys in the 1990's, 49-60, (1993).
  • [42] Gepreel, M. A. H., & Niinomi, M., “Biocompatibility of Ti-alloys for long-term implantation”, Journal of the mechanical behavior of biomedical materials, 20, 407-415, (2013).
  • [43] Zhang, L. C., Klemm, D., Eckert, J., Hao, Y. L., & Sercombe, T. B., “Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy”, Scripta Materialia, 65(1), 21-24, (2011).
  • [44] Hanawa, T., “Metal ion release from metal implants”, Materials Science and Engineering: C, 24(6-8), 745-752, (2004).
  • [45] Niinomi, M., Kuroda, D., Fukunaga, K. I., Morinaga, M., Kato, Y., Yashiro, T., & Suzuki, A., “Corrosion wear fracture of new β type biomedical titanium alloys”, Materials Science and Engineering: A, 263(2), 193-199, (2004).
  • [46] Bahador, A., Umeda, J., Ghandvar, H., Bakar, T. A. A., Yamanoglu, R., Issariyapat, A., & Kondoh, K., “Microstructure globularization of high oxygen concentration dual-phase extruded Ti alloys via powder metallurgy route”, Materials Characterization, 172, 110855, (2021).
  • [47] Leyens, C., & Peters, M. (Eds.), “Titanium and titanium alloys: fundamentals and applications”, Wiley-vch, (2006).
  • [48] Oshida, Y., “Bioscience and bioengineering of titanium materials”, Elsevier, (2010).
  • [49] Hallab, N., Merritt, K., & Jacobs, J. J., “Metal sensitivity in patients with orthopaedic implants”, The Journal of Bone and Joint Surgery, 83(3), 428, (2001).
  • [50] Kita N., “Meme Cerrahisinde Skar Doku için Kapsülektomi”, [Available from: https://tr.approby.com/meme-cerrahisinde-skar-doku-icin-kapsuelektomi/, (2021).
  • [51] Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y., “New developments of Ti-based alloys for biomedical applications”, Materials, 7(3), 1709-1800, (2014).
  • [52] Niinomi, M., “Recent metallic materials for biomedical applications”, Metallurgical and materials transactions A, 33(3), 477-486, (2002).
  • [53] Liu, X., Chu, P. K., & Ding, C., “Surface modification of titanium, titanium alloys, and related materials for biomedical applications”, Materials Science and Engineering: R: Reports, 47(3-4), 49-121, (2004).
  • [54] Khoshnaw, F., Yamanoglu, R., Basci, U. G., & Muratal, O., “Pressure assisted bonding process of stainless steel on titanium alloy using powder metallurgy”, Materials Chemistry and Physics, 259, 124015, (2021).
  • [55] Adya, N., Alam, M., Ravindranath, T., Mubeen, A., & Saluja, B., “Corrosion in titanium dental implants: literature review”, The Journal of Indian Prosthodontic Society, 5(3), 126, (2005).
  • [56] Donachie, M. J., ”Titanium: a technical guide.”, ASM international, (2000).
  • [57] Kulkarni, M., Mazare, A., Schmuki, P., & Iglič, A., “Biomaterial surface modification of titanium and titanium alloys for medical applications”, Nanomedicine, 111, 111, (2014).
  • [58] Al-Mobarak, N. A., Al-Swayih, A. A., & Al-Rashoud, F. A., “Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications”, International Journal of Electrochemical Science, 6(6), 2031-2042, (2011).
  • [59] Chahine, G., Koike, M., Okabe, T., Smith, P., & Kovacevic, R., “The design and production of Ti-6Al-4V ELI customized dental implants”, The Journal of The Minerals, Metals & Materials Society, 60(11), 50-55, (2008).
  • [60] Okabe, T., & Hero, H., “The use of titanium in dentistry”, Cells and Materials, 5(2), 9, (1995).
  • [61] Niinomi, M. (Ed.), “Metals for biomedical devices”, Woodhead publishing, (2019).
  • [62] Froes, F., & Qian, M. (Eds.), “Titanium in medical and dental applications”, Woodhead Publishing, (2018).
  • [63] Mohan, P., Osman, T. A., Amigo, V., & Mohamed, A., “Effect of Fe content, sintering temperature and powder processing on the microstructure, fracture and mechanical behaviours of Ti-Mo-Zr-Fe alloys”, Journal of Alloys and Compounds, 729, 1215-1225, (2017).
  • [64] Olin, C., “Titanium in cardiac and cardiovascular applications”, In Titanium in medicine (pp. 889-907). Springer, Berlin, Heidelberg, (2001).
  • [65] Liu, X., Chu, P. K., & Ding, C., “Surface modification of titanium, titanium alloys, and related materials for biomedical applications”, Materials Science and Engineering: R: Reports, 47(3-4), 49-121, (2004).
  • [66] AMETEK, “Ametek develops ultra-thin titanium strip for pacemaker and neurostimulator enclosures”, [Available from: https://www.ametekmetals.com/news/latestnews/2017/june/ametek-develops-ultra-thin-titanium-strip-for-pacemaker-and-neurostimulator-enclosures, (2017).
  • [67] Jacobs S., “Allergy to Titanium in Cardiac Pacemaker Thought to Have Led to Asthma Development: Case Study: Asthma Advisor Channel” [Available from: https://www.pulmonologyadvisor.com/advisor-channels/asthma-advisor-channel/allergy-to-titanium-in-cardiac-pacemaker-thought-to-have-led-to-asthma-development-case-study/, (2020).
  • [68] Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M., “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030”, Journal of Bone and Joint Surgery, 89(4), 780-785, (2007).
  • [69] Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A., “Biomedical applications of titanium and its alloys”, The Journal of The Minerals, Metals & Materials Society, 60(3), 46-49, (2008).
  • [70] Zhou, L., Yuan, T., Li, R., Tang, J., Wang, M., & Mei, F., “Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging”, Materials Science and Engineering: A, 725, 329-340, (2018).
  • [71] Xu, Y., Gao, J., Huang, Y., & Rainforth, W. M., “A low-cost metastable beta Ti alloy with high elastic admissible strain and enhanced ductility for orthopaedic application”, Journal of Alloys and Compounds, 835, 155391, (2020).
  • [72] Acharya, S., Panicker, A. G., Laxmi, D. V., Suwas, S., & Chatterjee, K., “Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications”, Materials & Design, 164, 107555, (2019).
  • [73] Sotniczuk, A., Kuczyńska-Zemła, D., Kwaśniak, P., Thomas, M., & Garbacz, H., “Corrosion behavior of Ti-29Nb-13Ta-4.6 Zr and commercially pure Ti under simulated inflammatory conditions–comparative effect of grain refinement and non-toxic β phase stabilizers”, Electrochimica Acta, 312, 369-379, (2019).
  • [74] Hendrickson, M., Mantri, S. A., Ren, Y., Alam, T., Soni, V., Gwalani, B., ... & Banerjee, R., “The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy”, Journal of Materials Science, 52(6), 3062-3073, (2017).
  • [75] Disegi, J. A., “Titanium alloys for fracture fixation implants”, Injury, 31, D14-D17, (2000).
  • [76] Atapour, M., Pilchak, A. L., Frankel, G. S., & Williams, J. C., “Corrosion behavior of β titanium alloys for biomedical applications”, Materials Science and Engineering: C, 31(5), 885-891, (2011).
  • [77] Yamanoglu, R., Bahador, A., & Kondoh, K., “Effect of Mo Addition on the Mechanical and Wear Behavior of Plasma Rotating Electrode Process Atomized Ti6Al4V Alloy”, Journal of Materials Engineering and Performance, 30(5), 3203-3212, (2021).
  • [78] Kumar, A., Jayakumar, T., Raj, B., & Banerjee, D., “A new methodology for identification of β-transus temperature in α+ β and β titanium alloys using ultrasonic velocity measurement”, Philosophical Magazine, 88(3), 327-338, (2008).
  • [79] Collings, E. W., “The physical metallurgy of titanium alloys”, Metals Park Ohio, 3, (1984).
  • [80] Bahador, A., Umeda, J., Yamanoglu, R., Amrin, A., Alhazaa, A., & Kondoh, K., “Ultrafine-grain formation and improved mechanical properties of novel extruded Ti-Fe-W alloys with complete solid solution of tungsten”, Journal of Alloys and Compounds, 875, 160031, (2021).
  • [81] Geetha, M., Singh, A. K., Muraleedharan, K., Gogia, A. K., & Asokamani, R., “Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy”, Journal of Alloys and Compounds, 329(1-2), 264-271, (2001).
  • [82] Tang, X., Ahmed, T., & Rack, H. J., “Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys”, Journal of Materials Science, 35(7), 1805-1811, (2000).
  • [83] Imam, M. A., & Fraker, A. C., “Titanium alloys as implant materials”, In Medical applications of titanium and its alloys: The material and biological issues, ASTM International, (1996).
  • [84] Yang, Y. L., Wang, W. Q., Li, F. L., Li, W. Q., & Zhang, Y. Q., “The effect of aluminum equivalent and molybdenum equivalent on the mechanical properties of high strength and high toughness titanium alloys”, In Materials Science Forum Vol. 618, pp. 169-172, (2009).
  • [85] Laheurte, P., Eberhardt, A., & Philippe, M. J., “Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy”, Materials Science and Engineering: A, 396(1-2), 223-230, (2005).
  • [86] Mythili, R., Paul, V. T., Saroja, S., Vijayalakshmi, M., & Raghunathan, V. S., “Study of transformation behavior in a Ti–4.4 Ta–1.9 Nb alloy”, Materials Science and Engineering: A, 390(1-2), 299-312, (2005).
  • [87] Kim, H. S., Lim, S. H., Yeo, I. D., & Kim, W. Y., “Stress-induced martensitic transformation of metastable β-titanium alloy”, Materials Science and Engineering: A, 449, 322-325, (2007).
  • [88] Wang, Q., Dong, C., & Liaw, P. K., “Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+ β)] phase-boundary slopes”, Metallurgical and Materials Transactions A, 46(8), 3440-3447, (2015).
  • [89] Ping, D. H., Cui, C. Y., Yin, F. X., & Yamabe-Mitarai, Y., “TEM investigations on martensite in a Ti–Nb-based shape memory alloy”, Scripta Materialia, 54(7), 1305-1310, (2006).
  • [90] Zhou, Y. L., & Niinomi, M., “Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications”, Journal of Alloys and Compounds, 466(1-2), 535-542, (2008).
  • [91] Majumdar, P., Singh, S. B., & Chakraborty, M., “Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study”, Materials Science and Engineering: A, 489(1-2), 419-425, (2008).
  • [92] Pruitt, L. A., & Chakravartula, A. M., “Mechanics of biomaterials: fundamental principles for implant design”, MRS Bulletin, 37(7), 698-698, (2012).
  • [93] Balakrishnan, A., Lee, B. C., Kim, T. N., & Panigrahi, B. B., “Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application”, Trends in Biomaterials & Artificial Organs, 22(1), 58-64, (2008).
  • [94] Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J., “Preparation of TiO2 layers on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating techniques and their characterization”, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28, (2002).
  • [95] Guo, W. Y., Sun, J., & Wu, J. S., “Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7 Ta–2Zr–O alloy in Ringer's solution”, Materials Chemistry and Physics, 113(2-3), 816-820, (2009).
  • [96] Yu, S. Y., & Scully, J. R., “Corrosion and passivity of Ti-13% Nb-13% Zr in comparison to other biomedical implant alloys”, Corrosion, 53(12), (1997).
  • [97] Schutz, R. W., “Environmental behavior of beta titanium alloys”, The Journal of The Minerals, Metals & Materials Society, 46(7), 24-29, (1994).
  • [98] Godley, R., Starosvetsky, D., & Gotman, I., “Corrosion behavior of a low modulus β-Ti-45% Nb alloy for use in medical implants”, Journal of Materials Science: Materials in Medicine, 17(1), 63-67, (2006).
  • [99] Çaha, I., Alves, A., Chirico, C., Pinto, A., Tsipas, S., Gordo, E., & Toptan, F., “Corrosion and tribocorrosion behavior of Ti-40Nb and Ti-25Nb-5Fe alloys processed by powder metallurgy”, Metallurgical and Materials Transactions A, 51(6), 3256-3267, (2020).
  • [100] De Souza, K. A., & Robin, A., “Preparation and characterization of Ti–Ta alloys for application in corrosive media”, Materials Letters, 57(20), 3010-3016, (2003).
  • [101] Metikos-Huković, M., Kwokal, A., & Piljac, J., “The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution”, Biomaterials, 24(21), 3765-3775, (2003).
  • [102] Banerjee, R., Nag, S., Stechschulte, J., & Fraser, H. L., “Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys”, Biomaterials, 25(17), 3413-3419, (2004).
  • [103] Kobayashi, E., Ando, M., Tsutsumi, Y., Doi, H., Yoneyama, T., Kobayashi, M., & Hanawa, T., “Inhibition effect of zirconium coating on calcium phosphate precipitation of titanium to avoid assimilation with bone”, Materials transactions, 48(3), 301-306, (2007).
  • [104] Shukla, A. K., Balasubramaniam, R., & Bhargava, S., “Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4 Al–29Nb alloys in simulated human body conditions”, Intermetallics, 13(6), 631-637, (2005).
  • [105] Hanawa, T., “Recent development of new alloys for biomedical use”, In Materials Science Forum Vol. 512, pp. 243-248, (2006).
  • [106] Dong, H., “Tribological properties of titanium-based alloys”, In Surface engineering of light alloys (pp. 58-80). Woodhead Publishing, (2010).
  • [107] Molinari, A., Straffelini, G., Tesi, B., & Bacci, T., “Dry sliding wear mechanisms of the Ti6Al4V alloy”, Wear, 208(1-2), 105-112, (1997).
  • [108] Lee, Y. S., Niinomi, M., Nakai, M., Narita, K., & Cho, K., “Predominant factor determining wear properties of β-type and (α+ β)-type titanium alloys in metal-to-metal contact for biomedical applications”, Journal of The Mechanical Behavior of Biomedical Materials, 41, 208-220, (2015).
  • [109] Rabinowicz, E., & Tanner, R. I., “Friction and wear of materials”, Journal of Applied Mechanics, 33(2), 479, (1966).
  • [110] Budinski, K. G., “Tribological properties of titanium alloys”, Wear, 151(2), 203-217, (1991).
  • [111] Laing, P. G., Ferguson Jr, A. B., & Hodge, E. S., “Tissue reaction in rabbit muscle exposed to metallic implants”, Journal of Biomedical Materials Research, 1(1), 135-149, (1967).
  • [112] Oliveira, V., Chaves, R. R., Bertazzoli, R., & Caram, R., “Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants”, Brazilian Journal of Chemical Engineering, 15(4), 326-333, (1998).
  • [113] McGee, M. A., Howie, D. W., Costi, K., Haynes, D. R., Wildenauer, C. I., Pearcy, M. J., & McLean, J. D., “Implant retrieval studies of the wear and loosening of prosthetic joints: a review”, Wear, 241(2), 158-165, (2000).
  • [114] Rigney, D. A., “Some thoughts on sliding wear”, Wear, 152(1), 187-192, (1992).
  • [115] Brown, S. A., & Lemons, J. E., “Medical applications of titanium and its alloys: the material and biological issues” , West Conshohocken, PA: ASTM, (1996).
  • [116] Hacisalihoglu, I., Samancioglu, A., Yildiz, F., Purcek, G., & Alsaran, A., “Tribocorrosion properties of different type titanium alloys in simulated body fluid”, Wear, 332, 679-686, (2015).
  • [117] Niinomi, M., Kuroda, D., Fukunaga, K. I., Morinaga, M., Kato, Y., Yashiro, T., & Suzuki, A., “Corrosion wear fracture of new β type biomedical titanium alloys”, Materials Science and Engineering: A, 263(2), 193-199, (1999).
  • [118] Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y., Niinomi, M., & Guo, Z. X., “Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications”, Wear, 257(9-10), 869-876, (2004).
  • [119] Xu, W., Lu, X., Tian, J., Huang, C., Chen, M., Yan, Y., ... & Wen, C., “Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications”, Journal of Materials Science & Technology, 41, 191-198, (2020).
  • [120] Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T., “In vitro corrosion resistance of titanium made using different fabrication methods”, Biomaterials, 20(2), 183-190, (1999).
  • [121] Festas, A., Ramos, A., & Davim, J. P., “Machining of titanium alloys for medical application-a review”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 09544054211028531, (2021).
  • [122] Qosim, N., Supriadi, S., Whulanza, Y., & Saragih, A. S, “Development of ti-6al-4v based-miniplate manufactured by electrical discharge machining as maxillofacial implant”, Journal of Fundamental and Applied Sciences, 10(3S), 765-775, (2018).
  • [123] Weihe, S., Wehmöller, M., Schliephake, H., Haßfeld, S., Tschakaloff, A., Raczkowsky, J., & Eufinger, H., “Synthesis of CAD/CAM, robotics and biomaterial implant fabrication: single-step reconstruction in computer aided frontotemporal bone resection”, International journal of oral and maxillofacial surgery, 29(5), 384-388, (2000).
  • [124] Prasad, R., & Abdullah Al-Kheraif, A., “Three-dimensional accuracy of CAD/CAM titanium and ceramic superstructures for implant abutments using spiral scan microtomography”, International Journal of Prosthodontics, 26(5), (2013).
  • [125] Soundararajan, S. R., Vishnu, J., Manivasagam, G., & Muktinutalapati, N. R., “Processing of beta titanium alloys for aerospace and biomedical applications” In Titanium Alloys-Novel Aspects of Their Manufacturing and Processing, IntechOpen, (2018).
  • [126] Sieniawski, J., & Motyka, M., “Superplasticity in titanium alloys”, Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 123-130, (2007).
  • [127] Chang, B., Song, W., Han, T., Yan, J., Li, F., Zhao, L., ... & Zhang, Y., “Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth”, Acta biomaterialia, 33, 311-321, (2016).
  • [128] Yamanoglu, R., Efendi, E., Kolayli, F., Uzuner, H., & Daoud, I., “Production and mechanical properties of Ti–5Al–2.5 Fe–xCu alloys for biomedical applications”, Biomedical Materials, 13(2), 025013, (2018).
  • [129] Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Aiman, M. H., ... & Manladan, S. M., “A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications”, Critical Reviews in Solid State and Materials Sciences, 46(2), 109-151, (2021).
  • [130] Basci UG., Yamanoglu R., “EKLEMELİ METAL İMALAT TEKNOLOJİLERİ İÇİN METAL TOZU ÜRETİM YÖNTEMLERİ”, Uluslararası Marmara Fen ve Sosyal Bilimler Kongresi, 219-227, Kocaeli, (2019).
  • [131] Zhao, X., Niinomi, M., Nakai, M., & Hieda, J., “Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation application”, Acta biomaterialia, 8(5), 1990-1997, (2012).
  • [132] Almeida, A., Gupta, D., Loable, C., & Vilar, R., “Laser-assisted synthesis of Ti–Mo alloys for biomedical applications”, Materials Science and Engineering: C, 32(5), 1190-1195, (2012).
  • [133] Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., & Kruth, J. P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V”, Acta materialia, 58(9), 3303-3312, (2010).
  • [134] Božić, D., Cvijović, I., Vilotijević, M. N., & Jovanović, M. T., “The influence of microstructural characteristics on the mechanical properties of Ti6Al4V alloy produced by the powder metallurgy technique”, Journal of the Serbian Chemical Society, 71(8-9), 985-992, (2006).
  • [135] Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., & Stucker, B. E., “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting”, Journal of materials engineering and performance, 22(12), 3872-3883, (2013).
  • [136] Zhang, S., Wei, Q., Cheng, L., Li, S., & Shi, Y., “Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials & Design, 63, 185-193, (2014).
  • [137] Gu, D., Hagedorn, Y. C., Meiners, W., Meng, G., Batista, R. J. S., Wissenbach, K., & Poprawe, R., “Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium”, Acta Materialia, 60(9), 3849-3860, (2012).
  • [138] Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. R., Zhang, Y., Xia, Y., ... & Free, M., Powder metallurgy of titanium–past, present, and future”, International Materials Reviews, 63(7), 407-459, (2018).
  • [139] Niinomi, M., “Recent metallic materials for biomedical applications”, Metallurgical and materials transactions A, 33(3), 477-486, (2002).
  • [140] Taddei, E. B., Henriques, V. A. R., Silva, C. R. M., & Cairo, C. A. A., “Densification and microstructural behaviour on the sintering of blended elemental Ti-35Nb-7Zr-5Ta alloy”, In Materials Science Forum , Vol. 530, pp. 341-346, (2006).
  • [141] Henriques, V. A. R., & Silva, C. R. M., “Production of titanium alloys for medical implants by powder metallurgy”, In Key engineering materials , Vol. 189, pp. 443-448, (2001).
  • [142] Sochacka, P., Miklaszewski, A., Kowalski, K., & Jurczyk, M., “Influence of the processing method on the properties of Ti-23 at.% Mo alloy”, Metals, 9(9), 931, (2019).
  • [143] Dunand, D. C., “Processing of titanium foams”, Advanced engineering materials, 6(6), 369-376, (2004).
  • [144] Arifin, A., Sulong, A. B., Muhamad, N., & Syarif, J., “Characterization of hydroxyapatite/Ti6Al4V composite powder under various sintering temperature.”, Jurnal Teknologi, 75(7), (2015).
  • [145] Doni, Z., Alves, A. C., Toptan, F., Gomes, J. R., Ramalho, A., Buciumeanu, M., ... & Silva, F. S., “Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys”, Materials & Design, 47-57, (2013).
  • [146] Gronostajski, Z., Bandoła, P., & Skubiszewski, T., “Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V”, Archives of Civil and Mechanical Engineering, 9(2), 47-57, (2009).
  • [147] German, R. M., “Powder metallurgy science”, Metal Powder Industries Federation, 105 College Rd. E, Princeton, N. J. 08540, U. S. A., 279, (1984).
  • [148] Yamanoglu, R., Gulsoy, N., Olevsky, E. A., & Gulsoy, H. O., “Production of porous Ti5Al2. 5Fe alloy via pressureless spark plasma sintering”, Journal of Alloys and Compounds, 680, 654-658, (2016).
  • [149] do Prado, R. F., Esteves, G. C., Santos, E. L. D. S., Bueno, D. A. G., Cairo, C. A. A., Vasconcellos, L. G. O. D., ... & De Vasconcellos, L. M. R., “In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy” PloS one, 13(5), e0196169, (2018).
  • [150] Yoshitani, Y., Niinomi, M., Fukunaga, K., Kuroda, D., Fukui, H., Takeuchi, T., & Katsura, S., “Mechanical Properties of Biocompatible Titanium Alloy Castings Made by Dental Precision Casting Method”, In Proceedings of the 5th International Symposium on Titanium in Dentistry, P-71 (Vol. 107), (2004).
Toplam 150 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hasan İsmail Yavuz 0000-0001-6198-2560

Rıdvan Yamanoğlu 0000-0002-4661-8215

Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 26 Sayı: 4

Kaynak Göster

APA Yavuz, H. İ., & Yamanoğlu, R. (2023). β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri. Politeknik Dergisi, 26(4), 1601-1620. https://doi.org/10.2339/politeknik.987216
AMA Yavuz Hİ, Yamanoğlu R. β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri. Politeknik Dergisi. Aralık 2023;26(4):1601-1620. doi:10.2339/politeknik.987216
Chicago Yavuz, Hasan İsmail, ve Rıdvan Yamanoğlu. “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri Ve Üretim Yöntemleri”. Politeknik Dergisi 26, sy. 4 (Aralık 2023): 1601-20. https://doi.org/10.2339/politeknik.987216.
EndNote Yavuz Hİ, Yamanoğlu R (01 Aralık 2023) β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri. Politeknik Dergisi 26 4 1601–1620.
IEEE H. İ. Yavuz ve R. Yamanoğlu, “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri”, Politeknik Dergisi, c. 26, sy. 4, ss. 1601–1620, 2023, doi: 10.2339/politeknik.987216.
ISNAD Yavuz, Hasan İsmail - Yamanoğlu, Rıdvan. “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri Ve Üretim Yöntemleri”. Politeknik Dergisi 26/4 (Aralık 2023), 1601-1620. https://doi.org/10.2339/politeknik.987216.
JAMA Yavuz Hİ, Yamanoğlu R. β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri. Politeknik Dergisi. 2023;26:1601–1620.
MLA Yavuz, Hasan İsmail ve Rıdvan Yamanoğlu. “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri Ve Üretim Yöntemleri”. Politeknik Dergisi, c. 26, sy. 4, 2023, ss. 1601-20, doi:10.2339/politeknik.987216.
Vancouver Yavuz Hİ, Yamanoğlu R. β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri. Politeknik Dergisi. 2023;26(4):1601-20.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.